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1 Introduction 

Definition 1. Let V be a vertex operator algebra (VOA) and the vertex operator of a E V is denoted 

by 

Y(a,z) = a(z) =区anZ―n-lE End V[[z±]]. 

nEZ 

1. The VOA Vis C2-cofinite if dimRv < oo. Here, Rv = V/C2(V) and 

ら(V)= sp皿 da-2bI a, b EV}. 

2. The VOA Vis rational if the representation category Rep V of Vis semisimple, i.e.'IV-module 

ME  Rep Vis decomposed into the direct sum of irreducible V-modules. 

The theory of 02-cofinite BUT irrational VOAs is less complete than that of 02-cofinite and rational 

VOAs, because only a few examples of 02-cofinite but irrational VOAs are found. Our aim is to construct 

many 02-cofinite but irrational VOAs, and the strategy is to generalize the well-known example of such 

kinds of VOAs. One of the most well-known examples of Crcofinite but irrational VOAs is the triplet 

W-algebra. This VOA is defined as the kernel of the narrow screening operator on the rescaled root 

lattice of A1 type, and studied by many people (e.g. [FGST1]-[FGST3], [AM1]-[AM3], [NT], [TW]). The 

definition of the triplet W-algebra is generalized in ADE types immediately, and we call these VOAs the 

logarithmic principal W-algebras (In this report, we omit "principal" and call these VOAs logarithmic 

W-algebras for simplicity). However, despite of the importance of logarithmic W-algebras in studies 

of 02-cofinite but irrational VOAs, there are not much known except for the case of A1 type (triplet 

W-algebras) because of the complicated structures. 

On the other hands, B.L.Feigin and I.Yu.Tipunin introduced a geometric approach to the studies of 

logarithmic W-algebras and their characters [FT]. They introduced Feigin-Tipunin algebras as sheaf 

cohomologies on the flag varieties and conjectured the following (we call Feigin-Tipunin conjecture): 

1. The Feigin-Tipunin algebras are geometric realizations of the logarithmic W-algebras. 

2. The character formulas of the logarithmic W-algebras. 

3. The W-algebra module structures the logarithmic W-algebras. 
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The author proved this conjecture in his master thesis. In this report, we want to introduce this result. 

Acknowledgements I am greatful to Mana bu Oura for giving me the opportunity to attend the workshop 

"Research on algebraic combinatorics, related groups and algebras" . 

2 Some results on the triplet W-algebras 

In order to avoid duplication, we give the setting in general ADE types all along. 

2.1 Setting 

Let g = n_① h① n+ be an ADE type simple Lie algebra of rank l and its triangular decomposition, 

Q and b = n_① Q its Cartan and Borel subalgebras respectively, G, H, and B the semisimple, simply-

connected, complex algebraic groups corresponding to g, Q, b respectively. The labelling of the Dynkin 

diagrams are the one in [B]. Let Q be the root lattice of g, Q'the weight lattice of g, Q't the set of 

dominant integral weights of g, a1, ... , az the simple roots of g, IT the set of simple roots of g, w1, ... , Wt 

the fundamental weights of g. We denote by (・, ・) the standard invariant form of g, W the Weyl group 

of g, (c;j) the Cartan matrix of g and (cii) the inverse matrix to (c,j), p the half sum of positive roots, 

h the (dual) Coxeter number of g, n the abelian group Q'/Q. We choose the representatives of elements 

from n in Q'in the following way: for Az, Dz, E5, E7, Es, we choose {O,w1, ... ,wz}, {O,w1,w1-1閃｝，

{O,w心},{O, 吟},{O} respectively. For X = A or Dor E, Xz means that g is the X type simple Lie 

algebra of rank l. We fix an integer p E Z;:,2. 

