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1 Introduction and preliminaries 

1.1 Introduction 

The delayed feedback control (briefly, DFC) is proposed by Pyragas [7] as a method of 

chaos controls in continuous time systems. In this paper we consider a DFC for the 

discrete time system 

x(n + 1) = f(x(n)), (E) 

where f: 罠d→配 isdifferentiable and配 isthe d-dimensional Euclidean space. For 
signals to stabilize an unstable periodic orbit (briefly, UPO) with period w of Equation 

(E), there exist some types of DFC signals (for example. [13]). The signal given by 

u(n) = K(x(n -w) -x(n)), (Pyragas type) 

is well-known as the typical signal of the DFC for continuous time systems (cf. [3,5,8,10-

13]), _where d x d real constant matrix K is the so-called feedback gain. Besides, Buchner 

and Zebrowski [1] consider the signals formulated as 

u(n) = K(x(n -w) -f(x(n))), (Echo type), 

which is called DFC signal of "echo type". Ohta, Takahashi and Miyazaki [6] compare 

the validity of these two signals and suggest that Echo type is more effective than Pyragas 

type for one dimensional case. In the case where K = kE (E is the d x d identity ma-
trix), Miyazaki, Naito and Shin (cf. [4]) define a map which gives a relationship between 
characteristic multipliers of the original system (E) and that of the system with Echo 

type signals. Such a map is called "C-map". 

The aim of this paper is to establish the general criteria on the stability of UPO for the 

DFC signals of Echo type by using C-map for the case where the gain matrix is K = kE 
and the period of UPO is 2. More details, we determine the region of the characteristic 

multipliers of the target UPO of the original system (E) and the best range of feedback 

gain k so that the DFC signals of Echo type successfully stabilize the target UPO. 

In order to describe our main results, we consider the first variational equation of 

Equation (E) around the target UPO, 

x(n + 1) = A(n)x(n), (1.1) 
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and that of the system with DFC of Echo type signals, 

y(n + 1) = A(n)y(n) + K(y(n -w + l) -A(n)y(n)), (1.2) 

where A(n), n E .Z := {O, 土1,土2,... }, is the Jacobian matrix off evaluated at the target 

UPO and so that it is a periodic matrix function with period w. 

The paper is organized as follows. In Section 2, we give several lemmas on the equation 

deduced from the C-map theorem. In Section 3, we establish the general criteria on the 

stability of the solutions with period 2 for Equations (1.2), see Theorem 3.4. In particular, 

we determine the best range of feedback gain k so that the (unstable) periodic orbit is 

stabilized. 

1. 2 Preliminaries 

In this subsection we give give a relationship between the characteristic multipliers for 

ordinary periodic linear difference equations (1.1) and delay periodic linear difference 

equations (1.2). Let (C be the set of all complex numbers and (Cd the d-dimensional 

complex Euclidean space. Let L : X→ X be a bounded linear operator, where X is 
a Banach space with dim X く oo.We denote by a (L) the set of eigenvalues of L. Set 

UJR(L) = {~E 艮： ~E a(L)}. Let ZP = {p,p + 1, ・ ・ ・}, p E Z. Set N = Z1 and N。:=Z。•
Let Cw-1 be the set of all maps from z~w+l into (C叫whichis a Banach space equipped 

with a sup norm l'PIい=SUPsEZ~w+l lcp(s)I-
We assume that the solution of Equation (1.1) through (m,x0) E Z x (Cd and the 

solution of Equation (1.2) through (m, cp) E Z x Cw-l exists uniquely. Then we denote 

by T(n, m) : (Cd→ (Cd and U(n, m) : Cw-1→ Cw-l, respectively, the solution operators of 
Equation (1.1) and Equation (1.2). Set 

T(n) = T(n + w, n), and U(n) = U(n + w, n), 

which are called the periodic operator. We note that 

CJ(T(n)) = CJ(T(O)), and CJ(U(n)) = CJ(U(O)). 

Hereafter we assume that 

(A) : A(n) is nonsingular for all n E Z. 

(C) : KA(n) = A(n)K, (n E Z) ; 

(K) : (K-1) 0 tf_ u(K) ; 

(K-2) 1 tf_ u(K) ; 

(K-3) u(U(O)) n u(K) = 0. 
Then we note that O tf_ u(T(O)) and O tf_ u(U(O)). 

