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1 Introduction 

We consider the nonlinear dynamic equations with mixed derivatives 

(r(t)<Pp(x△ (t)))▽ + c(t)<lり(x(t))= 0, t E 11', (1.1) 

where 11'is a time scale (arbitrary nonempty closed subset of the real numbers) unbounded 

above; r: 11'→ 股 iscontinuous function and r(t) > 0 for all t E 11'; c: 11'→ 恥 isreal 

left-dense continuous function; p is a parameter that is greater than l; <PP is the real-

valued function defined by <PP(u) = lulP-2u for uヂ0and <PP(O) = 0. For simplicity, let q 

be the conjugate exponent of p; that is, the number 1/p + 1/q = 1. Then, the function 

Pq is the inverse function外. Here, the term mixed derivatives represents the use of 

△ -derivative [3] and▽ -derivative [2], introduced in: 

. x(a(t)) -x(s) x(p(t)) -x(s) 
吟 (t):= hm and x胃t):= lim 

S→ t a(t) -s s→ t p(t) -s 

where a(t) := inf{s E 11': s > t} is the forward jump operator; p(t) = sup{s E 11': s < t} 
is the backward jump operator. Also, the graininess functionμ, 11: 11'→ [O, oo) are called 
forward graininess and backward graininess respectively, and are defined by 

μ(t) = u(t) -t and v(t) = t -p(t). 

A point t E 11'is said to be right-dense ifμ(t) = 0, and it is said to be疇 t-scatteredif 

μ(t) > 0. Similarly, a point t E 11'is said to be left-dense if v(t) = 0, and it is said to be 

left-scattered if v(t) > 0. We will use abbreviations rd, rs, ld and ls respectively. If 11'has 

a left-scattered maximum M, then we define 11'"'= 11'¥ { M}, otherwise 11'ん=11'. If 11'has 

a right-scattered minimum m, then we define 11',., = 11'¥ { m}, otherwise 11',., = 11'. By these 

definitions, we have 

吟 (t)= x'(t) = X町t)

if 11'=恥 while

x△ (t) =△ x(t) = x(t + l) -x(t) and x▽ (t) =▽ x(t) = x(t) -x(t -l) 
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if 11'= Z. A function f : 11'→ 尺 issaid to be rd-continuous if it is right continuous at 

all rd points and the left limit at ld points exists. If f is rd-continuous, then there exists 

a△ -differentiable function F such that戸 (t)= f(t). While a function g: 11'→ 賊 is

said to be ld-continuous if it is left continuous at all ld points and the right limit at rd 

points exists. If g is ld-continuous, then there exists a▽ -differentiable function G such 

thatび (t)= g(t). The△ -integral and the▽ -integral are defined by 

lb f(t)△ t = F(b) -F(a) and Jb g(t)▽ t = G(b) -G(a). 

In particular, if 11'=罠， then

1b f(t)△ t = 1b f(t)dt = 1b f(t)▽ t, 

while if 1'= Z, then 

b b-l 

1 f(t)△ t =~f(t) and 1b f(t)▽ t = t言lf (t) 

For the case p = 2, equation (1.1) turns out to be 

(r(t)砂(t))▽ + c(t)x(t) = 0, (1.2) 

i.e. the linear dynamic equation. It is well known that the solution space of any linear 

dynamic equation is homogeneous and additive. In contrast, the solution space of (1.1) 

has just one half of the above properties, namely homogeneity (but not additivity). For 

this reason, equations such as (1.1) are called half-linear. It was shown that equation 

(1. 1) is very convenient since it transforms to the usual half-linear differential equation 

(r(t)<Pp(x'(t)))'+ c(t)<Pp(x(t)) = 0 (1.3) 

if 11'=恥 whileit transforms to the half-linear difference equation 

△ (r(t -l)<JJP(△ x(t -1))) + c(t)<JJP(x(t)) = 0 (1.4) 

if 11'= Z. We can easily find the literatures related to oscillation theory for (1.3) and 

(1.4) (for example, see [6, 7]). 

Now we introduce the definition on oscillation and nonoscillation of (1.1). 

Definition 1.1. We say that a solution x of (1.1) has a generalized zero at t if x(t) = 0 

or, if tis left-scattered and x(p(t))x(t) < 0. 

Definition 1.2. We say that (1.1) is disconjugate on an interval [a, b] if the following 

hold: 
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(i) If xis a non-trivial solution of (1.1) with x(a) = 0, then x has no generalized zero 

in (a, b]. 

(ii) If xis a non-trivial solution of (1.1) with x(a)ヂ0,then x has at most one gener-

alized zero in (a, b]. 

