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1 Introduction: Summary of the Continuous Case

Let € > 0 be given. Consider the simple differential equation
2(t) = x(t), AeC, teR, (1.1)
and the related perturbed equation
¢(t) =Ap(t) +q(t), lgt)] <&, teR (1.2)

If such a function ¢ as in (1.2) exists, is there a solution z of (1.1) and a constant K > 0
such that
|p(t) — x(t)] < Ke, VteR?

If so, then (1.1) is said to be Hyers-Ulam stable (HUS), with HUS constant K. For what
value(s) of A € C does (1.1) have HUS? If there a best (minimal) constant K in that
case?

Let Re(\) > 0, and set

¢m—%w+w/l@aWw a(s)] < <. (1.3
0

Then ¢ satisfies the perturbed equation (1.2), and

/ q(s)e ds
0

x(t) = zoe™, 2o = ¢Pp -|-/ q(s)e_ASdS
0

is a well-defined solution of (1.1), and
—/ q(s)e ds
t

Therefore (1.1) has HUS for Re(\) > 0, with HUS constant Re#(/\)‘ Continuing with
Re(A) > 0, let

exists. Note that

€
<

6(t) - a(t)] = "o < Bl

_ € x & iImWt
O=Rem® Ryt




Then
|6/(t) = ()] = ele’ ™| = ¢,

so ¢ satisfies (1.2). Since z(t) = R%(/\)e’\t solves (1.1), we have

£
Re())’

lp(t) — x(t)| = _%O\)eilm()\)t

which means the best (minimal) HUS constant is at least R%()\). Altogether, the constant
K= Re#w is the best HUS constant in this case. Likewise, if Re(\) < 0, then (1.1) has
HUS with best HUS constant given by WI(A)V

If Re(\) = 0, then A = i3. For ¢(t) = ete’,

|0/(t) = Ao(t)] = lee™| = ¢
implies that ¢ satisfies (1.2), and
|p(t) — x(t)| = |ete™ — cePt| = |et — ¢| = o0,

meaning (1.1) is not HUS for Re(\) = 0.
SUMMARY: Equation (1.1) has HUS iff Re(\) # 0, with best HUS constant K =
QUESTION: If we discretize the derivative operator in (1.1), how should we do this?
What happens to the HUS discussion above for such a discretization? Two common
discrete approximations to %x(t) are the forward/backward h-difference operators for
step size h > 0:

x(t+h) —x(t)

x(t) —z(t — h)
b , —_—

h

One could proportionally combine these using the diamond-alpha discrete operator

Ahx(t) = th(t) =

Oo(t) == alpz(t) + (1 — @) Vyp(t), a€[0,1]. (1.4)
Instead, one could discretize (1.1) via the so-called discrete Cayley equation
Apa(t) = Apa(t +h) + (1 —pa(t)], pel0,1]. (1.5)

For (1.4), we introduce the imaginary diamond-alpha ellipse, which unifies and extends
the left Hilger imaginary circle (forward, Delta case) and the right Hilger imaginary
circle (backward, nabla case), for the discrete diamond-alpha derivative with constant
step size. We then establish the Hyers Ulam stability (HUS) of the first-order linear
complex constant coefficient discrete diamond-alpha derivative equation, proving that
the imaginary diamond-alpha ellipse fails to have HUS, while inside and outside the ellipse
the equation has HUS. In particular, for each parameter value not on the diamond-alpha
ellipse, we determine explicitly the best (minimum) HUS constant in terms of the elliptical
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Figure 1: No HUS for A = %2: red= z, blue= ¢

real part of the coefficient. For (1.5), we establish that the equation exhibits instability
along a certain circle, but is Hyers—Ulam stable inside and outside that circle; the circle
becomes infinite and coincides with the vertical imaginary axis when the proportionality
is equal. In the case of Hyers Ulam stability, the best constant is found explicitly. The
theory is also explained in terms of radial solutions, and an example is illustrated in the
next section.

2  Main Results: Summary of the Discrete Cases
Recall from the introductory section that (1.1) is approximated by
Apz(t) = (),
with the perturbation equation
[Ane(t) — Ap(t)| < e.
e For \ = _Tl, there’s no first-order difference equation,

e For A = 0, the forward difference equation has no HUS, just like the continuous
case.

For example, consider the forward difference operator with A = _72.,
Apa(t) = Az(t),  |Ano(t) = Ao(t)] <e
e For A = 32, take ¢(t) = et(—1)# and z(t) = ¢(—1)# to see there’s no HUS.
See Figure 1.
Theorem 2.1 (Onitsuka 2017). Let A < 52. Given € > 0, suppose ¢ : Z — C satisfies
[Apd(t) — Ap(t)] < e, t € {0,h,2h,3h, - }.