Now, we give a relationship between the characteristic multipliers of Equations (1.1) 

and (1.2). Set 

g(y,z) = c:~~z)w'(y ヂ 1,y ヂ z,z-/-0).
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A function zg(k, z) is called the characteristic multiplier function (briefly, C-map) for 

Equation (1.2) with K = kE, where Eis an identity matrix. 

Theorem 1.1. (C-map Theorem) Assume that K = kE, (0 < lkl < 1). Then v E 

a(U(O)) if and only ifμ:= vg(k, v) E a(T(O)). 

Refer to [4] for more details of this subsection. 

2 Some of lemmas 

In this section we consider the C-mapμ= vg(k, v), that is, 

μ= V ((; ~k~v) w'(μ, V E <C), (2.1) 

where w EN and lkl < 1. Moreover, setting v = lvlei0, lμI -/c O and taking the absolute 
value in the both sides of (2.1), we have 

lμI = lvl ((~v__—~~~l)w· (2.2) 

The principal value, denoted by Argμ, of the argument argμof complex numberμ= 

lμle竺isthat unique value¢such that —1r<¢::::;1r. 

2.1 L emmas on Equat10n {2.1) 

In this subsection we will state characterize Equation (2.1). Let us define two functions 

(v-kt 
Cw,k(v) = (v E q 

(1 -k)→ w-1' 
and 

(ei0 _ k)w 
B叫 0)=~ 叫げ） = /1 ,_¥,』,-;1,.,_J¥IJ'(0E恥）． (2.3) 

Denote by n(,, Cw,k) the winding number of Cw,k(v), when v rotates along the unit cycle 

, in the positive direction. 

Lemma 2.1. Let k cf-1. Then the following statements hold. 
1) Bw,k(2n1r + 0) = Bw,k(0) and Bw,k(0) = Bw,k(-0), (n E Z, 0 E (-1r, 1r]). 
2) Bw,k(O) E股 andBw,k(1r) = Bw,k(一1r)E恥．
3) Cw,k(v) = Cw,k(v). 

4) n(,, Cw,k) = 1. 

Proof. 1), 2) and 3) are obvious. 4) By argument principle, we have 

上JC~,k(v) 
2而 "ICw,k(v) 

dv = n(1, Cw,k) = w -(w -1) = 1 

as required. 口
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Note that there exist some intersection points of Bw,k(B) in the real line by using the 

assertion 1) and 2) in Lernrna 2.1. 

Lemma 2.2. Let lkl < l(k-/= 0) and v = ei0, 0 E (一1r,1r] in (2.1). Define f3 := f3(k, 0) as 

k sin 0 1r 
tan/3 = 
1-kcos0 

, 1/31 < -. 
2 

(2.4) 

1) If0 =/= 0,1r, then (3 =/= 0 and 

{:: 三;}<□:::: 二mfl>□ 
'P = w/3 + 0, 2(3 + 0ヂ土7r.

(2.5) 

2) If 0 = 0, then (3 = 0, Argμ= 0 andμ= 1. 

3) If 0 = 1r, then (3 = 0, Argμ= 1r andμ= -( l+k w ロ）．

Proof. Consider the function (2.3), that is, 

(eie _ k)w 
μ= Bw,k(0) = 0 E (-1r, 1r]. (1 -k)wei(1.,,-11R' 

If 0 = 0, then it follows from (2.3) and (2.4) that (3 = 0, μ= 1 and Argμ= 0 hold. 

Similarly, if 0 = 1r, then (3 = 0, μ= -(昌）w and Argμ= 1r. 
Assume that 0ヂ0,1r. Then (3ヂ0.Clearly, we have 

Note that 

Since 

μ(l-kt=(e'0-k)守―i(w-1)0

= (ei0 -kt(e―t牙ei0
= ei0 (1-ke—i0)W• 

(1-kcos叶+(ksin0)2 = 1-2kcos0 +炉>0. 

(2.6) 

1-ke―'0 = (1-kcos0) + iksin0 = vl -2kcos0 + k2e色 (2.7)

we have 

(1-ke→ 0t = (1 -2k cos 0 + k攣eiwf3_

Hence, 

lμlll -klw = 11 -ke―i0竹=(1-2kcos0 + k2戸>0. 

