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1 Introduction: Summary of the Continuous Case 

Let c > 0 be given. Consider the simple differentiaJ equation 

x'(t) =畑(t), 入EC, t E恥

and the related perturbed equation 

ゅ'(t)=入¢(t)+ q(t), lq(t)I ::::: c, t E囮．

(1.1) 

(1.2) 

If such a function¢as in (1.2) exists, is there a solution x of (1.1) and a constant K > 0 
such that 

1¢(t) -x(t)I ::::; Kc, Vt E股？

If so, then (1.1) is said to be Hyers-Ulam stable (HUS), with HUS constant K. For what 

value(s) of入E<C does (1.1) have HUS? If there a best (minimal) constant K in that 

c邸 e?

Let Re(入） > 0, and set 

t 

</>(t) = </>。e入t+e入tJ q(s)e―入sds, lq(s)I~E:. 

゜Then¢satisfies the perturbed equation (1.2), and 

exists. Note that 

x(t) = x0e竺

/00 q(s)e―入8ds

゜
Xo = <p。+f00 q(s)e―入8ds

゜is a well-defined solution of (1.1), and 

00 
lc/>(t) -x(t)I = eRe(入)t -J q(s)e―入8ds< 

E 

t - Re(入）．

(1.3) 

Therefore (1.1) has HUS for Re(入） > 0, with HUS constant Re~ 入）. Continuing with 

Re(入） > 0, let 

¢(t) = 
c 

e 
入t c ilm(入）t- e 

Re(入） Re(入）
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Then 

I¢'(t)ー椅(t)I= cleiim(入）ti = E:, 

so¢satisfies (1.2). Since x(t) = Re(入）e入tsolves (1.1), we have 

1¢(t) -x(t)I = - E: eilm(入）t = E: 
Re(入） Re(入）＇

which means the best (minimal) HUS constant is at least Re~ 入） . Altogether, the constant 

K ＝戸 isthe best HUS constant in this case. Likewise, if Re(入） < 0, then (1.1) has 

HUS with best HUS constant印veIIby I Re(入）1・ 
If Re(入） = 0, then入=i(3. For¢(t) = E:teif3t, 

I¢'(t) —入¢(t)1 = Ice呵=E: 

implies that¢satisfies (1.2), aIId 

1¢(t) -x(t)I = lcte•f3t -ceif3tl = let -cl→ oo, 

meaning (1.1) is not HUS for Re(入） = 0. 
SUMMARY: Equation (1.1) has HUS iff Re(入） -I 0, with best HUS constant K = 

I Re(入)1・ 
QUESTION: If we discretize the derivative operator in (1.1), how should we do this? 

What happens to the HUS discussion above for such a discretization? Two common 

discrete approximations to羞x(t)are the forw紅 d/backwardh-difference operators for 

step size h > 0: 

ふx(t)= ,_ 
x(t + h) -x(t) 

， ▽砂(t)= . 
x(t) -x(t -h). 

One could proportionally combine these using the diamond-alpha discrete operator 

◊研(t) := a△ hx(t) + (1 -a)▽砂(t), a E [O, 1]. (1.4) 

Instead, one could discretize (1.1) via the so-called discrete Cayley equation 

ふx(t)=入 [μx(t+ h) + (1 -μ)x(t)], μE [O, 1]. (1.5) 

For (1.4), we introduce the imaginary diamond-alpha ellipse, which unifies and extends 

the left Hilger imaginary circle (forward, Delta case) and the right Hilger imaginary 

circle (backward, nabla case), for the discrete diamond-alpha derivative with constant 

step size. We then establish the Hyers-Ulam stability (HUS) of the first-order linear 

complex constant coefficient discrete diamond-alpha derivative equation, proving that 

the imaginary diamond-alpha ellipse fails to have HUS, while inside and outside the ellipse 

the equation has HUS. In particular, for each parameter value not on the diamond-alpha 

ellipse, we detennine explicitly the best (1ninimum) HUS constant in terms of the elliptical 
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Figure 1: No HUS for入＝予：red= x, blue=¢ 

real part of the coefficient. For (1.5), we establish that the equation exhibits instability 

along a certain circle, but is Hyers-Ularn stable inside and outside that circle; the circle 

becomes infinite and coincides with the vertical imaginary a,"is when the proportionality 

is equal. In the case of Hyers-Ulam stability, the best constant is found explicitly. The 

theory is also explained in terms of radial solutions, and ai1 example is illustrated in the 

next section. 