Then
lim o(1)(1 + AR)



Figure 2: HUS for A < Z2: red= z, blue= ¢
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Figure 3: HUS for 22 < A < 5: red= z, blue= ¢

exists in C, and
w(t) == (tlim S(t)(1 + Ahﬁ) (1+ AR)®
is the unique solution such that

ch

|¢(t)—l‘(t>| < Ma te {O>h: 2h73h’a}

Example 2.1, Let A < %2 See Figure 2.

Theorem 2.2 (Onitsuka 2017). : Let 72 < A < 31, Given e > 0, suppose ¢ : Z — C
satisfies

IAnd(t) — Ab(t)| <&, te€{0,h,2h,3h,- ).

If x is a solution with

ch
|9(0) — 2(0)] < SVEE
then "
€
|¢(t)_x(t)| < mv t€{07h72h73h7}

Example 2.2, Let %2 <A< ’Tl., ¢ = 0.1. See Figure 3.

Result: HUS Theorem 5 (Onitsuka 2017): _Tl < A < 0. Given € > 0, supposc
o : 7 — C satisfies

|Ah¢<t) - )‘(Z)(t)' < g, le {07 h72h’7 3ha e }

17
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If z is a solution with

then

Result: HUS Theorem 6 (Onitsuka 2017): A > 0. Given € > 0, suppose ¢ : Z — C
satisfies

Then tli)m o(t) (1 + /\h)_Tt exists, and the function

x@y:(ggmoa+xm%)u+Am%

for all t € {0, h,2h,3h, - }.

is the unique solution such that [¢(t) — z(t)] < §
= Az. Equation Apx = Az has HUS for

Summau for discrete delta case: Apzx
A#£ = h , hl,O and the best HUS constant K is

h
AL+ 2]

K =

if)\<_7201‘_72<)\<%1,and
1
K2 = ﬂ
if%l<)\<001‘/\>0.
Summdl\_-' for discrete nabla case: Vpx = Ar. Equation V,xz = Axr has HUS for

A#£0, L and the best HUS constant K is

7h’h
h
K =—-
L PVT
1f1<)\< or)\>— and
1
Ky = —
RY

ifA<0or0<A<i.
Unifying Idea: Imaginary Hilger Circle. See Figure 4.
Zero Hilger Real Part.

Definition 2.1 (1999). For A € C\ {5}, the Hilger real part of A is defined by

IAh+1] -1
Z :
Theorem 2.3 (2019). If A € C with |[Ah + 1| = 1, that is if Rep(\) =0, then

Reh()\) =

Apz(t) = Ax(t)

is not Hyers-Ulam stable.



Imaginary Hilger Circle
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Figure 4: The (left) imaginary Hilger circle (blue)
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Figure 5: The (left) Hilger real part is negative (red)

Non-Zero Hilger Real Part.
Theorem 2.4 (2019). If A € C\{—1/h} with |\h + 1| # 1, then
Apz(t) = \x(t)

has Hyers—Ulam stability with minimum HUS constant

h B 1
1 — A +1]]  |Ren(N)]

on hZ.

Delta Case: (Left) Hilger Real Part. See Figure 5.
Delta Case: (Left) Hilger Real Part. See Figure 6.
Nabla Case: (Right) Hilger Circle. See Figure 7.
Non-Zero Hilger Real Part: Nabla Case.
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Figure 6: The (left) Hilger real part is positive (red)

(right) Hilger Circle
i
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Figure 7: The (right) imaginary Hilger circle (blue)
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Figure 8: The (right) Hilger real part is positive (red)

Theorem 2.5 (2019). If A € C\{1/h} with |\h — 1| # 1, then
Vix(t) = Az (t)

has Hyers—Ulam stability with minimum HUS constant

heoo 1
1=\ —1]] [Ren ()

on hZ, where
—~ 1— |\ —1
Reh()\) = 7| h |

Nabla Case: (Right) Hilger Real Part. See Figure 8.

Nabla Case: (Right) Hilger Real Part. See Figure 9.

Diamond—a Operator: Proportional Combination of Delta and Nabla Cases. Define
the linear combination of discrete difference operator as the diamond-alpha operator given
via

Oo(t) == alpz(t) + (1 — @) Vy(t), «€[0,1].

Final Unification: Ellipses! See Figure 10.

Elliptical Coordinates Left: Reg,)(A) < 0. See Figure 11.
Elliptical Coordinates Left: Re, o)(A) > 0. See Figure 12.
Elliptical Coordinates Right: Re(sq)(A) < 0. See Figure 13.
Elliptical Coordinates Right: Reg, o) (A) > 0. See Figure 14.
Imaginary ¢, Ellipses.

