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Abstract 

This paper describes the wavelet analysis of auditory evoked po-
tentials, such as auditory brainstem responses (ABRs) and auditory 
steady-state responses (ASSRs). Because ABRs are examined using 
the peak amplitudes and latencies of waveforms in hearing diagno-
sis, one-dimensional discrete stationary wavelet analysis (DSWA) is 
beneficial for analyzing ABRs. Power spectrum analysis and phase 
coherence analysis using one-dimensional complex continuous wavelet 
analysis (CCWA) are useful for the detection of ASSRs because of 
their sinusoidal waveform configuration. 

1 Introduction 

It is well known that Helen Adams Keller tried her utmost to acquire language 

skills. For infants who are hard of hearing, the earlier they are diagnosed by 

a hearing test, the more language skills they acquire in later life. Nowadays, 

all newborn infants have an automated auditory brainstem response (ABR) 

hearing test (see [9]). If an infant does not pass the test, he or she then 
has the auditory steady-state response (ASSR) hearing test. In these tests, 

electroencephalogram (EEG) signals such as ABR and ASSR waveforms are 

commonly used. 
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Unfortunately, the automated ABR hearing test takes about 15 min and 
the ASSR hearing test takes about 30 min. Furthermore, all newborn infants 
have the automated ABR hearing test during sleep. When an infant has the 

ASSR hearing test, the infant must often be under anesthesia (sedative). 

For these reasons, reducing the test times of the automated ABR and ASSR 
hearing tests is desirable. 

Tasks: 

• Propose a method of signal processing for accurate detection of ABR 
and ASSR waveforms. 
• Shorten the a叫 ysistime of ABR and ASSR waveforms to reduce 

the time of audiometry tests. 

Solutions: 
• Use optimal wavelet analysis for accurate detection of ABRs and 
ASSRs. 
• For ABRs and ASSRs, through the observation on the way of averaged 
waveforms, propose a waveform processing model of gradual detection. 

2 ABR and ASSR waveform 

2.1 ABR waveform 

An ABR is evoked as the human brain response by input sound stimulation 

from the ears during the 10 ms. An ABR has seven peaks, and the formation 
of waves I, II, III, IV and V originates in specific parts of the auditory neural 
system in the brainstem (shown in Figures 1 and 2). The time (latency) and 
amplitude analyses of these waveforms supply information on the peripheral 

hearing status and the integrity of the brainstem pathway. 

Therefore, the ABR is one of the important indicators for human objective 

audiometry. The ABR has been obtained by averaging many waveforms, 

sometimes as many as about 2, 000. The waveform shown in Figure 1 has 
already been averaged. 

Definition 

During the 10 ms of input sound stimulation from the ears, we obtain 
a data sequence called Epoch, with the kth epoch denoted by Epochk. 

We define 
N 

1 
AB馬＝ー区 Epochk・

N 
k=l 

We call ABRN the N-average ABR, which we hereafter refer to as the 
ABR. 
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Figure 1: Waveforms and latencies of ABR and ASSR of auditory pathway 
[1]. 
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Figure 2: ABR and ASSR of auditory pathway [10]. 
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The ABRs used in this paper were recorded in an acoustically quiet room. 
Subjects reclined in a comfortable chair or lay on a bed. An electrode was 
placed high on each subject's vertex. Two electrodes were placed on the 

earlobes of both ears. A ground electrode was placed on the forehead. The 

subjects were healthy 20-year-old males. 

As input stimuli, we used acoustic stimuli composed of clicks with an 
intensity of 70 dB nHL, a duration of 0.1 ms and a frequency of 20 Hz. 
Here, the decibel normal-hearing level (dB nHL) values are with reference 
to the hearing thresholds of normal hearing subjects. We stored 512-point 
EEG data after the click stimulus. Each set of 512 points of data is called 
an epoch. The duration of one epoch is 10.24 ms since the sampling rate is 

50,000 Hz. 
We should take the effects of subject gender, age and input stimulus 

conditions into account when we detect the peak latencies of AB恥 fromthe 
observed AB応 waveforms.That is, younger or female subjects generally 
show larger wave amplitudes and earlier wave latencies, and older or male 
subjects generally show smaller wave amplitudes and later wave latencies, 

particularly for waves corresponding to AB恥 wavesIII and V. 
The following is a general method of extracting for peak latencies. We 

determine the template AB応 waveformon the basis of the detection rule 

of the ABRN peak characteristics for the latency shift. This rule depends 
on the conditions of gender, age and stimulus. Then, we extract the peak 
latencies of AB応 waveformsaccording to the template. 

