Inversion Formulas for Multi-Dimensional
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Abstract We give a sample of results on the inversion formulas for
multi-dimensional modified Stockwell transforms obtained by the
author, his students and collaborators. All results can be found in
the literature and complete references for them are given.
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1 One-Dimensional Modified
Stockwell Transforms

A signal is a function f in L*(R). Tt is a function of time, which we denote
by the variable z in R. The usual time-representation of it is f(x) at time
x. An equally useful representation is by means of its Fourier transform f ,
which we define as

o0

f(6) = (2m) 12 / e f(r)dz, €€R.

o0

The value f (&) is usually called the frequency representation or the Fourier
spectrum of f at frequency &. The disadvantage of the Fourier transform in
signal analysis lies in the fact that in order to calculate the Fourier spectrum
of asignal f at a single frequency &, information about the signal f at almost
every single time x is needed. One way to fix this is to introduce a window
to concentrate on the duration of the signal for which we are interested in
its spectrum. This is perhaps the pioneering idea due to Gabor [7] in signal
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analysis that we call time-frequency analysis in the modern era. To wit, let
¢ € L*(R). Then we define the Gabor transform G,f of a signal f with
respect to the window ¢ by

o0

(Cu)0.) = @0 [ D) dr, beeR
The quantity (G, [f)(b,€) is the time-frequency content of the signal f at
time b and frequency £ by placing a window ¢ at time b. One point to note,
however, is that the window ¢ in the Gabor transform has a fixed size. It
is much better to have a window adaptive to the frequency in the sense
that the window is narrow for durations with high frequencies and wide for
durations with low frequencies. That this can be done can be attributed to

the arrival of the wavelet era.
Let » € L*(R) be such that

* |p(O)
/oo g =

This condition on ¢ is known as the admissibility condition. If a function ¢
in L?(R) satisfies the admissbility condition, then it is known as a mother
wavelet and can serve as a window for the wavelet transform that we are
going to recall. Let ¢ € L*(R) be a mother wavelet. Then we define the
wavelet transform ., f of a signal f € L*(R) by

@006 = [ 1w jmw (x;b)dx

for all b € R and @ € R\ {0}. More details can be found in [4].
We can now introduce another time-frequency transform incorporating
the principal features of the Gabor transform and the wavelet transform.

Let ¢ € L'(R) N L*(R) be such that
/ o(x)dr =1.

oo

Then the Stockwell transform S, f of a signal f with respect to the window
@ is defined by

(5:00.6) = @0 lel [ e pEm - o



for all b € R and ¢ € R\ {0}. The first paper featuring the Stockwell
transform is [20].

Some colleagues in the field of time-frequency analysis often identify the
Stockwell transform with the Morlet wavelet transform in [4]. Maybe it is
due to the following theorem.

Theorem 1.1 For all f € L*(R),

(Spf)(b,€) = (2m) 27 /I€](Q ) (b, 1/€), beR, & €R\ {0},

where ‘
b(2) = ¢"p(z), wER.

Notwithstanding the formula relating the Stockwell transform to the
Morlet wavelet transform, the misleading similarities and the subtle differ-
ences between the Stockwell transforms and the Morlet wavelet transforms
are explained on page 6 of [11].

For one-dimensional Stockwell transforms, the analysis, the applications
and the computations can be found in, respectively, [5, 9, 10, 11, 21], [6, 8,
9, 10, 11, 19, 20, 22] and [1].

We can now introduce one-dimensional modified Stockwell transforms.
Let » € LY(R) N L*(R) be such that

/00 o(x)dr =1.

oo

Then for 0 < s < oo, the modified Stockwell transform S, f of a signal f
is defined by

o0

(S0 f)(b,€) = (27)1/2\611/3/ e f(x)p(E(r — b)) dx
for all b € R and ¢ in R\ {0}.

In applications to imaging, as s increases from 1 to oo, low frequencies
are amplified and high frequencies diminished. To diminish low frequencies
and amplify high frequencies, we look at 0 < s < 1 instead of 1 < s < 0.
Details with pictures can be found in [9, 11]. The main result on modified
Stockwell transforms that we want to emphasize is the following inversion
formula.