By the definition of tan (3 we have 

sin/3 k sin 0 
= '  cos (3 l -k cos 0 
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and hence, k sin(/3 + 0) = sin /3 and sin /3 =J 0. Thus 

sin/3 
k = and I sin(/3 + 0)1 > I sin/31 > 0. 
sin(/3 + 0) 

Since 

1-k= 
sin(/3 + 0) -sin /3 2 cos(/3 +~)sin~ 

＝ 
sin(/3 + 0) sin(/3 + 0)' 

we have cos(/3 +~) =J 0, that is, 2/3 + 0 =J士1r.Moreover, since (2.8) and 

1-ke—•0 = (1 -k cos 0) + ik sin 0 

sin0 
＝ 
sin(/3 + 0) 

[cos /3 + i sin /3] 

sin0 
絡= e 

sin(/3 + 0)' 

we obtain 

μ= (1ご゚） W が゚
= (sin~:! 0)) w (2 co:i(~~>;:in~)w ei(wf'i+0) 

= [ cos(〗;1~)r 戸，
as required. 

Remark 2.3. (i) Notice that there is an l E Z such that 

<po := Argμ= <p + 2l7r 

(2.8) 

口

when 0 =J 0. 
(ii) The statement 2/3 + 0 =J土1rin 2) of Lemma 2.2 says that if w = 2, thenゃ＃士冗
(iii) It follows from Lemma 2.2 that O < 1Bw,k(0)1 < oo for all 0 E (-1r, 1r]. 

Corollary 2.4. In Lemma 2.2 we obtain 

μ(1-kt= (1-2kcos0 + k予e叉1-2kcos0 +炉>0, 

and 

l'PI <信+1) 7r. 
In particular, if w = 2, then 

μ(1 -k)2 = (1-2kcos0 +炉）e兄 1-2kcos0 +炉>0, and l'PI < 2冗

(2.9) 
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Proof. The proof follows from (2.6), (2.7) and Lernrna 2.2. Moreover, we obtain 

l'PI = lw/3 + 01さパ,;l/31+ 101 

＜（予+1) Jr. 
This proves the corollary. 

The function (2.3) with w = 2 is written as 

(ei0_k)2 
μ=B2,k(0)= (0E(一Jr,1r]), 

(1 -k)知 0'

while (2.10) is refined in the following lemma. 

Lemma 2.5. Let w = 2 in Lemma 2.2. Then 

(k + 1)2 
μ= 
炉+2kcoscp + 1 戸.cp = 2/3 + 0 

and 

cos0 = lμl(coscp + 1) -1 (0 E (一Jr,1r]). 

Proof. If 0 =J 0, 1r, from (2.5), we have 

or equivalently 

cos -2 0 2 2cos2 ! cos0 + 1 
lμI = = = cos2竺

2 
2 cos2'£ 

2 
coscp + 1 

cos0 = lμl(cost_p + 1) -1 (0-/-0,1r). 

口

(2.10) 

(2.11) 

(2.12) 

If 0 = 0, thenμ= B2,k(O) = 1. Taking t_p = 0, (2.11) and (2.12) hold for 0 = 0. Since 

lμI -/-0, we have that if 0 = 1r, thenμ= B2,kけ）＝ー（昌）2. Taking t_p =土1r,(2.11) and 
(2.12) hold for 0 = 1r. Therefore (2.11) and (2.12) hold for 0 E (-1r, 叫．
By Corollary 2.4 with w = 2, we have, in view of (2.12), 

lμl(l -k)2 = 1-2kcos0 +炉=1-2k[lμl(cost_p + 1) -1] + k汽

that is, 

lttl(l + 2kcosゃ＋炉） = (k + 1)乞

Since 

炉+2kcoscp + 1 = (1 + kcoscp)2 + k2sin2 cp > 0, 

we obtain 
(k + 1)2 

lμI =, り，",_----'1' 

as required. 口
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Corollary 2.6. Let w = 2 in Lemma 2.2. Then the following results hold. 

1) <p = 0 if and only if 0 = 0. In this case, μ= 1. 