We previously established a rule database for template AB恥 waveform

selection using these factors as input parameters ([11]). That is, we decided 
the rule for choosing the most suitable template ABRN waveform under these 
conditions. In our examination, we obtained data from the healthy 20-year-

old males. 
Figure 3 shows four examples of normal ABRN waveform types classified 

with respect to waves IV and V, obtained using 2,000 averagings and clicks 

with an intensity of 80 dB nHL, a duration of 0.1 ms and a frequency of 20 

Hz as the stimulus. 

Figure 4 shows an example of the normal ABRN waveforms obtained with 
various intensities of 80, 70, 60, 50 and 40 dB nHL in the case of type 1. Each 
pair of overlapping graphs show the responses of the left and right ears. 

2.2 ASSR waveform 

Next, we discuss ASSRs according to the well known assertion, that an ASSR 
is composed of a slow ABR and a middle-latency response (MLR) (see Fig-
ure 5, [1] and [6]). To assess the clinical hearing level of infants, the MAS-
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Figure 3: Normal ABRN waveform types classified with respect to waves IV 

and V, obtained with N = 2000 averagings. 
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Figure 4: Example of normal ABRN waveforms (overlapping left and right 

ear responses) obtained from input stimuli with intensities of 40, 50, 60, 70 

and 80 dB nHL. 
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TER (multiple auditory steady-state evoked response [24]) and Navigator 
PRO systems are useful. These systems use the 80-Hz ASSR. It takes 30 
min to test the hearing level at five frequencies,which is a long time, espe-

cially for infants or very young children. Before measuring the 80-Hz ASSR, 
we use a sedative because subjects must be asleep. On the other hand, the 

40-Hz ASSR can be measured when subjects are awake. Therefore, a rapid 
objective audiometry test has been desired for the 40-Hz ASSR. 

40-Hz ASSR and 80-Hz ASSR (Aoyagi) 

Response mechanism of 40 Hz-ASSR and 80 Hz-ASSR Comparison of the response and background brain wans 
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St四dy-state,・ersion or MLR Steady・；；tale version of ,¥BR 

40-HzASSR 80-HzASSR 

While the subject is sleeping, 
MASTER and other conventional 
audiometry equipment use only the 
80-HzASSR. 

40 Hz 

ASSR 

Awaking Sleeping 

80 llz 

ASSR 

811 Hz 80Hz 

While the subject is awake, the 
spectrum of the 40-Hz ASSR 
has high power, but the noise 
level is also high. 

Figure 5: About ASSR configuration. 

The 40-Hz ASSR was recorded using our previously proposed hardware 
system reported in [13]. The input stimuli (sound conditions) were sinu-
soidal amplitude-modulated (SAM) tones. We fixed the modulation fre-
quency (MF) at 40 Hz and selected a single carrier frequency (CF) of 1,000 

Hz. We started with a sound intensity of 70 dB nHL. Then, we decreased the 
sound intensity to its threshold in steps of 10 dB nHL. For normal-hearing 

subjects, the 40-Hz ASSR is recorded as a waveform with the same frequency 
as the modulation frequency (40 Hz). 

We recorded the EEG for up to 30 s. The sampling frequency was 
1,024 Hz. We cut the digital data into epochs, where one epoch consisted of 
512 points of data. The duration of one epoch was 500 ms. It was necessary 
to average at least 20 epochs with sound stimuli above 60 dB nHL and to 

average at least 40 epochs with sound stimuli below 60 dB nHL. For 60 dB 
nHL, if we were unable to detect the 40-Hz ASSR from the average of 20 
epochs, then we checked the average of 40 epochs. Since one epoch took 500 
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ms, we measured the EEG for 10 or 20 s. 
To decrease the time required to measure the EEG using our original 

objective audiometry device, in this study, we design a new procedure for 

averaging the waveforms of the 40-Hz ASSR. Our averaging method is based 
on the Galambos idea shown in Figure 6. Since the sampling frequency is 

1,024 Hz, 1, 024/40 = 25.6~26 points are shifted for one period of 40 Hz. 
For the sampling data D = { d[t] I t = 0, 1, 2, ... } and m 2': 1, we set 

ak = (d[26(k -1)], d[26(k -1) + 1], ... , d[26(k -1) + 511]), k = 1, ... , m. 