Defimt1on 1.3. Let w = sup 11', and if w < oo, assume p(w) = w. Let a E 11'. We say that 

(1.1) is oscillatory on [a,w) if every non-trivial solution has infinitely many generalized 

zero in [a, w). We say (1.1) is nonoscillatory on [a, w) if it is not oscillatory on [a, w). 

The use of mix derivatives such as equation (1.2) was considered by Messer [8], An-

derson and Hall [1] for oscillation problem. In extension, Dosly and Marek [5] studied the 
half-linear equation (1.1) and its oscillatory properties. For example, Dosly and Marek [5] 
have presented the following nonoscillation theorem for (1.1). 

Theorem A. Suppose thatに(r(p(t)))1-q▽t = oo, Ii□ (t)▽ t < oo and 

lim 
v(t) (r(p(t)))1-q 

= 0. 
t→00』戸 (r(p(s)))1-q▽s

(1.5) 

lf 
liminf Ap(p(t)) > -

2p 1 p l 
p-1 

t→ 00 p (p) 
and 

li四門凸(p(t))<~(p;l) ' 

p-1 

then all non-trivial solutions of (1.1) are nonoscillatory, where 

p(t) 
p-l 

心(p(t))= (1。(r(p(s)))1-qvs) (1: c(s)▽ s) 

In Theorem A, Dosly and Marek [5] established a nonoscillation criterion by consid-

ering the lower boundary value 

liminf A ((t)) 
2p -1 p-l p-l 

t→ 00 PP >- p (p) 
and other conditions. For the case p = 2, the lower boundary value is 

h門翌f(1:(t) r(p~s)) • s) (1: c(s) v's) >ー：
The purpose of this talk is to report the extended result of Theorem A. We focus on 

finding the conditions that will extend the lower boundary value. 

Our nonoscillation theorems are as follows. 
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Theorem 1. 1. Suppose thatに(r(p(t)))1-q▽t = oo, ft: c(t)▽ t < oo and (1.5). Let 

h(t) be a v'-differentiable, monotonically non-increasing and positive function. If there 

exists h(p(t)) > 0 such that 

1 

liminf Ap(p(t)) > -(h(p(t)))e -h(p(t)) 
t→00 

and 

limsupん(p(t))< (h(p(t)))e -h(p(t)), 
t→OO 

then all non-trivial solutions of (1.1) are nonoscillatory, where 

p(t) 
p-l 

心(p(t))= (1。 (r(p(s)))1-q▽s) (1: c(s) v's) 

Theorem 1.2. Suppose thatに(r(p(t)))1-q▽t < oo and 

lim 
v(t) (r(p(t)))1-q 

= 0. 
t→00闊 (r(p(s)))1-q▽s

(1.6) 

(1.7) 

(1.8) 

Let h(t) be a▽ -differentiable, monotonically non-decreasing and positive function. If 

there exists h(p(t)) > 0 such that 

1 

liminf Bp(p(t)) > -(h(p(t)))• -h(p(t)) 
t→~ 

(1.9) 

and 

limsupBp(p(t)) < (h(p(t)))e -h(p(t)), (1.10) 
t→00 

then all non-trivial solutions of (1.1) are nonoscillatory, where 

Bp(p(t)) = (1: (r(p(s)))1-q▽ s y-1 (1:(t) c(s)▽ s) 

Let us compare Theorem 1.1 with Theorem A. In the case that h(p(t))三（号）見 by

using p/q = p -1, we have the upper boundary value of 

(h(p(t)))½- h(p(t)) = (p; 1 r-1 (1 -p; l) = t (p; 1 r-1 
and the lower boundary value of 

-(h(p(t)))¼- h(p(t)) = -(p; 1 r-1 (1 + p; 1) = -2p; 1 (p; 1 r-1. 
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Hence, the condition of Theorem 1.1 becomes Theorem A. For the case p = 2, from 

Theorem A, we have 

. . 3 1 
hmmfAP(p(t)) > --= -0.75 and limsupAP(p(t)) < -= 0.25. 
t→ 00 4 t→ 00 4 

In the case that p = 2, from Theorem 1.1 ((1.6) and (1.7)), we assume that there exists 

h(p(t))三 k(positive constant) such that 

liminf Ap(p(t)) >—⑪ -k and limsupAp(p(t)) < vk -k~-
1 

t→ 00 t→ 00 4・ 

Notice that there is parameter k remains, which gives us opportunity to get our desired 

value by setting it. If k = 1/4, then we have the same Dosly and Marek's result. As 

another example, we set k = 1/2, then we have 

liminf Ap(p(t)) 
v'2 + 1 y'2-1 

> -~-1.207• • • and hmsup心(p(t))<~0.207· ・ ・. 
t→ 00 2 t→ 00 2 

We have the lower boundary value extended from -0.75 to -1.207• • •. Therefore, we 

can conclude that by setting the parameter k, we can extend the lower boundary value. 

