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(This is basically the exact copy of the slides of my talk.) 

Unitary t-designs and unitary t-groups 

Eiichi Bannai 

(Professor Emeritus of Kyushu University) 

Dec. 11, 2018 at RIMS, Kyoto, Japan 

This talk is based on the paper [BNRT] : Eiichi 
Bannai, Gabriel Navarro, Noelia Rizo, Pham 
Huu Tiep, "Unitary t-groups", arXiv:1810.02507. 

The purpose of "design theory" is, for a given space M, 

to find good finite subsets X that approximate the whole 

space M well. 

Unitary t-designs are finite subsets X of the unitary group 

U (d) that approximate U (d) well. 

Definition. A finite subset X of the unitary group U (d) 

is called a unitary t-design, if 

J f (U)dU =~L f (U). 
U(d) IXI UEX 

for any f(U) E Hom(U(d), t, t). 

Here, Hom(U(d), r, s) = the space of polynomials that 
are homogeneous of degree r in the matrix entries of U, 

and homogeneous of degree s in the matrix entries of U*. 
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2 

History of the study of unitary t-designs. 

(1) Gross-Andenaert-Eisert : Evenly distributed unitaries: 

On the structure of unitary designs, J. Math. Physics 

(2007), 

(2) A. J. Scott : Optimizing quantum process tomogra-

phy with unitary 2-designs, J. Physics A (2008), 

(3) Roy-Scott : On unitary designs and codes, Designs, 

Codes and Cryptography (2009), 

(4) Zhu-Kueng-Grassl-Gross : The Clifford group fails 

gracefully to be unitary 4-design, arXiv:1609.08172vl. 

3
 • Unitary t-designs in U (d) exist for any t and d. 

But the explicit constructions are difficult in general. 

(There is some work by Takayuki Okuda.) 

Definition. If a unitary t-design X in U(d) is a group, 

then such X is called a unitary t-group in U(d). (We 

sometimes denote X by G. 

• It is known that G is a unitary t-group in U (d), if and 
only if 

1 亙五!tr(g) l2t = iw(a) ltr(U) 12'dU, 
and also if and only if the decomposition of U(d)Rt into 

the irreducible representations of U(d) is the same as the 

decomposition into the irreducible representation of G. 
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3bis 

Equivalently, G C U (d) is a unitary t-design, if and only 

if 

M2t(G, V) =叩(Q,V). 

where the LHS 

t t 
1 1 

M2t(G, V) = (X ,X)G = -
IGI 
どxt(尤）対（尤）＝一

IGI 
どltr(g)12t' 

xEG gEG 

where x is the natural representation of G c......+ U (d) and 

xt = xR  ・ ・ ・ Rx  (times). The RHS M2t(Q, V) is the cor-
responding inner product 

（パ）U(d) = J ltr(U) 12tdu. 
UEU(d) 

4
 • Unitary t-groups have been studied in physics. 

• Ford= 2, there are some unitary 5-groups. For exam-
ple, G = SL(2, 5) of order 120. On the other hand, it is 

shown that there is no unitary 6-group in U(2). 

• For d~3, some unitary 3-groups were known, but no 
unitary 4-groups were known. 

The purpose of this talk is to clarify this situation. 



83

5 

The following unitary 3-groups have been known. 

• The Clifford group G = Z4 * 2t+2m• Sp(2rn, 2) is known 
to be a unitary 3-group in U(2呵， butis known not to be 
a unitary 4-group. 

• The following sporadic examples of unitary 3-groups 
for U (d) (d~3) have been known. 
(i) d = 3, G = 3A6, 

(ii) d = 4, G = 6A7, Sp(4, 3), 
(iii) d = 6, G = 6L3(4)・21, 61い(3),
(iv) d = 12, G = 6Suz, 
(v) d = 18, G = 3J3. 

6 

The following unitary 2-groups have been known (in ad-

dition to those already mentioned to be 3-groups). 

Note that this is not the complete list. 

(i) Lie type case. 

(a) G = PSp(2n, 3) d = 炉士12 (Weil representat10n) 

(b) G = Un(2), d = 
2n-(-l)n 
3 (Weil representation) 

(ii) Extra special case. (Clifford groups.) 
Let d =炉 (pis a prime). 