2) <p =土1rif and only if 0 = 1r. In this case, μ= -(昌）2_ 

Proof. Let <p = 0. By Lemma 2.5 we getμ= 1 and 1 + cos 0 = 2 lμI. Thus cos 0 = 1, i.e., 
l+k 2 0 = 0. Let <p =土1r.Then we haveμ= -(戸,;;)by using (2.11). By Corollary 2.4 we 

have 

μ(1-k)2 = -(1-2kcos0 +炉），

i.e., -(1 + k)2 = -(1-2kcos0 +炉） • Thus, cos0 = -1, i.e., 0 = 1r. 
Conversely, if 0 = 0, or 1r, then the assertions follow from Lemma 2.5. ロ

Proposition 2.7. Let lkl < l(k-/= 0) and let w = 2 in (2.1). Then B2,k(0) E股 ifand 
only if 0 = 0, 1r. 

Proof. Setμ= lμleirp = B2,k(0). It follows from Corollary 2.4 and Lemma 2.2 that 

μ(1 -kt= (1 -2kcos0 +炉）e竺 <p= w/3 + 0. 

Thus we have that B2,k(0) E団ifand only if sin <p = 0. Since l'PI < (号+1) 1r, we obtain 
that sin <p = 0 if and only if <p = 2(3 + 0 = m1r, 1ml <号+1 = 2, that is, m = 0, 士1.
Therefore <p = 0, 土1r.The result of the proposition follows from Corollary 2.6. ロ

The curve 81)幻： 'T)= Bw,k(0), -a < 0 ::::; a, for some O < a ::::; 1r with Bw,k(a) = 
Bw,k(-a), is closed. We denote by int巧，kand extIJ晶 itsinterior and its exterior, 
respectively. Set 1J出=8巧，kUint巧，k・
In particular, if the origin belongs to int巧，k,then we denote by [)1)出(0)and 1J出(0)
those. 

Letμ= lμleirp E (C, μ-/= 0. We denote by Lμthe half line connecting the pointμ 

from the origin. If 8巧，kn Lμis unique, then there exists a unique 0μE (-a, a] such 
that'T)μ= Bw,k(仇） • Hereafter, this argument 0μis called the argument associated with 
(μ, 81)贔(0)).

Definition 2.8. The closed curve 81)晶 iscalled to be a strong star-shaped curve if it 
has the following properties : 

(i) 8巧，kis a simple closed curve. 
(ii) 0 E int巧，k'i.e.,1)ふ=1J出(0).
(iii) 81J~.k n Lμis unique for everyμE C. 

Lemma 2.9. Let w = 2, and lkl < 1. Then the closed cu切 e[)1)五isa strong star-shaped 
curve. 

Pmof. Clearly, 81)和isa closed curve. The equation 81)五=81)五(0)follows from 
Lemma 2.1, i.e., n("Y, C叫=1. Now, we claim that 8均，kis a simple closed curve. Since 
ゅ五 iscontinuous in 0 E (一Jr,1r], we have to prove that av2,k is bijective, Without loss 
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of generality, we assume that there exist 01, 02, 01 c/ 02 such that TJ = ITJlei"'= B2,k(01) = 
B2, 凸），T/E (C ¥艮.Then we have, by (2.12), that cos仇=cos02 = ITJl(cosrp + 1) -1 
holds. Namely, cos 01 = cos鮎， andhence, 02 =―仇.Thus B2,k仇） = B2,k(一仇） • On 
the othe hand, we have T/ = B叫仇）＝恥(-01)by Lemma 2.1. Therefore, B叫—仇）＝

B叫悲） • This means'T/ E恥 whichis a contradiction. Hence 01 = 02, i.e., 直恐 is
bijective. Next, we will show the uniqueness of況忍(0)n Lw Letμ= lμle門 Assume
that 8叩 (0)nLμ, = {屑叫，り1#'T/2・Since'T/1 = IT/叶e匹血 =Iり2le兄Lemma2.5 implies 
that ry1 = ry2 holds. Therefore, 紅>2,k(o)n Lμ, = {叫．ロ

2.2 Lemmas on Equation (2.2) 

In this subsection we consider Equation (2.2). Equation (2.2) becomes 

Iμ 仕(1-k)lvlデ=Iv-kl. 