2.2 Lattice VOA and the irreducible modules 

Let£be the lattice VOA associated to the rescaled root lattice .jpQ. In a manner of speaking, lattice 

VOAs is "lattice C) Fock spaces". We explain this: Let Fi。bethe rank l Heisenberg vertex algebra. By 

abuse of notation, we sometimes use石。 asthe rank l Heisenberg algebra. By using this notation, we 

denote by瓦 =Fala:〉theFock space corresponding to a. Then, as a vector space, 

L,':cc 〶瓦 (1) 
aE凶 Q

and the basis is given by 

{(a;.)吋 1・ ・ ・(a;k)-nk I』/3〉I1 ::; i1 ::; ---さ ik::;l,a;, E II,nj E N,/3 E Q}. (2) 

Irreducible modules of£are classified by elements of abelian group A =嘉Q'げ Q([D]). We choose 

the basis elements凡＝合叫1::; j ::; l} of含Q'.For each equivalence class〈入〉 EA, we choose a 

unique representative入E_LQ' 
謹

of〈入〉 EAas 

l 

入＝一占いい—占い+LBjふ， (3) 

J=l 

where入EQ'+/QnQ'+ and Sj = O,・・・,p-1. 
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For入E古Q',we denote the irreducible module of£, corresponding to〈入〉 EAby 

知＝〶 r入+a·
aE⑪ Q 

We often denote by£, 入 the£,位

2.3 Shifted conformal vector 

We choose the (shifted) energy momentum field of£in the form 

1 
T(z)= —こ四

2 
: a;(z)a1 (z) : +Q。ap(z)

l:<,i,j:<,l 

where 
1 

Qo =凶—一·
vP 

In other words, the conformal vector w E Fi。<;;;£, is defined by 

1 
W=ぅ区四（叫1句+Qo(P)-210〉

1'.oi,j'.ol 

and 
w(z) = T(z) = LLnz―n-2_ 

nE'll 

The central charge c of T(z) is 

1 1 
c= l + 12(p,p)(2-p--) = l +hdimg(2-p--) 

p p 

and for入E古Q',the conformal weightふ of入〉 is

1 c -l 1 
ふ＝―|入— Qopl2 十＝—|研— Qo(入， p).

2 24 2 

(4) 

(5) 

(6) 

(7) 

(8) 

2.4 Screening operators and narrow screening operators 

We consider the screening operators f; and narrow screening operators F; on£ 入 definedby 

f, = 凶 叫o,

F;= ―上叩〉o,
y'P 

for i = 1, ・ ・ ・, l. 

(9) 

(10) 

Remark 1. Strictly speaking, the definitions of F; are different for each£ 入 andour definition of F; is 

that in the case of入E..jpQ'(see [CRW]), thus we have to denote not F; but F;, 入 on£入. However, the 

diザerencesof definitions do not effect on the proof of our main results, and thus, we denote F; by F;, 入

on£ 入 forsimplicity. 

A straightforward calculation gives the relations 

[/;, T(z)] = [F;, T(z)] = 0 

and 

[/,,Fi]= 0. 

、
_
＇
、
_
＇

1

2

 

1

1

 

（

（

 

In particular, (11) means that Ji and Fi preserve the conformal grading. 
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2.5 Definition of the logarithmic W-algebras and results on the triplet W-algebras 

Definition 2. The sub VOA of C 

l 

W(pぬ=nkerFilcこ£.
i=l 

called the logarithmic W-algebra associated to p and Q. In the case of A1 type, W(pぬisthe triplet 

W-algebra (e.g. [AMl]). 

If g is of A1 type, the following results are obtained. 

Theorem 1 (Adainovic-Milas, etc.). 

1. Let Lk be the Virasoro VOA at level k = p -2. Then, ker JI.JC;。 ~Lk.

2. Let Rm be the dim= m irreducible .sl2-module and Lk,μthe irreducible Lk-module. Then, 

2n十入

ker Fie入 cc:'. EB冗2n+l十入 @Lk,-n謹 a,+入 cc:'. EB ① f'L叶ーnytpa1+入〉・
nEZを0 nEZ:,0 i=O 

3. The triplet W-algebra ker Fie is simple C2-cofinite and irrational VOA. 

4. {ker Fie,} is the complete set of the irreducible modules of the tri,plet W-algebra ker Fie. 