E = Pt+2rn (p is odd prime), or 
E = Z4 * 2t+2rn (for p = 2). 
Let H be a subgroup of Sp(2rn, p) such that H acts tran-

sitively on IF2rn -{O}. Then G = E• H becomes a unitary p 

2-group in U(p呵.Such H are basically classified by Her-
ing in his determination of 2-transitive perm. groups. 
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7
 

(iii) Exceptional case. There are some more sporadic ex-

amples of unitary 2-groups. (This list is for d~5 and 
those which were unitary 3-groups are excluded.) 

d = 6 G = 6A1, 
d = 8, G = 4山 (4),
d = 10, G = 2M12, 
d = 10, G = 2M22, 
d = 14, G = 2凡 (8)・3,
d = 26, G = 2凡(2),
d = 28, G = 2Ru, 
d = 45, G = M23, 
d = 45, G = M24, 
d = 342, G = 30'N, 
d = 1333, G = J4. 

8 

The paper: Guralnick and Tiep, Decompositions of small 

tensor powers and Larsen's conjecture, Representation 

Theory 9 (2005), 138-208, 

essentially obtained the following results. 

(i) There is no unitary 4-groups in U(d) ford~5. 
(ii) The unitary 2-groups (and unitary 3-groups) are ba-

sically classified for d~5. 
(Basically those mentioned already.) 

The exact statements will be mentioned later in the Ap-

pendix. Our joint paper [BNRT] arXiv: 1810.02507 also 

settles the remaining cases d = 2, 3, 4. 
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，
 How I was involved in this work ? 

First, I noticed the paper of Tiep: Finite groups admit-

ting grassmannian 4-designs, J. of Algebra 306 (2006), 

227-243, which proved the following result : 

Let G be a finite subgroup of O(d), and let x be the nat-

ural embedding of G c......+ O(d). Suppose that syrn2x -1 is 

irreducible (as G-modules). Then such G are classified. 

(The list is very complicated.) Then I noticed that his 

method can be used to show that : 

If xis the embedding of G c......+ U(d), and if xRx* -1 

is irreducible (as G-module), then G can be classified. 

(Then this in turn gives the classification of unitary 2-

groups.) 

10 

So, I wrote to Tiep. Then I got his reply that this was al-

ready done by the Guralnick-Tiep paper (2005), although 

Tiep did not know this is related to the concept of unitary 

t-groups, being interested in physics. 

Tiep was recently working on the explicit classification of 

H C Sp(2m,p) acting transitively on IF;= -{O} together 
with Gabriel Navarro and Noelia Rizo. 

Moreover, we were able to give the complete classification 

of unitary t-groups for U(d) for remaining cases d = 2, 3, 4. 
(The list is fairly involved, and is available below in the 

Appendix.) 

This finally led to the joint paper [BNRT] with the 4 

authors: Unitary t-groups, arXiv: 1810.02507. 
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(i) 

Appendix. 

Corollary 2 in [BNRT]. Let G < U(d) be a finite group and 
d~2. Then G is a unitary t-group for some t~4 if and only if 
d = 2, t = 4 or 5, and G = Z(G)SL2(5). 

Next, we obtain the following consequences of [Theorems 1.5, 1.6 

in [GT], where F*(G) = F(G)E(G) denotes the generalized Fitting 
subgroup of any finite group G (respectively, F(G) is the Fitting 

subgroup and E(G) is the layer of G); furthermore, we follow the 

notation of [Atlas] for various simple groups. We also refer the reader 

to [GMST] and [TZ2] for the definition and basic properties of Weil 

representations of (certain) finite classical groups. 

Theorem 3 of [BNRT](=[GT]). 
Let V =び withd 2:'. 5 and let g = GL(V). For any finite subgroup 
G < Q, set S = S/Z(S) for S := F*(G). Then M4(G, V) = M⑲,  V) 
if and only if one of the following conditions holds. 

(ii) 

(i) (Lie-type case) One of the following holds. 

(a) S = PSp2n(3), n~2, G = S, and V↓ s is a Weil module of 
d. 1mens1on (3n土1)/2.

(b) S = Un(2), n~4, [G: S] = 1 or 3, and V↓ s is a Weil module 
of dimension (2n -(-lr)/3. 