Squaring both sides, we have 

lμlt(l-k)門vi竺り=Iv -kl2 = lvl2 -2klvl cos 0 + k叫

In relation with this, we introduce a function as follows : 

~ 2 三w r2 + 2kr cos 0 -k2 fw(r;k,0,lμl)=lμlw(l-k)r -

defined on O :S rく oo,lkl < 1, -Jr < 0 :s; 冗
In particular, if r = 1, then 

fw(l; k, 0, lμI) = Iμ 戸(1-k)2 -1 + 2k cos 0 -k2 

(2.13) 

= (lμlt -l)k2 -2(lμlt -cos0)k + (lμlt -1). (2.14) 

For Equation (2.1) we define a polynomial Pw,k(入；μ)of入， withdegree w, by 

Pw,k(入；μ)= (入— kt — µ(l -kt入w-l_ (2.15) 

Then Equation (2.1) is rewritten as Pw,k(入；μ)= 0. Clearly, Equation Pw,k(入；μ)= 0 has 
w solutions, counted with multiplicity. 

Lemma 2.10. Let w EN, k E (-1, 1), μE (C and v = lvle;e., lμIヂ0.Then Pw,k(v; μ) = 

0 if and only if fw(lvl; k, 0., lμI) = 0. 

Proof. Clearly, it is easy to see that Pw,k(v; μ) = 0 if and only if 

2(w-1) 

lμlt(l -k)21vl w = lvl2 -2klvl cos仇十k叫

that is, fw(lvl; k, 0*, lμI) = 0, and vice versa. 口
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Next, we will consider the conditions on k (lkl < 1) so that fw(l; k, 0, lμI) < 0. In 
particular, if 0 = 0, then 

fw(l; k, 0, lμI) = (lμlt -l)(k -1)2 = (lμlt -l)(lμlt + l)(k -1)2. (2.16) 

The following result is easily obtained from (2.16). 

Lemma 2.11. Let 0 = 0 in fw(l; k, 0, lμI). Then the following statements hold for all 
kE(-1,1): 

(1) fw(l; k, 0, lμI) < 0 if and only if lμI < 1 ; 
(2) fw(l; k, 0, lμI) > 0 if and only if lμI > 1 ; and 
(3) fw(l; k, 0, lμI) = 0 if and only if lμI = 1. 

Assume that 0 -/c 0. If lμI = 1, then 

fw(l; k, 0, 1) = -2(1 -cos0)k. 

If lμIヂ1,then (2.14) is rewritten as 

(2.17) 

~ 2 

fw(l; k, 0, lμI) = (Iμ 旦ー 1)(k -1μ11;1□ o;e) - I;;(~i' (2.1s) 

where 
2 

叫 e)= (Iμ 旦―cos0)-(Iμ 旦— 1)
By further calculation, we have 

Dμ(0) = (1-cos0) { 2lμlt -(1 + cos0)} 

= 4sin2 ゜
2 

゜： (1μ1合-cos 2) 

2 

= 4sin2; (い +cos;)(1μ1t -cos;) 
We note that if 0 -=J 0, then the following statements hold : 

(1) D,,(0) > 0 if and only if lμI > cosw~; 
(2) D,,(0) = 0 if and only if lμI = cosw~; and 
(3)几(0)< 0 if and only if lμI < coswふ

(2.19) 

In the case D,,(0) > 0, the quadratic equation f(l; k, 0, lμI) = 0 of k has two real 
solutions : 

虹(0):= 
lμlt -cos0土y'I5;;(町
Iμ 旦ー 1

Lemma 2.12. Let -1r <〇：：：：： 1r,0ヂ0and lkl < 1. Then the following statements hold : 
1) Let lμI > 1. Then the inequalities O < k_(0) < 1く柘(0)hold. Moreover, if 
k_(0) < k < 1 then fw(l; k, 0, lμI) < 0 ; if -1 < k < k_(0) then fw(l; k, 0, lμI) > 0. 
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2) Let lμI < 1. 

(2-1) In case lμI > cosw t the inequalities k+(0) < -1 < k_(0) < 0 hold. Moreover, 
if k_(0) < k < l then fw(l; k, 0, lμI) < 0 ; if -1 < k < k_(0) then fw(l; k, 0, lμI) > 0. 