The author generalized Theorem 1.(1),(2) by using the geometric method introduced in [FT]. We give 

the setting and main results in the next section. 

3 Feigin-Tipunin algebras and main results 

3.1 Feigin-Tipunin algebras 

For 1 :s; i :s; l, we consider the following operators h; acting on Cぶ

1 1 -
h;=--

,jp 
伽）o+ー

,jp 
(a;, 入），

where入isas in (3). 

(13) 

The operator hi does not commute with T(z), but sometimes we also call hi the screening operator in 

this paper for simplicity. 

Theorem 2 ([FT, Theorem 4.1]). 

1. The above operators {!;};=1 and {h,};=1 induces the action of b on C>,. 

2. The action of b in (1) is integrable. 

Theorem 2.(1) is proved in [FT] and the author proved Theorem 2.(2) in his master thesis. 

For入EA, we consider the homogeneous vector bundle 

ふ=G XB  [, 入 (14) 

on the flag variety G / B. The action of B on G is given by the right multiplication and on£ 入bythe one 

given in Theorem 1. 
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Lemma 1. H0(,o) has the structure of vertex operator algebra and H0(も） is a H0 (,a)-module. 

Definition 3. The VOA H0(fo) is called Feigin-Tipunin algebra associated top E Z::,:2 and Q. 

Now we are ready to describe the main theorem. 

3.2 Main results 

Theorem 3. (Main theorem} 

1. We have the isomorphism 

Hn(も)~{0 (n 2': 1), 
n;=lker F; ム (n= 0), 

of modules of the vertex operator algebra W£ ふ(p)~n;=l ker F; に{inthe case of入=0). 

2. ForμE Q't-, we denote by図 thefinite dimensional highest weight irreducible g-module with 

highest weightμand Weight(Rμ) by the set of weights of図 Let叩 (g)be the principal universal 

affine W-algebra ([Ar}) of level k = p -h. 

Then, We have the free field realization of the W-algebra 

l 

w勺g)= n ker f;IJi。
i=l 

and the G-module isomorphism 

Ho(も)c::: E0 n"十入®酎(g)I — v'P°'+ 入〉
acEQ午nQ

=〶 〶 !,,'••fiN酎(g)I — ..Jpa 十入〉 C:: ら
aEQ't-nQ 1:::; 和・・・，iN'.".l

a十入ー区似"';EWeight冗a+X

In pa廿icular,we obtain the W勺g)-moduleextension 

l 

n ker F-. 如＝〶 ④
 

f;, ... f,N Wk(g)I — ,/pa+ 入〉．
i=l aEQ+nQ l~i1,··,iN~l 

a十入—こグ':c1 "'; EWeight Ra+入

3. We have the full chamcter-formulas 

らI..Jf,び(a+p十入）ぶ— -j;;Pl2

Tr工 kerF,le, 入 q恥一崎..・Z『= L Xい(z)(L(一l)L(c,)q
0<EQ'nQ c,EW 

71(a)l), 

＋ 

where迅(z)is the Weyl character formula of応 andL(u) the length of u E W, r,(q) = (q; q)00 = 

II立 1(1ー炉）．

Remark 2. Theorem 3.(1) claims that the Feigin-Tipunin algebras are geometric realizations of the log-

arithmic W-algebras. Theorem 3.(2) is generalization of Theorem 1.(1), (2). However, strictly speaking, 

we have to show that each W勺g)-modulesthat appear in the modules of the logarithmic W-algebras 

n;~lker F; £ 入 isirreducible. At least in the case of p 2'. h and a =入=0, this claim is shown [CrM]. In 

other words, under the assumption of p 2'. h, W勺g)is simple W-algebra. 
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