Then, for Mさ(m-20), we define the average vector as 

1 
M+20 

函 =MLふ．

PO 

k=21 

P• 
Ph 

-~ 
l バ△

戸
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(1) 

Figure 6: Relationship of the 40-Hz event-related potential (ERP) with the 

middle latency response [6]. 

3 Conventional methods 

Wavelet analysis is a new time-frequency analysis or, more precisely, time— 

scale analysis (see [23]). Some earlier applications of wavelets to ABRs were 
presented by Hanrahan [7, 8]. Several applications of wavelet analysis in the 
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neurosciences are also given in [3]. The auditory nerve relays electrical nerve 
impulses from the ears to the cerebrum. 

We record activities of the auditory neuron group at the midbrain as 

the EEG. This EEG is called an auditory evoked brain response (AEBR) 
or auditory evoked potentials (AEPs). AEBRs or AEPs are used in human 
objective audiometry tests. In the conventional methods for analyzing AEPs, 
Bradley and Wilson applied wavelet analysis to averaged AEP waveforms 

in [2, 26, 27]. 
Discrete stationary wavelet analysis (DSWA) is applied to the waveform 

analysis of AEPs. We also applied DSWA to ABRs in [11], where an ABR 
is one of the AEPs. 

In this paper, we first focus on the analysis of ABRs. An ABR is evoked 
as the human brain response by input sound stimulation from the ears during 

the 10 ms. The ABR is one of the important indicators for human objective 
audiometry. The ABR has been obtained by averaging many waveforms, 
and the conventional methods sometimes require about 2, 000 waveforms 
for averaging. The method proposed by Bradley and Wilson uses 2, 048 
averaged ABR data. We also observed the 2, 000 averaged ABR waveforms 
using DSWA. 

In this section, we explain the conventional method of applying DSWA 
by using our obtained ABR waveform data. We obtained almost the same 
results as those in Wilson's papers [2, 26, 27]. 

3.1 Applying DSWA to ABRs 

We used DSWA as the wavelet transformation (WT). We chose nine decom-
position levels, that is, eight detailed scales (Dl-D8) and a final approxima— 

tion (AS), where the decomposition was performed by MATLAB software. 
We chose bi-orthogonal 5.5 (bior 5.5) wavelet functions (Figure 7 [25]) for 
DSWA. The decompositions and the frequency bands are shown in TABLE 1. 

Two results of applying DSWA to ABRs were shown in Figure 8. We 

observed waves I, II, III, IV and V of the ABR at D5 and wave V of the 
ABR at D6 and D7. On the other hand, we observed wave III at AS, and 
this wave III had the largest amplitude in all levels. 

4 Proposed method 

An ABR mainly consists of two frequency components [4]: a fast ABR (high 
frequency component) and a slow ABR (low-frequency component). Using 
this fact, we propose a concurrent processing method to detect the peak 



22

5
 

Wfr.lelel func心nfor dec:ompoeltlon 

2

5

 

い贔瀾etl'I』nctlonfor reo:onllructlon 

0.5, 
I I 

＇ 0.5 

.0:1 ,~V' l "_; 
-1 （） 2 4 <, X 10 

゜
2 4 6 8 10 

Figure 7: Decomposition and reconstruction wavelet functions of bior 5.5. 

Table 1: Relationship between details and approximation and frequency 
ranges. 

Details and approximation Our frequency band 

D1 12,500 -25,000 Hz 

D2 6,250 -12,500 Hz 

D3 3,125 - 6,250 Hz 

D4 1,562 - 3,125 Hz 

D5 781- 1,562 Hz 

D6 390- 781 Hz 

D7 195 - 390 Hz 

D8 97- 195 Hz 

A8 0- 97 Hz 
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Figure 8: Examples of results of applying DSWA to ABRs. 

latencies of an ABR waveform in a short time. The fast ABR can be ob-

tained by averaging only 10 waveforms. In [11, 15, 16], we proposed a new 
method that uses only 10 averaged ABRs. Our proposed method detects 
peak latencies six times faster than the conventional methods and reduces 

the observation time. 
On the other hand, the slow ABR seems to be a spontaneous electroen-

cephalographic (spontaneous EEG) synchronization signal. We explain the 
synchronization signal by using the Kuramoto model (see [20, 21]). To ob-
tain the slow ABR, it is necessary to average 300 waveforms. We propose a 

method of concurrently detecting both the fast and slow ABRs. 

