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1. Introduction 

In this paper we consider the following semilinear wave equation with a space-
dependent damping term 

(1.1) 
｛剛(x,t) —• u(x,t) + J;j如 (x,t)~lu(x, t) I,, (x, t) E酎 x(0, T), 

u(x, 0) = sf(x), 8tu(x, 0) = sg(x), x E股凡

where N~3 (N E N), a~0 and 1 < p <如~(1 < p < oo for N = 3, 4). The 
initial data (!, g) is assumed to be smooth enough and compactly supported, that is, 

f'g E Co (JRN) with 
supp(!, g) = supp f U supp g C万(0如） = {x E酎； lxl :SR。}.

The parameter E > 0 describes the smallness of initial data. 
The semilinear wave equation (a= 0) has been studied from the pioneering work by 

John [5]. In [5], the problem (1.1) with N = 3 and a= 0 is discussed and the following 

assertion is shown 

(i) If 1 < p < 1 + v'2, then there exists a pair (!, g) such that the problem does not 
have global-in-time solutions of (1.1) for all E. 

(ii) If p > 1 + v'2, then there exists a global-in-time solution of (1.1) with small E. 

After that, there are many subsequent papers dealing with the N-dimensio叫 semilinar
wave equation (a = 0) (see e.g., Kato [6], Yordanov-Zhang [9], and Zhou [10]). For 
the N-dimensional case, the following is proved in the literature. 

(i) If 1 < p :S匹 (N),then there exists a pair (!, g) such that the problem does not 
have global-in-time solutions of (1.1) for all E. 

(ii) If p > p8(N), then there exists a global-in-time solution of (1.1) with small E. 

Here the exponent p8(n) is called the Strauss exponent defined as 

"((n,p) := 2 + (n + l)p-(n -l)p汽

Ps(n) := sup{p > 1 ; "f(n,p) > O} 

n+l+v'炉+lOn-7 

2(n -1) 
(n > 1). 
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The study of maximal existence time (lifespan) 

T0 = T(sf, sg) = sup{T > 0; there exists a solution of (1.1) in (0, T)}. 

of blowup solutions to (1.1) has been also studied (see Lindblad [7], Takamura-Wakasa 
[8] and there references therein) as 

(1.2) 

Cs 
_E_二L

2 

Cs 
_E_ニL

3-p 

Ca(c: ―1) 
Tc~ { 

Cc: 
_ 2p(p-l) 

"f(N,p) 

if N = l, 1 < p < oo, 

if N = 2, 1 < p < 2, 

if N = 2, p = 2, 

if N = 2, 2 < p < Ps(2), 
_ 2p(p-1) 

Cs ,(N,p) if N 2'. 3, 1 < p < Ps(N), 
exp(Cs―p(p-l)) if N 2'. 2, p = Ps(N), 

where a(s) denotes the inverse of the function s(a) = a✓l + log(l + a). Therefore 
the blowup phenomena for solutions to (1.1) with small initial data and their lifespan 
estimate is already established. 

If a > 0, then the there are few works dealing with global existence and blowup of 
solutions to (1.1). If the damping term is milder, that is, we consider the problem 

(1.3) {伽(x,t)一 凶(x,t) + (1 + lxl2)遵如(x,t) = lu(x, t)IP, (x, t) E酎 x(0, T), 

u(x, 0) = sf(x), 珈 (x,0) = Eg(x), x E酎，

with a E [O, 1), then Ikehata-Todorova-Yordanov [3] consider the global existence and 
blowup of solutions to (1.3). In this case, they proved 

(i) If 1 < p'.S 1 +炉， thenthere exists a pair (!, g) such that the problem does not 
have global-in-time solutions of (1.1) for all E. 

(ii) If p > l +炉， thenthere exists a global-in-time solution of (1.1) with small E. 