(ii) (Extraspecial case) d = pa for some prime p and F*(G) = F(G) = Z(G)E, 

where E = P+ 1+2a• 1s an extraspecial p-group of order p1+2a and type +. 
Furthermore, G/Z(G)E is a subgroup of Sp(W)竺 Sp2a(P)that acts 

transitively on W -{O} for W = E/Z(E), and so is listed in Theo-
rem 5 (below). If p > 2 then E <] G; if p = 2 then F*(G) contains a 
normal subgroup E1 <l G, where E1 = C4 * E is a central product of 
order 22a+2 of Z(E1) = C4~Z(G) with E. 
(iii) (Exceptional cases) S = Z(G)[G*, G*], and (dim(V), S, G*) is 
as listed in Table I. Furthermore, in all but lines 2-6 of Table I, 
G = Z(G)G*. In lines 2-6, either G = S or [G: S] = 2 and G in-

duces on S the outer automorphism listed in the fourth column of 
the table. 

In particular, G く 1l= U(V) is a unitary 2-group if and only if G 
is as described in (i)-(iii). 
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Table I. Exceptional examples in Q 
with d > 5 

d s G* Outer The largest 2k with 
M叫G,V)=狐(Q,V) 

0 A7 tiA7 4 
6 LU34((43) ) (*) 6ら(4)・21 21 6 
6 （＊） 61・U4(3) 22 6 
8 L4(3) 41. ら(4) 23 4 

柑 M12 2M12 ~ l M22 2M22 
12 Suzl*J 6Suz 6 
14 勺B2(8) qみ(8)・3 4 

18 J炉 3J3 6 
26 勺"4(2)' 勺"4(2)' 4 
:lM Ru 2Ru 4 

謡 沈 沈 l 
:142 O'N 30勺V 4 
1333 J4 J4 4 

(iii) 

GLd(C) 

M加+2(G.V)vs. 
M2k+2(9.V) 

21 vs. 6 
56 vs. 24 
25 vs. 24 
17 vs. 6 
15 vs. 6 
7 vs. 6 
25 vs. 24 
90 vs. 6 

238 vs. 24 
26 vs. 6 
7 vs. 6 
817 vs. 6 
42 vs. 6 
3480 vs. 6 
8 vs. 6 

Note that in Table I, the data in the sixth column is given when we take G = G*. 

(iv) 

Theorem 4 in [BNRT]. Let V =びwithd~5 and let g = GL(V). 
Assume G is a finite subgroup of Q. Then M6(G, V) = M6(Q, V) if 
and only if one of the following two conditions holds. 

(i) (Extraspecial case) d = 2a for some a>  2, and G = Z(G)E1• Sp2a(2), 
where E 竺 2~+2a is extraspecial and of type + and E1 = C4 * E with 
C4 ::; Z(G). 

(ii) (Exceptional cases) Let S = S/Z(S) for S = F*(G). Then 

SE {L3(4), U4(3), Suz, J叶，

and (dim(V), S, G*) is as listed in the lines marked by (*) in Table I. 
Furthermore, either G = Z(G)G*, or S = U4(3) and S = Z(G)G*. 
In particular, G < 1l = U(V) is a unitary 3-group if and only if G 
is as described in (i), (ii). 
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(v) 

Theorem 5 in [BNRT]. Let p be a prime and let W = IF;n be 
endowed with a non-degenerate symplectic form. Assume that a 
subgroup H::; Sp(W) acts transitively on W -{O}. Then (H,p, 2n) 
is as in one of the following cases. 
(A) (Infinite classes): 
(i) n = bs for some integers b, s~1, and Sp2b(Pり'<lH::; Sp叫が） ><1 Cs・
(ii) p = 2, n = 3s for some integers~2; and G2(28) <l H ::; G心） ><1 Cs・
(B) (Small cases): 
(i) (2n, p) = (2, 3), and H = Q8. 
(ii) (2n,p) = (2, 5), and H = SL2(3). 
(iii) (2n,p) = (2, 7), and H = SL2(3).C2 = Smal1Group(48, 28). 
(iv) (2n,p) = (2, 11), and H = SL2(5). 
(v) (2n,p) = (4, 3), and H = Smal1Group(160, 199), Smal1Group(320, 1581), 
2.S5, SL2(9), SL2(9) ><1 C2 = Smal1Group(l440, 4591), or 
C2.((C2 X C2 X C2 X C2) ><1 A5) = Smal1Group(1920, 241003). 

(to be continued to the next page) 

(vi) 

(vi) (2n,p) = (6, 2), and H = SL2(8), SL2(8) ><1 C3, SU3(3), SU3(3) ><1 C2. 