2 Main Results: Summary of the Discrete Cases 

Recall from the introductory section that (1.1) is approximated by 

ふx(t)=入x(t),

with the perturbation equation 

I △砕(t) —入の(t)I::::: s. 

• For入＝州，there'sno first-order difference equation. 

• For、入=0, the forward difference equation has no HUS, just like the continuou'・

case. 

For example, consider the forward difference operator with入＝丑

ふx(t)=入x(t), I △凶(t) —入¢(t)I::::: E 

• F01入＝岳，takeの(t)= ct(-l)t and x(t) = c(-l)t to see there's no HUS 

See Figure 1. 

Theorem 2.1 (Onitsuka 2017). Let入＜岳.Given E: > 0, suppose¢: Z→ C satisfies 

I△砕(t) —入¢(t)I::::; c, t E {O, h, 2h, 3h, ・ ・ ・}. 

Then 

lim¢(t)(l十入h)予
t→OO 
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Figure 2: HUS for入＜岳：red= x, blue=¢ 
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Figure 3: HUS for予＜入＜舟：red= x, blue= cp 

e.1:ists in C, and 

x(t) := (尼¢(t)(l+入h戸）(1 +入h)占

is the unique solution such that 

ゆ(t)-x(t)I < 
sh 

I入h+21'

Example 2.1. Let入＜予.See Figure 2. 

Theorem 2.2 (Onitsuka 2017) : Let -2 -<入＜ゴ
h h . Given E > 0, suppose¢: Z→ C 

satisfies 

I△凶(t)ー椅(t)I ::::: E, 

If x is a solution with 

圏0)-x(O)I < 
c:h 

入h+2'

then 

1¢(t) -x(t)I < 
sh 

入h+2'

t E {O,h,2h,3h,・・・}. 

t E {O, h, 2h, 3h, ・ ・ ・}. 

t E {O, h, 2h, 3h, ・ ・ ・}. 

Example 2.2. Let― 
2 

h 
＜入<―

h' 
s = 0.1. See Figure 3. 

Result: HUS Theorem 5 (Onitsuka 2017): 予＜入<0. Given c > 0, suppos 

¢:Z→ <C satisfies 

I △砕(t) —入¢(t)1 ::=:: c, t E {O, h, 2h, 3h, ・ ・ ・}. 
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If x is a solution with 

1¢(0) -x(O)I < -
E: 

|入|

then 

他(t) x(t)I < 
E: 

|入|
t E {O, h, 2h, 3h, ・ ・ ・}. 

Result: HUS Theorem 6 (Onitsuka 2017): 入>0. Given E: > 0, suppose¢: Z→ C 

satisfies 

I△凶(t)ー栂(t)I::::; s, t E {O, h, 2h, 3h, ・ ・ ・}. 

Then lim q;(t)(l十入h） 
ニ! . 
h exists. 皿 dthe function 

t→OO 

x(t) := (尼の(t)(l十入い） (1十入h)t

is the unique solution such that 1¢(t) -x(t)I :s; 旦 forall t E O h 2h 3h・ ・ ・ {''''}. 
Summary for discrete delta case: △研 ＝入x.Equation△ 紅 ＝ 入xhas HUS for 

二 二 0and the best HUS cmistant K is 入-/- 2 1 
h'h' 

if 入 <~-2
h 

or <入＜
-1 - - and 

h h' 

if予＜入<0 or入>0. 

h、
K1= 

I入h+21

1 
K 2 =-

|入|

Summary for discrete nabla case: ▽ 砂 ＝入x. Equation V砂＝入xhas HUS for 
入ヂ 01 2 --and the best HUS constant K 1s 

, h'h' 

if ¾< 入 <~ or 入＞免 ， and

if入 <0 or O <入<¾-

h、
K1= 

I入h-21

1 
K 2 =-

|入|

Unifying Idea: Imaginary Hilger Circle. See Figure 4. 