4.1 Apply DSWA to averaging ABRN 

In the previous section, we analyzed the ABRs obtained as a result of aver-

aging many waveforms ("epochs"): 

N 
1 

ABRN=一 LEpochか
N 

k=l 

(2) 

where an "epoch" consists of 512 points of sampling data x0, xぃX2,・ ・ ・, X511 
in the AEP during 10.24 ms. Epochk denotes the kth epoch: 

Epochk = (xko, Xk1, Xk2, ・ ・ ・, Xk511). (3) 
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We use ABRN to denote an N-average ABR. 
We apply DSWA not only to average an ABR but also in each process 

of averaging waveforms. Here, SWT denotes a discrete stationary wavelet 
transform and ISWT denotes its inverse discrete stationary wavelet trans-
form. We have the following decomposition of ABR炉

8 

ABRN = ISWT(SWT(ABRり） = L DiN + A8N, (4) 
i=l 

where DiN and A8N denote the ith detail and the eighth approximation of 

ABRN, respectively. In the previous section, we analyzed ABR2,000. 
In this section, we study the dependence of ABRN on N for N = 10, 20, 

30, 40, 100, 200, 300, 1000, 1500, 2000 by observing DiN, i = 1, 2, ・ ・ ・, 8 and 
A8N. In Figure 9 and 10, the overlapped graphs show DiN, i = 4, 5, ・ ・ ・, 8 
and A8N, respectively. 

In Figure 9, we observed the typical peak latency of wave V (PLv) in 

D恥 forall N = 10, 20, 30, 40, 100, 200, 300, 1000, 1500, 2000. In the time 
interval [5, 6.5] ms, there was a negligible difference among D恥 forall N. 
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Figure 9: D恥， N = 10, 20, 30, 40, 100, 200, 300, 1000, 1500, 2000. For 
D510, we can detect peak latencies PL1, PL11, PLm, PLv. 

Even when N = 10, we can already detect the peak latency of wave V 
using the graph of D恥 (seethe peak at about 5.5 ms). As N increases, the 



25

D5 s
 

1.5 

05 

゜
-0.5 

-1 

-15 

06 

I I 2 I 
1.5 

0.5 

゜-0.5 

-1 

・1.5 

-2 

07 
3 

25 

2 

1.5 

1 

05 

゜-05 
ー1

-1.5 

-2 

7

6

5

4

3

2

1

0

1

2

3

 

1.5 

0.5 

゜--0.5 

-1 

-1.5 

-2 

4

5

 
3
 

2.5 

1.5 

0.5 

゜-0.5 

-1 

D8 

AS 

-2000sw 

1500sw 

lOOOsw 

3()Q;w 

200凶

l()Q;w 

40sw 

30sw 

20細

lOsw 

(ms) 

2000sw 

-1s00sw 

lOOI涵

30Q;w 

20Q;w 

lOQ;w 

40sw 

30畑

20sw 

- 10sw 

2000sw 

1500sw 

lOOOsw 

300.W 

200.W 

100.W 

40sw 

30sw 

ー 20sw

lOsw 

(ms) 

Figure 10: SN (original signal ABRN) and DiN, i = 4, 5, ・ ・ ・, 8, A8N for 
each N = 10, 20, 30, 40, 100, 200, 300, 1000, 1500, 2000. 
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peak latency of wave V at 5.5 ms does not change and the phase of about 

5.5 ms is locked. We consider that wave V belongs to the fast ABR. Figure 9 

shows that we can detect peak latencies PL1, PLn, PLm and PLv from D510. 
On the other hand, for N 2='. 300, we can find the peak latency of wave III 

in the graph of A8N (the peak at about 4 ms at the bottom of Figure 10). 

We consider that wave III belongs to the slow ABR. For all N, wave III of 
A8N has the largest amplitude. If we need to observe the envelope of an 
ABR, then we recommend the observation of A8N for N 2='. 300. 

4.2 Kuramoto model 

Using a model of the synchronization phenomenon, we explain the relation 

DiN, i = 1, 2, ・ ・ ・, 8 and A8N (see [20, 21]). We consider N coupled phase 
oscillators according to the Kuramoto model: 

幽 k
N 

dt 
-=Wi- — L sin(0・ 一．．．．

N 
t 化）， i= 1, ,N, (5) 

j=l 

where仇(t)is the phase of the ith oscillator, which has the natural frequency 
凶i・Thenon-negative constant K is the coupling strength among the oscil-
lators. 

