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In order to understand the mechanism of phenomena in various fields, we
often discuss the existence and stability of stationary solutions for the system
of reaction-diffusion equations

$1_{\mathrm{w}_{x}=0,x=0,1}^{\mathrm{w}_{t}=\epsilon^{2}D\mathrm{w}_{xx}+\mathrm{f}}(\mathrm{w})t’>0x\in(0,1)$

, $t>0,$
(1)

with suitable initial condition, where $\mathrm{w}\in \mathrm{R}^{N}$ , $\epsilon$ $>0$ , $D$ is a diagonal matrix
whose elements are positive, and $\mathrm{f}:\mathrm{R}^{N}arrow \mathrm{R}^{N}$ is smooth function.

When $N=1$ is satisfied, we can comparatively easily study the existence
of stationary solutions for (1) and their spatial profile by the analysis of
motions in the phase plane, because the sO-called comparison principle holds.
Furthermore it is well-known that for suitable $f(w)$ , the global attractor $A$

of (1) is represented as $A= \bigcup_{\epsilon\in E}W^{u}(e)$ , where $E$ is the set of stationary
solutions for (1), and $W^{u}(e)$ is an unstable manifold of (1) at $w=e$ (for
example, see Hale [2, Chapter 4] $)$ . This fact means that one of important
problems is to seek all stationary solutions of (1).

In general, the comparison principle does not always hold for the case
$N\geq 2,$ so we have the considerable complexity for studying the existence
and stability of stationary solutions for (1). In this report, as a first step to
approach the problem for $N\geq 2,$ we treat the stationary problem

$\{\begin{array}{l}0=\epsilon^{2}d_{w}w’’+(\mathrm{l}-w^{n}-cz^{n})w0=\epsilon^{2}d_{z}z’,+(1-bw^{n}-z^{n})z,x\in(0,1)w’=0,z,=0,x=0,1\end{array}$ (2)

of a Lotka-Volterra competition model which is most simple within the ffame-
woth of reaction-diffusion equations, where $’= \frac{d}{dx}$ , and every parameter is
a positive constant. As $\mathrm{w}$ means the population density for two competing
species, we restrict our discussion to positive solutions which satisfy $w(x)>0$
and $z(x)>0$ for any $x\in[0,1]$ . It is obvious that (2) has constant solutions
$(0, 0)$ , $(0, 1)$ , $(1, 0)$ , and $\hat{\mathrm{w}}=$ (u), $\hat{z})$ with

$\hat{w}=\sqrt[n]{\frac{1-c}{1-bc}}$ , $\hat{z}=\sqrt[n]{\frac{1-b}{1-bc}}$
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which is positive for $\max(b, c)<1$ or $\min(b_{7}c)>1.$ Furthermore the max-
imum principle leads to the fact that every solution of (2) with $w(x)\geq 0$

and $\mathrm{z}\{\mathrm{x}$ ) $\geq 0$ for any $x\in[0,1]$ must be a constant function in $x$ , when
$\min(b, c)<1$ is satisfied.

Let us consider the case

$\mu=(b, c)\in$ $\mathrm{A}/\mathrm{f}$ $\equiv\{(b, c)|\min(b, c)>1\}$ .

After simple calculations, we see that for any $\mathrm{d}\in$ Vo(ji), the linearized
operator of (2) around $\mathrm{w}=\hat{\mathrm{w}}$ has only one eigenvalue and at least two
eigenvalues in the right half-plane for any $\epsilon$ with $\epsilon$ $>1$ and $0<\epsilon<1,$

respectively, where $R_{+}=$ $(0, +\mathrm{o}\mathrm{o})$ , $\mathrm{d}=(d_{w}, d_{z})$ , and

Vo(ji) $=$ { $\mathrm{d}\in R_{+}^{2}|\det(-\pi^{2}D+$ fu(w)) $=0$ }.

The bifurcation theory says that nonconstant positive solutions of (2) which
look like $\pm \mathrm{v}$ case $x>$ perturbations from $\mathrm{w}=\hat{\mathrm{w}}$ bifurcate at $\epsilon$ $=1$ for any
$\mathrm{d}\in$ Vo(ji), where $\mathrm{v}$ is an eigenvector of the linearized operator corresponding
to the eigenvalue 0. As the multi-existence of nonconstant positive solutions
for (2) is suggested, we shall in this report establish the bifurcation structure
of positive solutions for (2) with respect to $\epsilon$ for arbitrarily fixed $\mu\in \mathcal{M}$ and
$\mathrm{d}\in D_{0}(\mu)$ .