Moreover, in Theorem 1.2, we investigated the same boundary value with distinct con-

ditions. Under those conditions, all non-trivial solutions of (1.1) are also nonoscillatory. 

However, since it is not the same conditions with Dosly and Marek's work, Theorem 1.1 

and Theorem 1.2 can be considered as new results. 

2 Proof of Theorems 1.1 and 1.2 

We show some preliminary results that are used directly for proving the main results. 

The readers can find more preliminaries that support the proof in [5]. 

Lemma 2.1. Let f: 罠→ 艮 bea differentiable function g : 11'→ ~be nabla differentiable. 
Then we have 

[J(g(t))]▽ = J'(()g▽ (t), 

where g(p(t)):::; ((t):::; g(t). 

Lemma 2.2. Suppose that x is a solution of (1.1) such that x(t)ヂ0in a time scale 

intervalll=[a,b]. Thenw=叫 (x町x)is a solution of the Riccati-type equation 

w胃t)+ c(t)~{ 二））:)(戸）'~''" if p(t)~t, (2.1) 
叫）外(<Pq(r(p(t)))+v(t)<Pq(w(p(t))))) if p(t) < t. 

Moreover, if 

x(p(t))x(t) > 0 

fort E [a, b]k, holds, then 

<Pq(r(p(t))) + v(t)<Pq(w(p(t))) > 0 for t E [a, b]k. (2.2) 
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We will denote R[w], the so-called Riccati operator (compare (2.1)), i.e., 

w胃t)+ c(t) + (p -l)(r(t))1-qlw(t)lq if p(t) = t, 

亨 ~{w可t)+c(t)+ 言炉 (1-•.,(知~,,,;)''.''.'/,叫 (w(e(,)))) if p(t) < t 

Lemma 2.3. Equation (1.1) is nonoscillatory if and only if there exists a▽ -differentiable 

function w satisfying (2.2) such that R[w] ::; 0 for large t. 

In other words, we need only one function w and establish R[w] ::; 0 for each case 

(left scattered case, and left dense case) to prove our main theorems. 

Proof of Theorem 1.1. We denote 

r(t) := r(p(t)), 面(t):= w(p(t)), 

and 
t p-1 

Ap(t) := (1 (r(s))1-q▽ s) (100 c(s)▽ s) 

Let 

w(t) = h(t) (latげ(s))l-q▽s r-1 + 100 c(s)▽s 

By using Lemma 2.1, we can calculate 

［（［げ(,))'-•▽ ,f']▽ ~(1-p)(f(,))'-, (0(l))-', 

where 

1p(t) (r(s))l-qy's'.S 0(t)'.S 1tげ(s))l-q▽s. 

Also, by using Lagrange mean value, we have 

叩）
可 (1-Pp仇(f(t)):(?(t丸（心(t))))

w(t) cf>p(Pq(r(t)) + 1ノPq(面(t))) —《f>p(Pq(f(t)))

= v(t) (丸（仰(t))+叫（心(t))))

= (p -1) 
lrJ(tw-2畑(tW

ェ fェ I ~I, ヽヽ ， fヽヽェ /~/,¥¥¥l 

where 

<Pq(r(t))::; 77(t)::; <Pg(r(t)) + v<Pq(心(t)).
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From (1.6) and (1.7), there exists s > 0 such that IAP(p(t)) + h(p(t))lq(l + s) < h(p(t)). 
We also need to calculate 

p(t) -p 

直t)l9= (1 (f(s))1-q▽ s) 山(p(t))+ h(p(t))l9. 

We will divide the argument into two cases: (i) t > p(t) and (ii) t = p(t). 

Case (i): Since h(t) is a▽ -differentiable, monotonically non-increasing and positive 

function, we have 

亨 =wv'(t)+c(t)+:i; (1一％（知(t)):(~(t丸(w(t))))

where 

= -(p -l)h(p(t))(0(t))贅 (t))l-q+ h胃t)(1>r(s))l-q• s) l-p -c(t) 

+c(t)+(p-1) 
lrJ(t)IP-2lw(t)lq 

叫仰(t))+ v(t)い (t)))

::=:: (p -l)(r(t))l-q [ -h(p(t)) (ft (r(s))l-q▽s 

+ (('(f(,))'-• ▽ ,)-, w,(~ ゚~t閏□悶i〗;:(t)))叫 (p(l))+ h(p(l))I"] 

(p -l)(r(t))l-q 
= , ¥P [-h(p(t)) + S(t)IA~(t) + h(p(t)W], 

J。:(r(s))1-q▽s

S(t) := (J;(r(s))I-q▽ s) p ITJ(t)IP-2(i'(t))l-q 

J。~(tl(r(s))1-q▽s 叫(iP紅(t))+v(叫（心(t))).