From computer simulations, the following are known: 

• For K = 0, each oscillator oscillates with the natural frequency (asyn-
chronous state). 

• For K > Ks, the oscillators synchronize with each other. That is, each 
0i(t) has the same time average (synchronized state). 

Let仇(t),的(t)and島(t)be the phases of D5, D6 and A8, respectively, 
and wi denote the natural frequency of 0i(t), i = 1, 2, 3. 

The results of computer simulations are illustrated in Figure 11, where 

we plot the differences 0i (t)ー叫 forK = 0, 0.06, 0.12, 0.18. 
Using the sine wave fitting algorithm in [5], we conclude that the natural 

frequencies of A8, D6 and D5 are叫=1r /250, 吟=1r /50 and w1 = 1r /25, 
respectively. The larger the value of K, the slower 01 (t) and 02 (t) change. 
However, the larger the value of K, the faster 0孔t)changes. 

From the results in Figure 11, we can presume the model shown in Fig-
ure 12. We assume that the stimulation-induced neuron group produces the 
fast ABR (D5, D6) and that the spontaneous EEG neuronal group produces 

the slow ABR (A8). That is, a fast ABR can show the transmitted signal of 
the input stimulus. On the other hand, it is presumed that the slow ABR is 
formed while synchronizing with a spontaneous EEG neuronal group. 
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4.3 New detection method 

In the conventional detection methods, peak latencies are detected by using 

ABR2,000, where it is necessary to average 2,000 epochs. Thus, it takes a 
long time to detect peak latencies. 

On the other hand, as shown in subsection 4.1, we can detect the peak 

latency of wave V using D510. We can also detect the peak latency of wave 

III using A8300. For the fast ABR, it is necessary to average a very small 

number of epochs, whereas for the slow ABR, it is necessary to average many 

epochs. 

We propose the concurrent processing method shown in Figure 13. This 
method changes the number of epochs to be averaged according to whether 

the fast or slow ABR is being considered. Our proposed method can detect 
peak latencies faster than the conventional methods. 

(ABR細 —\I Conventional ↓ DWSA + Diagnosis I 
) (PL,000,1, PL匹 J0,11,PL,000,111,PL,,如 v,PL,ooo,v, WF,ooo) ; 
・-.. ......................................................................................... ・ 

............. ・・・・・・・・響......響.................,,,,,,,,,,.,,, ......... ・・・・・ ・・・・・・・・・・.........................

i Fast ABR1。 ;: ABR300 Slow : 

； 
l l DWSA+D叩 osis 11 ↓ DWSA + Diagnosis ! 
; 11 ! 1 (PL10.1, PLrn,n, PLro.m, PLro.IV, PLro,v, WFro) ; ; {PL:300,111, ¥VF:ioo) • 
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．： 

Figure 13: Comparison between the conventional detection methods and the 
proposed method. 

5 o a・ ne-1mens1onal complex continuous wavelet 

analysis 

Next, we apply complex continuous wavelet analysis (CCWA) to ABRs and 

ASSRs. Several experiments have shown that an ABR consists of three 

groups in the time domain. We propose the use of a new hearing test based 

on CCWA as a possible faster alternative. 

By observing the results of applying CCWA to ASSRs, we propose a new 

averaging method based on the Galambos idea (see [6] and [22]). We carry 
out several experiments to demonstrate that our proposed method is seven 
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times faster than the conventional methods. 

A mother wavelet is a function 心€ び(JR)with zero average: J~: 心(t)dt = 
0. TYpically, it is normalized, II』=1, and centered in the neighborhood of 
t = 0. For a> 0 and b E JR, we define 

加，b(t)=~ 心(t:b)・ (6) 

Note that IIい 11 = 1. The continuous wavelet transform of x Eび(JR)at 
(a, b) is defined by 

W出 (t)](a,b) = C(a, b) =〈x,い〉=/00 x(t)汎，b(t)dt, (7) 
-(X) 

whereゆ*denotes the complex conjugate of心.For the mother wavelet, we 
choose the complex Morlet wavelet function心(t)defined by 

1 t2 

叫） = e―戸iwot

亨
(8) 

which is illustrated in Figure 14. The real part扮心(t)of心(t)is reflection-
symmetric about t = 0. The imaginary part聾 (t)of心(t)is point-symmetric 

about (0, 0). Here, we setび＝尋， w0= 21r and use the MATLAB function 

[PSI,X] = cmorwavf(LB,UB,N,FB,FC) 

for the complex Morlet wavelet with LB=-5, UB=5, N=1000, FB=1. 5, and 
FC=1. In this paper, the wavelet analysis using the Morlet wavelet is called 
one-dimensional CCWA. 