Zero Hilger Real Part. 

Definition 2.1 (1999). For入E(['. ¥ {州}, the Hilger real part of入isdefined by 

Reh(入）：＝．
I入h+ 11-1 

h 

Theorem 2.3 (2019). If入E(['. with I入h+11 = 1, that is if Reh(入） = 0, then 

△砂(t)=枯(t)

is not Hyers-Ulam stable. 
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Figure 4: The (left) imaginary Hilger circle (blue) 

(a→ 1)(R→一
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.
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x
 

Figure 5: The (left) Hilger real part is negative (red) 

Non-Zero Hilger Real Part. 

Theorem 2.4 (2019). If入EC¥{-1/h} with I入h+llヂ1,then 

△砂(t)=入x(t)

has Hyers-Ulam stability with minimum HUS constant 

h 

11-1入h+lll

1 

I Reh(入） 1

on hZ. 

Delta Case: (Left) Hilger Real Part. See Figure 5. 

Delta Case: (Left) Hilger Real Part. See Figure 6 

Nabla Case: (Right) Hilger Circle. See Figure 7 

Non-Zero Hilger Real Part: Nabla Case. 
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(a→ 1)(R→一
3 

2) 

X 

Figure 6: The (left) Hilger real part is positive (red) 

(right) Hilger Circle 
; 

h 

X 

.
9
-
h
 

Figure 7: The (right) imaginary Hilger circle (blue) 
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(a→ o)(R→一3 

; 2) 
h 

．I

＿h
 

Figure 8: The (right) Hilger real part is positive (red) 

Theorem 2.5 (2019). If入EC¥ {1/h} with I入h-11 -/c 1, then 

▽砂(t)=入x(t)

has Hyers-Ulam stability with minimum HUS constant 

h l 
＝ 

11-1入h-111 恥（入）

on hZ, where 

Reh(入）
1-1入h-11

: = h . 

Nabla Case: (印ght)Hilger Real Part. See Figure 8 

Nabla Case: (Right) Hilger Real Part. See Figure 9 

Diamond-a Operator: Proportional Combination of Delta and)Jabla Cases. Define 

the lineai・combination of discrete difference operator as the diamond-alpha operator given 

via 

◊研(t) :=心x(t)+(l-a)▽研(t), a E [O, 1]. 

Final Unification: Ellipses! See Figure 10. 

Elliptical Coordinates Left: Re(h,a) (入） < 0. See Figure 11. 

Elliptical Coordinates Left: Re(h,a) (入） > 0. See Figure 12. 

Elliptical Coordinates Right: Re(h,a)(入） < 0. See Figure 13 

Elliptical Coordinates Right: Re(h,a) (入） > 0. See Figure 14 

Imaginary •a Ellipses 

Definition 2.2 (2019). The imaginary •a ellipse [(h,a) is the set of all入E(C such that 

入＝
(1 -2a) (1 -cos 0) + i sin 0 

h 
E£(h,a) for any 0 E [O, 21r]. 
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(a→ O)(R→一
1 
2) 

x
 

Figure 9: The (right) Hilger real part is negative (red) 

x
 

Figure 10: Progression of ellipses, from left Hilger circle to the right Hilger circle 
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（三）(R→；） 

x
 

Figure 11: The imaginary ellipse in blue, elliptical coordinates for・入inred 

(a→り(R→~) 

X 

Figure 12: The imaginary ellipse in blue, elliptical coordinates for・入inred 
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(a→ ¼HR • ;) 

x
 

Figure 13: The imaginary ellipse in blue, elliptical coordinates for・入inred 

(a→ ¼)(R • ~) 

Figure 14: The imaginary ellipse in blue, elliptical coordinates for・入inred 
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Remark 2.1 (2019). Note that£(h,I) = Yh, the (left) Hilger circle, and E(h,o) =匂，the
(right) Hilger circle, respectively. For入(/_E(h,a), we represent入via

入＝
R(l -2a) + [a(R2 + 1) -1] cos 0 [1 + a(R2 -1)] sin0 

hR 
+i 

hR 

for 0 E [O, 21r]. 