We can see that 

q-1 
叩） qー 1 h(p(t)) (Ji。;(t¥r(s))l-qy'sr-p +鳳c(s)▽s

v(t) 
r(t) 

= v(t) 

~I:.'爪塁〗C~, h(p(l)) + (t'(f(,))'-• ▽ f'u: c(s)▽ ,) H 

→O 
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as t→ oo because of (1.5). Therefore, we can estimate 

IS(t)I = (ft。;(t)(f(s))l-q▽S + v(t)(f(t))l-q>l<JJq(r(t)) +叫（面(t))ip-2 (f(t))1-q 

J。;Ct¥r(s))1-q▽s <Pp(知 (t))+ v(t)</J心 (t)))

= (l+ v(t)(f(t))l-q)Pげ(t))(q-l)(p-l)ll+ v(t丸（心(t)/f(t))IP-2

J。;(t)(f(s))1-q▽ s f(t)叫(1+ v(t)屯厄(t)/f(t)))

= (1 + ft。F悶塁〗:~~~s)P l+v(t)<Pq~ 心(t)/f(t))

→1 

as t→ oo. Summarizing all estimates, we have 
(p -l)(f(t))l-q 

R[w]~1 ヽ p[-h(p(t)) + S(t)IAp(p(t)) + h(p(t)W(l + c)] < 0 
馴 (s))1-q▽s

for large t. 

Case (ii): If p(t) = t, then f = r and心=w. Hence, the Riccati-type equation is 

翫 ]=w▽(t)+c(t)+(p-1) 
lw(t)lq 

仰 (t))

= -(p-l)h(p(t)) (ft (r(s))1-q▽ s)-p (r(t))1-q + h胃t)(ft (r(s))l-qv's) l-p 
0 0 

（ J。:(r(s))1-qv's)―pIAp(p(t)) + h(p(t))lq 
-c(t) + c(t) + (p -1) 

= (p -1) (/t (r(s))1-qv's)-p (r(t))1-q[-h(p(t)) + IAP(p(t)) + h(p(t) W] 

゜<0 

for large t. From Lemma 2.3, this completes the proof of Theorem 1.1. 口

Proof of Theorem 1.2. One can show in the same way as in the proof of Theorem 1.2 

that the function 

w(t) = -h(t) (100 (r(s))1-q▽ s r-1 -ft c(s)▽s 

゜satisfies R[w] :::; 0. ロ

3 Linear difference equation 

In this section, let 11'= N and p = 2. Then, we consider the linear difference equation 

△ (r(t -1)△ x(t -1)) + c(t)x(t) = 0. (3.1) 
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Needless to say, from 11'= N, p = 2 and▽ (r(t)△ x(t)) =△ (r(t-1)△ x(t-1)), we see that 

equation (1.1) becomes (3.1). We present an example of which all non-trivial solutions 

of (3.1) are nonoscillatory even if liminft→00比(p(t))is less than the lower limit value 

-3/4. 
In Theorem 1.2, we assume that 11'= N, p = 2 and h(p(t))三 k(positive consta叫

Then, we have the following corollary. 

Corollary 3.1. Suppose that 

文 1 < 00 

t=l 
r(t -1) 

and 

1 

lim 
r(t-1) 

t→ 001:00 1 
j=t r(j-1) 

If there exists a constant k > 0 such that 

liminf B叫ー 1)>—⑪ -k 
t→OO 

and 

r 1 
1msup B州ー 1)< vk -k:::; 一

t→ 00 4' 

then all non-trivial solutions of (3.1) are nonoscillatory, where 

1 
t-1 

凡(t-1) =文
r(j -1) 

Lc(j). 
j=t j=l 

Example 3.1. we consider the 

= 0. (3.2) 

(3.3) 

(3.4) 

1 y2 7r 

△ (t(t+l)△ x(t-1))+(-2十了sin(logt + 4))x(t) = 0 (3.5) 

for t E N. Then all non-trivial solutions of (3.5) are nonoscillatory. 