5.1 Application of CCWA to ABRs 

Figure 15 shows the results of applying CCWA to two normal ABRs. Each 
waveform (upper graph) is the original waveform of the ABR. Each intensity 

image (lower graph) shows the modulus of the continuous wavelet transform 
Ca,b = C(a, b). White painting indicates a high modulus and black painting 
indicates a low modulus. The horizontal axis indicates time from O to 10 
ms. These graphs show the typical characteristics of the peaks of two normal 
ABR waveforms. 

From the results of CCWA, we observed that each ABR waveform has 
three frequency groups. The first group consists of the time interval from 0 

to 3 ms, the second group consists of the time interval from 3 to 7 ms and 
the third group consists of the time interval from 7 to 10 ms. Furthermore, 
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Figure 15: Application of CCWA to ABRs. The upper ABR has the fourth 

peak at 5 ms, whereas the lower ABR does not have this peak. 

the second band has two white painted frequency bands. However, there 
is a difference between the two images showing the modulus. The different 

frequencies around 5 ms indicate whether the fourth peak in the ABR exists. 

5.2 Application of CCWA to ASSRs 

We carried out the following two observations. In the first step, we applied 

CCWA to spontaneous EEG (non-evoked) waveforms. The CCWA results 
are shown in Figure 16, where the result of one epoch waveformふisshown in 
the left graph, and the averaged spontaneous EEGぶ。 isshown in the right 
graph. We can observe brain waves of periodic frequency but we cannot 
observe 40-Hz waves. In Figure 16, white painting indicates a high modulus 
and black painting indicates a low modulus. 
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Figure 16: Application of CCWA to non-evoked brain waveforms (sponta— 

neous EEG waveforms). Left: one epochふ.Right: averaged vector品。．

In the second step, we applied CCWA to auditory evoked brain wave-
forms. The results are shown in Figure 17, where the CCWA results of one 
epoch waveformふwith70, 50, 30 dB nHL are illustrated on the left side. 
We cannot observe 40-Hz waves. The CCWA results of the average vector 
are illustrated on the right side of Figure 17, in which we can observe 40-Hz 

waves. We use S20 for 70 dB nHL and S40 for 50 and 30 dB nHL. 
In our experiments we demonstrate that we can detect 40-Hz ASSR by 

using S20 when sound stimuli above 60 dB nHL and that we can detect a 
40-Hz ASSR by using品。below60 dB nHL. Therefore, we can detect a 40-Hz 
ASSR enough by recording the EEGs for 1.5 or 2 s. Thus, our new averaging 
method is seven times faster than the conventional methods. 

6 Conclusions 

We applied DSWA to ABRs and ascertained that an ABR consists of fast and 
slow ABRs. Our simulation suggested that the stimulation-induced neuron 
group produces the fast ABR, and that the spontaneous EEG neuronal group 
produces the slow ABR. We proposed a concurrent processing method to 
detect peak latencies of an ABR. This method detects peak latencies faster 

than the conventional methods. 
From the graphs obtained by applying CCWA to ABRs and ASSRs, we 

obtained the time-frequency characteristics of waveforms. An ABR consists 
of three groups in the time domain, where each group consists of multiple 
frequency bands. 
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Figure 17: Application CCWA to 40-Hz ASSRs. Left: one epoch巫.Right: 
average vectors品。 for70 dB nHL andぶ。 for50 and 30 dB nHL. 

In the case of 40-Hz ASSRs, for one epoch waveform, we did not observe 
the typical response around 40 Hz when all subjects received the sound stim-
uli. This means that the procedure of averaging epochs is essential for the 

detection of a 40-Hz ASSR. We proposed an averaging method based on the 
Galambos idea that a 40-Hz ASSR can be detected using S20 with sound 
stimuli above 60 dB nHL and a 40-Hz ASSR can be detected using出。 below
60 dB nHL. Our proposed method is seven times faster than the conventional 
methods. The automated detection of ABRs and ASSRs using CCWA is a 

future work. 
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