(2-2) In case lμIさ:cosw t fw(l; k, 0, lμI) < 0 for all k E (-1, 1). 
3) Let lμI = 1. Then if O < k < l then fw(l; k, 0, lμI) < 0 ; if -1 < k < 0 then 

fw(l; k, 0, lμI) > 0. 

Proof. Set fe(k) = fw(l; k, 0, lμI)-

1) Since lμI > 1~cosw !, 0ヂ0,we find that Dμ,(0) > 0. Then the quadratic equation 
f0(k) = 0 of k has two real solutions k_(0) and k+(0). By noting the following facts that 

fe(O) = lμltー 1>0

and 

fe(l) = -2(1-cos0) < 0, 

we can easily see that the assertions are true. 

2) (2-1) By the assumptions 1 > lμI > cosw~and 0ナ0,we find that Dμ,(0) > 0. Then 
the quadratic equation f0(k) = 0 of k has two real solutions k_(0) and k+(0). Noting 

that 

fe(O) = Iμ 旦ー 1<0
and 

!0(-l) = 4lμle -2-2cos0 

=4 (1μ1合-cos2り
= (1μ ド+cos;)(1μ1t -cos;) > 0, 

we can easily see that the assertions are true. 

(2-2) If lμI = cosw~'then lμlt = cos2~=½(cos0 + 1) and we have 

fe(k) = (Iμ 旦— l)k2 -2{1μ 旦ー (2lμlt-l)}k + Iμ 旦— 1

= (Iμ ド— l)(k+ 1戸<0. 

If lμI < cosw t then we find that Dμ(0) < 0, so that f0(k) < 0 from (2.18). 
3) If lμI = 1, f0(k) is given by (2.17). Then we can easily see that the assertion 3) is 

true. ロ
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3 Stabilization by DFC : w = 2 

In this section we will analyze the stability of DFC for the case w = 2. 

Proposition 3.1. Assume that w ::::: 2 and K = kE. If仙I> i, 幼m 柏ereex岱ぉ
v E CJ(U(O)) such that lvl > 1. 

Proof. Let Pw,k(入；μ)be the polinomial defined by (2.15). Then Pw,k(入；μ)= 0 and 

Pw,k(O;μ) = (-k)竺 Onthe other hand, since 

Pw,k(入；μ)= (入—巧）（入— v2)·・ ・（入— vw),

we obtain Pw,k(O;μ) = (-l)w巧乃・・・Vw. Summing up these, we arrive at 

V1V2・・・匹=(kt. (3.1) 

This shows that if lkl > 1, then there exists v; E u(U(O)) such that lv;I > 1 holds. ロ

Proposition 3.2. Let w = 2, lkl < 1 andμ= lμlei'P E C be given and let 0μbe the 
argument associated with (μ, 況氾(0)).Then the following statments are equivalent : 
1) 

/LE int'D五(0).

2) 

lμI < IT/』:= IB2,k(0μ)1 = 
k2 -2kcos0μ+ 1 

.'-

3) 

lμI < -
(k + 1)2 

、̀

l

)

4

5

 

fz(l; k, 0μ, lμI) < 0. 

叫1;k, cp, lμI) < 0, 

where 

g1(l; k, ~ ク,lμI) = lμl(l -k)2-1 + 2k(ITJμl(coscp + 1) -1) -k2, T/μ= B2,k(0μ)-

Proof. The assertions 1) and 2) are equivalnt. It follows from Lemma 2.9 that ifμ= 

lμle叩 Eint均，k(O),then lμI < IB2,k(0μ)1-This means the assertion 2), 皿 dvice versa. 
The equivalence of 2) and 4) is shown as follows. Assuming that 2) holds, we have 

lμl(l -k)2 < leie,, -kl2, and hence, 

lμl(l -k)2 < le;e,, -kl2-
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Since 

|凸-kl2 = 1-2kcos0μ+ k2, 

we can obtain h(l; k, ルlμI)< 0, and vice versa. 
We derive 5) from 3). 

町(l;k, cp, lμI) 

= -1 + lμl(l -k)2 + 2k[lrJμl(coscp + 1) -1] -k2 

く加(1-k)2 + 2klrJ』(cosゃ+1)-(k+1)2

＝加I(炉+2kcoscp + 1) -(k + 1)2 

=(k+1)2-(k+1)2 

= 0. 