Proof. Comparing equation (3.5) with equation (3.1), we see that r(t -1) = t(t + 1) 

and 
1 J2 1r 1 1 

c(t) =―2+了 sin(log t + 4) =―2+う(sin(log(t))+ cos(log(t))) 

From r(t -1), it is easy to check that 

言 r(t~1) =言 c(t:1))= 言 (i-t~l) =l<oo, 

苫 r(j~1) =言 Cu~1))=言(}-j!1) =i, 
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lim r(t-1) t(t+l) 1 
~00 1 

= lim = lim = 0. 
t→ 00 t→ 00 - t→ 00 t + 1 

j=t r(j-l) t 

Hence, conditions (3.2) are sutisfied. By a straightforward calculation, it follows that 

t-1 t-1 t-1 

苔(j)=一苫；＋苫仄sin(log(j))+ cos(log(j))) 

t -1 t 1 
=- 2 +ぶt[sin (10gい））+ cos (10g (ft 

j=l 
)） ] 

1 
--(sin(log(t)) + cos(log(t))) 

2 

= _ t~1 十；芦 i [sinい(f)+ log (t)) + cos (log U) + log (t)) ] 

1 
--(sin(log(t)) + cos(log(t))). 

2 

By using addition theorem of trigonometric functions, we have 

芦c(j)= _ t~1 十；苫 i [cos(log(t)) {sinいG))+ cos (log G)) } ] 

＋；芦i[sin(log(t)) { cos (10g G))-sin (10g (f))}] 

1 
--(sin(log(t)) + cos(log(t))). 

2 

Hence, we see that 

00 

1 
t-1 

尼凡(t-1) =尼と 区 (j)
j=t 

r(j -1) 
j=l 

= lim 
t-1 

t→ 00 2t 

1 
t 

＋凰ぅ cos(log(t))~i [sin (10g (f)) + cos (10g (f))] 

＋凰；sin(log(t)) ti  [cos (log (f)) -sin (log (f 
j=l 

)） ] 
1 

—凰 2t (sin(log(t)) + cos(log(t))). 
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Taking into account that 

凰苫~[sin い (f)) + cos (log G)) ] 
= /¥sin(log x) + cos(log x))dx 

゜ 1 

= lim xsin(logx) = 0 
e→ o+ e 

and 

犀芦i[ cos (log G)) -sin (log (f))] 
= /1 (cos(logx) -sin(logx))dx 

゜ 1 

= lim xcos(logx) = 1, 
C→ Q+ E 

we can check that 

3 
limmf B出ー 1)= -1 < -- and limsupB州ー 1)= 0. 
t→ 00 4 t→OO 

Form Corollary 3.1, if we set k = 81/100, then 

and 

171 
liminf B叫ー 1)> -
t→ 00 100 

9 1 
limsupB』 -1)= 0 < < -. 
t→ 00 100 4 

Thus, conditions (3.3) and (3.4) hold. Then all non-trivial solutions of (3.5) are nonoscil-

latory. ロ

X 

4 

3 

2 

1 

01 I 

-1 I 5 10 15 20 
t 

-2 

Figure 1: The initial condition of the solution of Eq.(3.5) is (x(l), x(2)) = (-1, 1). 
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4 Appendix 

Let 11'=股 andp = 2. Then, equation (1.1) becomes linear differential equation 

(r(t)x'(t))'+ c(t)x(t) = 0. (4.1) 

As a condition to guarantee that all non-trivial solutions of (4.1) are nonoscillatory, it is 

known by Moore [9], Wray [10] and Wu and Sugie [11] that the existence of the lower limit 

value -3/4 is not important. For example, Moore [9] gave the following nonoscillation 

theorems for (4.1). 

Theorem B. Suppose that f00 r-to 1(t)dt = oo and f00 c(t)dt converges. If there exists a to 
constant k > 0 such that 

and 

(1 + lotふds)(100 c(s)ds)~ —vk-k 

(1+iot土ds)(100 c(s)ds) :S vk -k :S~' 

then all nontrivial solutions of (4.1) are nonoscillatory. 

Theorem C. Suppose that ft: 戸 (t)dtconverges. If there exists a constant k > 0 such 

that 

and 

(1 + loo rい） (l>(s)ds)~-vk -k 

(1 + loo¾ids) (1。~c(s)ds) :S:: vk-k :S:: i, 
then all nontrivial solutions of (4.1) are nonoscillatory. 

Theorems 1.1 and 1.2 are generalization to Theorems B and D. Indeed, we assume 

that 11'=艮， p= 2 and h(p(t))三 k(positive constant) for Theorems 1.1 and 1.2. Then, 

we have the upper boundary value of vk-k and the lower boundary value of -vk -k. 
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