Theorem 1.2 Let p € L'(R) N L3(R) be such that
/ plr)der =1

and

* |6 — 1)
/_oo g e

Then for all f and g in L*(R), we get

dbd,
e == [ [ .n0.0E 00 g g

where %+ 5 =1 and

et — 12
C*”‘/oo a “

The aim of this paper is to introduce multi-dimensional modified Stock-
well transforms and give inversion formulas for several classes of dilation
matrix functions underpinning multi-dimensonal modified Stockwell trans-
forms. All results in this paper have been published and the only contribu-
tion here is to present them in one place with relevant references [15, 16, 17].
Proofs are omitted.

2 Multi-Dimensional Modified
Stockwell Transforms

Let A € GL(n,R). Then for 0 < s < oo, the multi-dimensional dilation
operator D; 4 is defined by

(Dsap)(z) = |det A|7V5p(A ™ 2), 2 €R™

If s =2, then Dy 4 : L*(R™) — L?*(R") is a unitary operator.
Let A:R™ — GL(n,R) be a mapping given by

R" 5 ¢ — Ae € GL(n,R)



and let p € L?(R™). Then for 0 < s < 0o, we define the modified Stockwell
transform S; 4, f of order s of a signal f € L*(R") by

(Suno£)0.€) = @) 2det A [ f(@)e = (AT = D)da

for all b and & € R™. The function ¢ is known as the window of the modified
Stockwell transform Sy 4, of order s. We have the following simple relation
of the modified Stockwell transform of order s with the modified Stockwell
transform of order 2.

Proposition 2.1 Let A : R" — GL(n,R) be a mapping and let p € L*(R")
be a window. Then for 0 < s < o0,

(Ss.a0f)(b,€) = |det Ag|H/D=WG, 4 (b,€), b &R,
for all f € L*(R™).

A useful formula for the computations of modified Stockwell transforms
is given in the following theorem.

Proposition 2.2 Let A: R" — GL(n,R) be a continuous mapping. Then
for all windows f € L*(R"),

(Ssapf)(b,€) = [det AZt['=W/De=PEfY, (b)

for all b, & € R™, where ngg is the inverse Fourier transform of fe a, and

~

feacdQ) = FIQ@(AL(C - €)), C(ER™

3 Moritoh Wavelet Transforms

Let R : R" — SO(n,R). Then we define the Moritoh wavelet transform
WﬁRq,@f of a signal f in L?*(R™) with respect to the window ¢ in L*(R")

by

(WlRl ) b,€&) = yf\"ﬂ/ f(@) (€] Re(x — b))d
for all b € R" and all £ € R™\ {0}. In fact,

(Wl ) (0.6) = (£,74D, 1@)L2(Rn) . beR™Ee R\ {0},

Tel 5



where T is the translation operator on L?(R") given by
(Tp9)(z) = g(x =b), zeR",

for all g € L?(R"). The Moritoh wavelet transform can be found in [14].
The following theorem gives the connection between the modified Stock-
well transforms and the Moritoh wavelet transforms.

Theorem 3.1 Let R : R"™ — SO(n,R). For all £ € R™\ {0}, let
1
Ae = =R
Lol
Let o € L*(R™). Then for 0 < s < oo,

(Ssa0)(b,€) = [det Ag|/2 =/ (27)=n/2e=ibt (WA,M f) (b,€)

(aghie

for all b € R™ and all £ € R™\ {0}, where M,, for every n € R", is the
modulation operator on L*(R™) given by

(Myg)(z) = e g(x), =R,

for all g € L*(R™).

4 Constant Dilation Matrices

The first inversion formula for modified Stockwell transforms is provided by
constant dilation matrices.

Theorem 4.1 Let A : R" — GL(n,R) be a constant matriz. Let ¢ be a
nonzero function in L*(R™). Then for 0 < s < oo,

1 _ B
(f, 9@y = T / (Ss.a0f)(b,€)(Ss,n,59) (b, €)|det A/ 1db de
o Jar

for all f and g in L*(R™).

Theorem 4.1 is in fact the inversion formula for multi-dimensional Gabor
transforms. A proof of Theorem 4.1 requires only the Plancherel formula
for the Fourier transform and Proposition 2.2.



5 Diagonal Matrix Dilations

We first give a lemma on diagonal matrix dilations.

Lemma 5.1 Let A:R" — GL(n,R) be given by

&£ 0 - 0
0 o 0

=] 0B 0w
000 - & |

Let o € L*(R") and 1 = (1,1,...,1). Then
[2(AL(C = &) P|det Al dg = [ [o(n — 1)[*|det A, | dn.
R™ R™
A proof of Lemma 5.1 can be obtained by putting
n= A —¢)

and computing the Jacobian det ( 5)
We can now give the inversion formula for modified Stockwell transforms
corresponding to diagonal matrix dilations.