The remainder follows from Lemma 2.9 and Lemma 2.5. ロ

Remark 3.3. In Proposition 3.2, ifμE extV五(0),then the inequality< can be replaced 
by the inequality >. 

Set 

叩，K)(U(O))= {v EK  n u(U(O)) : μ= v ((; ~k~v) w Eび(T(O))}.

Now, we are in a position to atate the main theorem in this paper. 

Theorem 3.4. Let w = 2 and K = kE and lkl < 1, (kヂ0).LetμE CJ(T(O)). 

l) IfμE intVr,k(O), then lvl < 1 for all v E (J(μ,,c)(U(O)). 

2) IfμE ext叩 (0),then there exists av E CJ(μ,,c)(U(O)) such that lvl > 1. 

Proof. Since w = 2, we have that B2,k(0) E恥 ifand only if 0 = 0, 7r by Proposition 2.7. 

Letμ= lμle四 ECJ(T(O)),μ ヂ0.Without loss of generality, we assume O < cpさJr.Then 

μ=  C2,k(v). Let v = lvleie,,, E CJ(μ,,c)(U(O)). Then 0・ μ, 1s the argument associated with 

(μ,a均，k(O)).
1) It is sufficient to prove that O < lvl < 1 holds, providedμE intV五(0).Taking 
w = 2 and 0 = 0μ, in (2.13) we have 

f (r-) := h(r-; k, 0μ,, lμI) = lμI (1 -k)2r--r-2 + 2kr-cos 0μ, -k2. 

Then h(lvl; k, 0μ,, lμI) = 0 by Lemma 2.10. Moreover, by (2.12) the equation cos0μ, = 

叫 (cosゃ+1) -1 holds, and hence, 

g1(r-) := g1(r-; k, cp, lμI) = -r-2 + lμl(l -k)2r-+ 2k[IT/μ,l(coscp + 1) -l]r--k2. (3.2) 

Then g1(0) =—炉< 0 and g1(1) < 0. Indeed, by Proposition 3.2 and (3.2), we have 

g1(l) < 0 holds. 
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Then we prove that if g八1)< 0, then g1(r) < 0 for all r E [1, oo). 

g1(r) = -2r + lμl(l -k)2 + 2k[ITJμ,l(cos(f! + 1) -1] 

= -2r + g八1)+ 1 + k2 
= (1 + k2 -2r) + g八1)
<g八1)< 0. 

Next, we take r0, 0 :::; r。<1 so that 

max g1 r 
O<;r<;l 
（）＝町(ro).

Then r0 is a point of local maximum of g1(r). Now, we prove g1(r0) 2: 0. If町(ro)< 0, 
then g1(r) < 0 for all r 2: 0. 
Thus the equation f(r) = 0 has no solution, but fw(lvl; k, 0μ, lμI) = 0 holds. This 

yeilds a contradiction. Thus f(r0) 2: 0. Summing up these, we can obtain O < lvl < 1 
holds. 

2) SinceμE extD2,k(O), it follows that 

lμI > lri』= -
(k + 1)2 

holds. Then g八l;k, cp, lμI) > 0. Indeed, by (3.3) we have 

町(1;k, cp, lμI) 

= -1 + lμl(l -k)2 + 2k[ITJμl(coscp + 1) -1] -k2 

> ITJμl(l -k)2 + 2k叫 (cosゃ+1)-(k+1)2

＝加I(炉+2kcoscp + 1) -(k + 1)2 

=(k+1)2-(k+1)2 

= 0. 

(3.3) 

Since f(O) < 0, by the theorem of intermediate value there exists an r0, 0 < r。<1, 
satisfying f(r0) = 0. Another solution exists on (1, oo). This implies that there exists a 

VE叩，c)(U(O))such that lvl > 1. ロ

10 

-40 -30 

ー10

Figure 1: The region ofμE a(T(O)) so that unstable periodic orbit is stabilized in the 

case where w = 2, k = 2/3. 
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Theorem 3.4 gives the region ofμE u(T(O)) in which DFC with the gain K = kE is 

successful. Fig. 3 illustrate the region in the case where w = 2, k = 2/3. The blue curve 

shows 8巧，IIand if allμE u(T(O)) are in the interior of the curve, then the unstable 
periodic orbit is stabilized. 