Definition 2.2 (2019). The imaginary Q, ellipse £y q) is the set of all A € C such that

(1 —2a)(1 —cosf) +isind

A=
h

€ Enay forany 6el0,2n].
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Figure 9: The (right) Hilger real part is negative (red)
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Figure 10: Progression of ellipses, from left Hilger circle to the right Hilger circle
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Figure 11: The imaginary ellipse in blue, elliptical coordinates for X in red

Figure 12: The imaginary ellipse in blue, elliptical coordinates for \ in red
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Figure 13: The imaginary ellipse in blue, elliptical coordinates for X in red

==

Figure 14: The imaginary ellipse in blue, elliptical coordinates for \ in red



Remark 2.1 (2019). Note that £ 1y = Y}, the (left) Hilger circle, and £g o) = Y, the
(right) Hilger circle, respectively. For A & &g, o). we represent A via

A=

R(1 —2a) + [a(R* + 1) — 1] cos § —|—i[1 +a(R? —1)]sin6
hR hR

for 6 € [0, 27].
Elliptical Real Part.

Definition 2.3 (2019). Let o € [0,1] and A > 0 be given. For any A € C, X can be
expressed in terms of the imaginary ellipse &.qy. Define the elliptical real part of A to

be
(R—1)(1 —a— Ra) 1
LR (S (O, 5] 5
Re(),,7,1)()\) =
(R—1)(aR+a—1) we (i)

hR

Radial Solutions!
Remark 2.2 (2019). Elliptical form of the eigenvalue :

R(1 —2a) + [a(R*+ 1) — 1] cosf N 1+ a(R*—1)|sin6

A= hR ! hR

Radial form of the eigenfunctions:
1\ #
L o —
— i0\
(ﬂ(t) = (1 (Re ) +CQ <W> s
for t € H and arbitrary constants ¢, ¢y € C.

No branch cuts. Converges to expected form.

Main O, Result.

Theorem 2.6 (2019). For any o € [0,1] and 6 € [0,27], if X # (1720‘)(172059)”51”9 eC,
then

Qaz(t) = Ax(t)
has Hyers—Ulam stability on H, with best HUS constant

hR 1

[R—1jaR+a—1]  [Regm(N)]

where X € C\ Epo) for R > 0 with R # 1 and R # 1jT°‘, and Re(pq)(A) is the elliptical
real part of X given on the previous slide. O

25
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Figure 15: Various imaginary p-circles for p € [0, 1], with 0 < p < % generating the left
p-circles, and 1 < p < 1 the right p-circles. For p = %, the circle becomes infinite in

2
diameter, namely the standard imaginary axis. These are unstable manifolds in the HUS

sense.

Discrete Cayley Equation. The discrete Cayley equation (1.5) is another way to
discretize 2/ = Az, via

Ana(t) = A (a()),, AeC\ {hl h(l_—l )} (2.1)

where p € [0,1] and
(1)), = (e + B) + (1 — w)a(t)
No HUS for the Disrete Cayley Equation.

Theorem 2.7 (2019). Define the p-real part of X to be

|1+ hA(1 — )| — [1 — hAy]
h ’ h—>0

Rel'(\) = m Re (\) = Re()). (2.2)

1rxeC\{ik, ity with
Ref/(\) =0,

then (1.5) is unstable in the Hyers—Ulam sense,

Apz(t) = XNpz(t+h) + (1 — ()], pel0,1]. See Figure 15.
Apa(t) = Xpa(t +h) + (1= pz(@)], pel01].

Theorem 2.8 (2019). Pick any A € C\ {hu’ T —L )} such that Rel,(X) # 0. Then (1.5)
is Hyers—Ulam stable, and the best HUS constant in the minimal sense is

h 1
T AT = ) = [T bl TR
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Figure 16: Let u = i, h =1, R > 0. The circles represent parametrizations of \. Black:
imaginary f-circle (unstable). Orange & Maroon: 0 < R < 1. Blue: 1 < R < 3. Red:
R = 1—;’1 = 3. Green & Purple: R > 3 (all stable).

Cayley Equation: Radial Solutions. Let R > 0 be a radial parameter, and use this to
parametrize the complex coefficient A via

=1+ p+ R+ R(1 — 2p) cos(w) + iR sin(w)

A TR R T R (Rt 21— ) cos(w))] 23

Then
B R—1
- h|1+ p(Re™ — 1)

when R # 1, and the Cayley equation has radial solutions

Ref(A)

z(t) = c(Re™)r.

HUS: Ax(t) = A [ix(t +1)+ %Z(t)] See Figure 16,
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