(vii) (2n,p) = (6, 3) and H = S£2(13). 

The cased= 4. 

Next we complete the classification of unitary t-groups 

in dimension 4. First we introduce some key groups for 

this classification, where we use the notation of GAP for 

Smal1Group(64, 266) and PerfectGroup(23040, 2). 

Notation. Consider an irreducible subgroup 

E4 = C4 * 2戸=Smal1Group(64, 266) of order 26 of GL(V), 
where V = C4, and let r4 := NGL(v)(E心
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(vii) 

Next, we recall three complex reflection groups G29, G3i, 

and G32 in dimension 4, namely, the ones listed on lines 

29, 31, and 32 of [Table VII in Shephard-Todd]. A di-
rect calculation using the computer packages G AP3 and 

Chevie shows that each of these 3 groups G, being em-

bedded in 1l = U4(C), is a unitary 2-group. Also, 

F(G29)竺 F(G31)竺 Smal1Group(64,266), F(G32) = Z(G32)竺 c6,

and 

G29/F(G29)竺ふ， G3ifF(G31)竺 S6,G32竺 C3X Sp4(3). 

In what follows, we will identify F(G29) and F(G31) with the sub-

group E4 defined just before. Let us denote the derived subgroup 
of Gk by G~for k E {29, 31, 32}. With this notation, we can give a 
complete classification of unitary 2-groups and unitary 3-groups in 

the following statement. 

(viii) 

Theorem 7 in [BNRT]. Let V = C4, g = GL(V), and let G < g 
be any finite subgroup. Then the following statements hold. 

(A) With E4, 几 andL as defined before, we have that [r 4ぶ l= L = G' 31 
and r4 = Z(r4)G31. Furthermore, M4(G, V) = M⑲,  V) if and only 
if one of the following conditions holds 

(Al) G = Z(G)H, where H 竺 2A1or H 竺 Sp4(3) 竺 G伍•

(A2) L = [G,G]::; G < r4. 
(A3) E4 <] G < r 4, and, after a suitable conjugation in r 4, 

c;9 = [G, G] ::; G::; Z(r 4)G29・

In particular, G < 1l = U (V) is a unitary 2-group if and only if G is 
as described in (Al)-(A3). 

(B) M6(G, V) = M⑲,  V) if and only if G is as described in (Al)-
(A2). In particular, G < U(V) is a unitary 3-group if and only if G 
is as described in (Al)-(A2). 

(C) M8(G, V) > M8(Q, V). In particular, no finite subgroup of U4(C) 

can be a unitary 4-group. 
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{ix) 

The cases d = 3 and d = 2. 

Now we recall three complex reflection groups G4~SL2(3), G12竺 GL2(3),
and G16竺 C5XSら(5)in dimension d = 2, listed on lines 4, 12, and 

16 of [Table VII in Shephard-Todd], and three complex reflection 

groups G24竺 C2XSム(2),G25竺 3t+2><1 SL2(3), and G21竺 C2X 3A6 
in dimension d = 3, listed on lines 24, 25, and 27 of [Table VII in S-

T]. As above, for any of these 6 groups Gk, G~denotes its derived 
subgroup. A direct calculation using the computer packages GAP3 

and Chevie shows that each of these 6 groups G, being embedded in 

1-l = Ud(C), . 1s a umtary 2-group; furthermore, G12, G~6, and G伍are
unitary 3-groups. One can check that F(G4)竺 F(G叫 isa quater-
nion group Q8 = 2~+2, and we will identify them with an irreducible 
subgroup E2竺 Qsof Gら(C). Also, E3 := F(G25)竺 3t+2is an ex-

traspecial 3-group of order 27 and exponent 3, which is an irreducible 

subgroup of Gら(C).Let rd:= N叫 (q(Ed)ford= 2, 3. Now we can 
give a complete classification of unitary t-groups in dimensions 2 and 

3. 

(x) 

Theorem 9 in [BNRT]. Let V =び withd = 2 or 3, G = GL(V), 
and let G < G be any finite subgroup. Then the following statements 
hold. 

(A) Supposed= 2. Then M4(G, V) = M4(9, V) if and only if one of 

the following conditions holds 

(Al) G = Z(G)H, where H = G~6 竺 SL2(5).

(A2) E2 <JGく応 andZ(Q)G = Z(Q)H, where H = G12~GL2(3). 