Theorem 5.2 Let A:R"™ — GL(n,R) be such that

1 _
& 0 --- 0
1
1
0O 0 --- e |

for all § € R" with & #0, j =1,2,...,n. Let ¢ € L*(R") be such that
= [ 16 - DPidet 4, dn < .
]Rn

Then for 0 < s < oo,

b
(f, 9)L2(Rn) :—/ / 9A‘Pf bﬁ( 9A£Pg)(b g)m

for all f and g in L*(R™).



6 An Inversion Formula with
Topological Obstruction

We begin with another inversion formula, provide some examples and illus-
trate the fact that the dimensions of the dilation matrices and hence the
dimensions of the modified Stockwell transforms cannot be improved.

Theorem 6.1 Let A:R"™ — GL(n,R) be a continuous mapping such that

%‘Agl € SO(n,R), ¢eR"\{0}.

Suppose that there exists a matriz P € O(n,R) such that
At =PAJYE, £, (eR™
Moreover, suppose that
A& = [gler, EER"
where e; = (1,0,...,0) € R™. Let ¢ € L*(R") be such that

R dn
Cp = / [2(n — ex)| i < o0
Rn ’77‘

Then for all f and g in L*(R"),

A
(f,9) z—// Ssa0f)(0,)( sAwg)(bi)W

We give some examples.

Example 6.2 The matrix-valued functions

SERS

A= . fER,
-
a6 & &
P
S
- -6 -6 &




and

G & & & & &% & &
=& & & & & —& &% &
=& & & & & & & &
. & & L & & & &% & -
=& =& & & b & & &
=& & & & L G~ &
=& s & % &S L &G —&
& & &b & & —& 0 & &

823

are dilation matrices satisfying the hypotheses of Theorem 6.1 when the
dimension n is equal to, respectively, 2, 4 and 8.

Can we find examples for dimensions other than 2, 4 and 87 The answer
is no. This is due to the fact by Bott and Milnor [2] to the effect that if n €
N\ {1,2, 4,8}, then there are no continuous mappings A : S*~* — GL(n,R)
such that for every £ € S"~1, A is parallet to &.

7 Tensors and Inversion Formulas

A (1,2)-tensor F of order n is an n x n matrix of the form

Ry Fy - Fy
F2 F2 C F2
F _ '12 '22 ?’LQ

A (1,1)-tensor G of order n is an n x n matrix of the form

G =[G i<ijen.

J

The following lemma is due to Kalisa and Torrésani [12].
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Lemma 7.1 Let A : R* — GL(n,R) be such that we can find be a (1,2)-
tensor I of order n and a (1,1)-tensor G of order n such that

(Ap)~' = [Fflfl + Gllicijan, €=(£,6,...,6") eRY,

i the Einstein notation, i.e.,

S R S A - S L]
(Aé)_l _ Z?leFflﬁl Z?=1:F221§l Z?=1:Fﬁl§l
| XL R XL e e XL e
1 .. 711
Jaare
_G}‘ Gy GZ_

forall ¢ = (€',€%,...,€") €R™. For all € R™, let n¢ : R" — R" be defined
by

nc(§)Ag(¢ =€), §ER™ (7.1)
Then for all ¢ € L*(R™),

Al (r . dng
P(AL(C = &))P[det A d§=/ p(ne)” ,
[ e —epPiaecad e = | 1600 ey

where C is a fized but arbitrary element in R™.
The corresponding inversion formula is the following theorem.
Theorem 7.2 Suppose that A : R™ — GL(n,R) is given by
(AD) 7! = [Fe' + Gilicijn

in the Einstein notation for all € = (€4,€2,...,€") in R™ where F is a (1,2)-
tensor of order n and G is a (1,1)-tensor of order n. In addition, suppose
that

nc(R") =R"



for all ¢ € R", where n; is defined as in (7.1). Let ¢ € L*(R™) be such that
dg

_ ~ 2
CW_ ]R"|(10(£)| |det(I+F£)| < 0.

Then for 0 < s < o0,
1 -
o = o [ [ Sanh 0T b b

for all f and g in L*(R").

8 Conclusions

Inversion formulas for multi-dimensional modified Stockwell transforms un-
der appropriate admissibility conditions are the main results in this paper.
Are there other inversion formulas for multi-dimensional Stockwell trans-
forms as defined in this paper or in some other ways?
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