Based on Theorem 3.4, we bellow give the best range of feedback gain k so that the 

(unstable) periodic orbit is stabilized. 

Corollary 3.5. Letμ= lµle如€ 叩 (T(O))be as in Theorem 3.4. Set 

K土（ゃ）＝
1-lμI coscp士v(lμIcoscp-1)2 -(lμI -1)2 

lμl-1 

1) ff 1 < lμI < cos!+l'lμIヂ1and k_(cp) < kく柘(cp),then lvl < 1 for all 
vE叩，c)(U(O)); 

2) If lμI < 1 and k < k_(炉） < 0 or k+(ゃ） < k < 1, then lvl < 1 for all v E 
叩，c)(U(O)) ; 

3) If lμI = 1 and O < k < 1, then lvl < 1 for all v E叩，c)(U(O)); and 
4) ff lμI > cos! 十 andlkl < 1, the there is av E U(μ,c)(U(O)) such that lvl > 1. 

Proof. SinceμE int'Dむ(〇),the assertion 3) in Proposition 3.2 is rewritten as 

h(k) := lμl(k2 + 2kcoscp + 1) -(k + 1戸<0

i.e. 

h(k) = (lμI -l)J召+2(1μ1 cosr.p -l)k + (lμI -1) < 0. (3.4) 

The solutions of Equation h(k) = 0 are expressed as 

k士(r.p)= 
1-lμI cosr.p 土 v¼i

lμl-1 

where 

Dh = (lμI coscp -1)2 -(lμI -1)乞

Clearly, 

Dh = lμl[lμl(coscp + 1) -2](cosゃー 1).

Therefore if IμI < 2 -cosか 1'then Dh 2 0. 
1) Case lμI > 2 . Then h(k) > 0 for all k (lkl < 1). cosip+l 
2) Case 1 < lμI < cos~ か 1.Then h(k) < 0 if k_(cp) < k < k心）．
3) Case lμI < 1. Then h(k) < 0 if k < k_(cp) < 0 or k+(cp) < k < 1. 
4) Case lμI = 1. Then h(k) < 0 ifO < k < 1. 
Therefore the proof follows from Theorem 3.4. 

The following corollary is the case whereμE u(T(O)) is a real number. 

口
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Corollary 3.6. LetμEびR(T(O)).Then the following statements hold. 

1) Ifμ> 1, then there exists v E u(μ,C)(U(O)) such that v > 1. 

2) If O <μ< 1 and lkl < 1, kヂ0,then lvl < 1 for all v E U(μ,c)(U(O)). 

3) Ifμ< 0 and 

《ゴー 1
ご +1

then lvl < 1 for all v E (J(μ,c)(U(O)). 

< k < 1, 

Proof. The assertion 1) is obvious from the assertion 4) in Corollary 3.5. In order to 

prove the assertions 2) and 3), we apply the assertions 2) and 3) in Corollary 3.5. 

Let O <μ< 1. Then r.p = 0. Thus it follows from (3.4) that h(k) = (μ-l)(k+ 1)2 < 0 

if and only if O <μ< 1 and lkl < 1, k =J 0. 
Letμ< 0. Then r.p = 1r. Thus (3.4) becomes 

h(k) = (-μ-1)炉+2(μ-l)k + (-μ-1) < 0, 

and hence, the solutions k土(1r)of h(k) = 0 become 

虹(1r)=一
-(μ-1)土2J二i
μ+l 

Hence 

k_(1r) = 

(1-μ)士2Fμ

μ+1 

（ご土 1)2

(1- ✓ ゴ）(1 +ご）．

ご— 1 -
andに(1r)= 

ご +1
《ゴ +1 ✓ゴ— 1

Hence, h(k) < 0 if and only if k_(1r) < k < l. 

> 1. 

口

Remark 3.7. Another method for the proof of the assertion 3) in Corollary 3.6 is as 

follows. By Corollary 2.6 we have thatμE int1J五(0)if and only if 

-c~1r<µ<l. 

Thus if 
亨— 1

Fμ+l 

then lvl < 1 for all v Eび(μ,,cJ(U(O)).

< k < l, 

The result of Corollary 3.6 coincides with one due to the Jury criterion (cf. [6]). 
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