(A3) E2 <JGく応 andZ(Q)G = Z(Q)H, where H = G4竺 SL2(3).

In particular, G く 1l= U(V) is a unitary 2-group if and only if 

G is as described in (Al)-(A3). Furthermore, G く 1l= U(V) is 

a unitary 3-group if and only if G is as described in (Al)-(A2). 

Moreover, such a subgroup G can be a unitary t-group for some 

t~4 if and only if 4~t~5 and G is as described in (Al). 

(to be continued to the next page) 
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(xi) 

(B) Supposed= 3. Then M4(G, V) = M⑲,  V) if and only if one of 
the following conditions holds 

(Bl) G = Z(G)H, where H = G伍竺 3A6.

(B2) G = Z(G)H, where H = G伍竺 S£3(2).

(B3) E3 <JG< I'3. Moreover, either Z(Q)G = Z(Q)G伍，
or Z(Q)G = Z(Q)G25. 

In particular, G < 1l = U(V) is a unitary 3-group if and only if 
G is as described in (Bl), and no finite subgroup of U(V) can be 

a unitary 4-group. 

(a) 

Further development. This part was added after 
the talk. 

It seems that the explicit constructions of (exact) unitary 4-designs 

in U(4) has been an open problem in the physics community. We 

want to answer to this question. This is an ongoing joint work with 

Da Zhao, Yan Zhu, Mikio Nakahara. 

Theorem. Let G be a finite subgroup of U(d), and let 

x : G c......+ U (d) be the natural embedding. Suppose that 
G is a unitary t-group in U(d), and that 

(xt+1, xt+1に=(xt+1, xt+1)u(d) + 1. 

Then there exist a non-trivial (unique up to scalar multi-

plication) f E Harrn(U(d), t + 1, t + l)GxG. Let尤oE U(d) 
be a zero off. Then the orbit X of x0 by the action of 

G X G on U(d) becomes a unitary t + 1-design in U(d). 
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(b) 

Remarks. (i) For any character (or representation) </> of 
G, the inner product (</>, </>)G =向こxEGの(x)<J>(x).
(ii)ズ=x気
(iii) If d~t, then it is known that (xiぷ）U(d) = i!. 
(iv) Examples of unitary t-groups G C U (d) that satisfy 

(xt+l'xt+I)G = (xt+l'xt+I)u(d) + 1. 

(a) Fort= 3, (We assumed~3.) 
d = 4,G = Sp(4,3), 
d = 6, G = 61U4(3), 
d = 12, G = 6Suz. 
(b) Fort= 2, (We assumed~3.) 
d = 3, G = SL(3, 2) = PSL(2, 7), 
d = 10, G = M22, 
d = 28,G = Rd, 
d = (3m土1)/2,G = PSp(2rn, 3), Sp(2rn, 3). 
(Cf. Section 4 of a new version of [BNRT].) 

(c) 

Let us conclude my talk by mentioning that Da Zhao and 

Yan Zhu found explicit unitary 3-designs in U(3) coming 

from t = 2, d = 2, G = SL(3, 2), and unitary 4-designs in 

U(4) coming from t = 3, d = 4, G = Sp(4, 3), based on the 

Theorem mentioned above. Exactly speaking, we can de-

scribe such examples numerically with the errors as small 

as we want. 

The Problem is 
(a) to find G X G-invariant fin Harrn(U(d), t + 1, t + 1) 
explicitly, 
(b) to find a zero x0 E U (d) of the polynomial f on U (d), 
(c) to describe the orbit X of x。bythe action of G X G on U (d). 
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(extra page) 

The following problem is still open and interesting. 

Let G be a subgroup of O(d), (d~3). 
Let Xi be the irreducible representation of O(d) on Harmi(配）．
Then G acts on the space Harmi(配）. (The paper of Tiep {2006) 
classifies those G with x1如 andX2如 beingirreducible. 

Can we classify those G C 0(d) with (1, 知）c=O 

for i = 1, 2, ... , k. ? 

In particular, is there any finite G such that this holds for k = 12 ? 

No example is known, but the non-existence is still an open prob-

lem.) (Note that Xiに areirreducible for i = 1, 2, ... , s implies that 

(1, Xi)G = 0 for i = 1, 2, ... , 2s, but th e converse does not necessarily 

hold. 

Thank You 