Let us prepare definitions and notations to state the main result of this
report. We define the order relation $\preceq$ by

$(w_{1}, z_{1})\preceq(w_{2}, z_{2})\Leftrightarrow w_{1}\leq$ $<l\mathit{1}2$ , $z_{1}\geq z_{2}$ ,

and denote by $\prec$ the relation obtained from the above definition by replacing
$<$ with $<$ . We set

$\rho=(\mu, \mathrm{d})$ , $\mathrm{V}$

$=\cup\{\mu\}\mathrm{x}\mu\in \mathcal{M}$

$D_{0}(\mu)$ , $E_{0}(\rho)=R_{+}$ $\mathrm{x}$ $\{\hat{\mathrm{w}}\}$ ,

$X=$ { $\mathrm{w}(.)\in C^{2}([0,1])|$ w’(0) $=0=$ w(x)}.

For each $\rho\in N,$ we denote by $\mathrm{E}(\mathrm{p})$ the set of $(\mathrm{e}, \mathrm{w}(.))\in R_{+}\mathrm{x}X$ such
that $\mathrm{w}(x)$ is a positive solution of (2) for $\epsilon$ , and by $E_{k}(\rho)(k\in \mathrm{N})$ the set of
$(\epsilon, \mathrm{w}(.))\in$ E{p) such that there exists $\ell\in\{0,1\}$ such that $(-1)^{j+\ell}\mathrm{w}’(x)\succ 0$

is satisfied for any $j\in \mathrm{Z}$ and $x\in$ (j/fc, $(j+1)/k$). By definition, we see that
$\bigcup_{k\geq 0}$ Ek $(\mathrm{p})\subset E(\rho)$ holds for any $\rho\in N$ , and that for any $\rho\in II$ and $k\in$ N,
$(\epsilon, \mathrm{w}(.))$ $\in$ Ek(p) is equivalent to $(k \epsilon, \mathrm{w}(./k))$ $\in$ E(p).

Theorem 1. $E( \rho)=\bigcup_{k\geq 0}E_{k}(\rho)$ is satisfied for any $n\geq 1$ and $\rho\in N.$

The above theorem says that for each $n\geq 1$ and $\rho\in N,$ we can un-
derstand the complete structure of $E(\rho)$ by using the information on the
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structure of $E_{1}(\rho)$ . While the structure of Ei (p) was completely established
for the case $n=1$ in the previous paper [3], the following is for the case
$n>2:$

Theorem 2. For each $n\geq 2$ and $\rho\in N,$ there exist continuous functions
$\mathrm{w}$-(., g) and $\mathrm{w}_{+}($ ., $\epsilon)$ defined on $(0, 1)$ such that

(i) $E_{1}(\rho)=\{(\epsilon,\mathrm{w}_{\pm}(.,\epsilon))|\epsilon\in (0, 1)\}$,
(ii) 1 $\mathrm{w}_{\pm}’(x, \epsilon)\prec 0$ for any $x\in$ $(0,1)$ and $\epsilon$ : $(0, 1)$ , and
(iii) $\lim_{\epsilonarrow}1$ Wg $($ ., $\epsilon)=\hat{\mathrm{w}}$ .

are satisfied (see Figure 1).

Figure 1. Global bifurcation structure.

In consideration of Chafee and Infante [1], we see that the bifurcation
structure of positive solutions for (2) with respect to $\mathrm{e}$ for arbitrarily fixed
$n\geq 2$ and $\rho\in N$ is similar to that for

$\{$

$0=\epsilon^{2}u’’+u(1-u)(u-a)$ , $x\in(0,1)$ ,
$u’(0)=0,$ $u’(1)=0,$

where $0<a<1.$ Furthermore it follows from Kishimoto and Weinberger [4]
that $\mathrm{w}_{-}($., $\epsilon)$ and $\mathrm{w}_{+}(., \epsilon)$ are unstable statio.nary solutions for (1).

Figure 2 (a) and (b) are numerical bifurcation diagrams of $E_{1}(\rho)$ for the
case where the assumption of Theorem 2 is violated, and show that the
structure of $E_{1}(\rho)$ depends on the interspecific competition rates $b$ and $c$ in
case of $1<n<2.$
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(a) $b=c=$ 200.0 (b) $b=c=$ 2000.0
Figure 2. Bifurcation structure, where $n=1.1$ and $d_{w}=d_{z}$ .

In the proof of Theorem 2, one of important parts is to determine the
geometrical position of the curve of positive solutions for (2) bifurcating from
$\mathrm{w}=\hat{\mathrm{w}}$ at $\epsilon=1.$ In general, as the equation which describes the geometrical
position is very complex even if we can explicitly write down it, we have
difficulty in analyzing the geometrical position theoretically. In the proof, to
determine the geometrical position, we employ the numerical verification by
the help of the interval arithmetic built into Mathematica.
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