Elliptical Real Part. 

Definition 2.3 (2019). Let a E [O, 1] and h > 0 be given. For any入EC,入canbe 

expressed in terms of the imaginary ellipse [(h,a) • Define the elliptical real part of入to

be 
ヽ
、
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:a:E(O,½], 

: a E (ふ1). 

Radial Solutions! 

Remark 2.2 (2019). Elliptical form of the eigenvalue入：

入＝
R(l -2a) + [a(R2 + 1) -1] cos 0 . [1 + a(R2 -1)] sin0 

hR 
+i 

hR 

Radial form of the eigenfunctions: 

x(t) = c1 (Re州+c2 (:;ei~) k , 

fort E IHI and arbitrary constants c1, c2 E C. 

No branch cuts. Converges to expected form. 

Main •a Result. 

Theorem 2.6 (2019). For any a E [O, 1] and 0 E [O 21r] if入ヂ• (l-2a)(l-cos0)+isin0 
h E (C, 

then 

◊研(t) =入x(t)

has Hyers-Ulam stability on IHI, with best HUS constant 

hR 

IR -1 I I aR + a -1 I 

1 

IRe(h,a)(入)|

where入E<C ¥£(h,a) for R > 0 with R =J l and R =J号，andRe(h,a) (入） is the elliptical 

real part of入givenon the pr-evious slide. ロ
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_’
 ffy 

x
 

h (1 -2μ) 

Figure 15: Various imaginaryμ-circles forμE [O, 1], with O :Sµ<½ generating the left 
μ-circles, 皿 dぅ<μ:S1 the rightμ-circles. Forμ 2, = -the circle becomes infinite in 

diameter, namely the standard imaginary邸 is.These are unstable manifolds in the HUS 

sense. 

Discrete Cayley Equation. The discrete Cayley equation (1.5) is another way to 

discreti~e x'=入x,via 

1 -1 
叩 (t)=入〈x(t)〉μ'入 EC¥{扉'h(l-μi}' 

whereμE [O, 1] and 

〈x(t)〉μ:=μx(t+ h) + (1 -μ)x(t). 

No HUS for the Disrete Cayley Equation. 

Theorem 2. 7 (2019). Define theμ-real part of入tobe 

(2.1) 

Re~(入）：＝
ll + h入(1-μ)l-11-h入μI

h '  
limRe仇（入） = Re(入）．
h→O 

(2.2) 

IハEC¥{点，h(心}with 

Ret(入） =0, 

then (1.5) is unstable in the Hyers-Ulam sense. 

ふx(t)=入 [μx(t+ h) + (1 -μ)x(t)], μE [O, l]. See Figure 15 

ふx(t)=入 [μx(t+ h) + (1 -μ)x(t)], μE [O, 1]. 

Theorem 2.8 (2019). Pick any入E<C¥ {点，h(しい}such that Re~(入） =J 0. Then (1.5) 

is Hyers-Ulam stable, and the best HUS constant in the minimal sense is 

h 
K =  

111 + h>.(1 -μ)I -11 -h入μII

1 

I Ret(入）1・ 
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ffy 

x
 

Figure 16: Letμ= -1 
4, h l.R = > 0. The circles represent parametnzat1ons of入.Black: 

imaginary ½-circle (unstable). Orange & Maroon: 0 < R < 1. Blue: 1 < R < 3. Red: 

R=予=3. Green & Purple: R > 3 (all stable) 

Cayley Equation: Radial Solutions. Let R > 0 be a radial parameter, and use this to 

parametrize the complex coefficient入via

入＝
-1 +μ+ R切+R(l -2μ) cos(w) + iRsin(w) 

h[(l -μ 戸十Rμ(Rμ+2(1 -μ) cos(w))] ・ 
(2.3) 

Then 
μ R-1 

Reh(入）＝ ー・

when R =J 1, and the Cayley equation has radial solutions 

x(t) = c(Re'w)f. 

HUS△ x(t) =入［ヤ(t+ 1) +和(t)].See Figure 16 
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