This means the situation is close to the parabolic problem 

(1.4) 
｛如(x,t) -(1 + lxl2汀△v(x, t) = 0, (x, t) E酎 x(0, T), 

u(x, 0) = Ef(x), x E ]RN 

which has an unbounded diffusion. The case a = 1 is more delicate. The linear problem 

(1.5) 
｛伽(x,t)―△ u(x, t) + a(l + lxl2)訊 u(x,t) = 0, (x, t) E酎 X(0, ⑳）， 

u(x, 0) = u0(x), 8tu(x, 0) =附(x), XE訊

for a > 0. Ikehata-Todorova-Yordanov [4] discussed the decay property of energy 

function 

J艮N (1vu(X, t)l2 +如(x,t)12)dx~{~;(l:t1~~N+6 ::: ; :~N, 
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Therefore the situation strongly depends on the size of the constant a in front of the 

damping term (1 + lxl2日如
Here we would like to consider the nonlinear problem (1.1) with a > 0. It is 

remarkable that the equation in (1.1) has the scale-invariance, that is, if u satisfies the 

equation on (1.1), then the scaled function u入(x,t) = .x-凸u(入x,入t)also satisfies (1.1). 
This kind of structure helps us to analyse the dynamics of solutions. 

Actually, in Ikeda-Sobajima [1] the finite time blowup of solutions is proved. More 
precisely, they showed 

p ropos1tion 1.1 ([1]). Let N 2: 3 and let f, g be nonnegative, smooth and compactly 
N-2 supported with g羊0.If 1 < p < oo for N = 3, 4, 1 < p < for N 2: 5, then there N-4 

exists a unique solution 

u E W2'00([0, T0); L2(I艮N))n W1'00([0, Tc); H1(RN)) n L00([0, Tc); H2(RN)). 

(N-1)2 
Here Tc stands for the maximal e⑰ stence time of solutions. Moreover, if O < a < 

N+l 

and炉<p :S Ps(N + a), then the maximal existence time Tc of solution u is finite. 
In particular, the following estimates hold: there exists a positive constant co such that 

for every c E (0, col, 

T, さ｛仰―三 ifps(N+a+2) <p <P.s(N +a), 

exp(Cc―p(p-I)) if p = Ps(N + a), 

where C and C0 are positive constants independent of E: and C0→ oo as <5→ 0. 

We conjecture that p8(N + a) is the critical exponent for the problem (1.1) at least 
for small a, that is, it is expected that p > p8(N + a) implies the global existence for 
suitable initial data. From this viewpoint, it is natural that Proposition 1.1 gives the 
blowup result for the "critical" case p = p8(N +a) with an estimate for T0 of exponential 

type. However, in the subcritical case NN____1 < p < ps(N + a), the expected estimates 
_ 2p(p-1) 

should be T0~Cc "r(N+a,p) (without <5-loss) which could not prove in [1]. 

The purpose of this paper is to deal with the estimate for T0 of solutions to (1.1) in 
the subcritical case NN____1 < p < p8(N + a). The result is the following. 

Theorem 1.1. Let f, g be nonnegative, smooth and compactly supported with g手0and 

let u be the solution of (1.1) in Proposition 1.1. Then there exists a positive constant 

co such that for every c E (0, col, 

T, <; { Cc―(,',-NH)-' ifふ <p<心ご;. 
Cc 

_ 2p(p-l) 

'f(N+a,p) if翌i< p < Ps(N + a), 

where C is a positive constant independent of c. 

Remark 1.1. We can directly check the following identity: 

N+l (N-1)2 
Ps(N + a』='a*=N-1 N+l. 
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N+l (see also Ikeda-Sobajima [1]). Therefore we have 0さa< a* implies < Ps(N + a). 
N-1 

At this moment, we may regard Theorem 1.1 as an extension of the result for (upper) 

lifespan estimates for the usual semilinear wave equations (a = 0) with small initial 
data. 

The proof is based on a test function method for wave equations developed in Ikeda-

Sobajima-Wakasa [2]. In particular, for the problem (1.1) we use positive solutions to 
the corresponding linear conjugate equation 

a 
8知ー△①— -ot<I> = 0. 

lxl 

In Section 2, we prove Theorem 1. 1 by using positive solutions to the corresponding 
conjugate equation a知―△①— _!!_[)t<I> = 0. 

lxl 

2 Proof of Theorem 1.1 

To prove Theorem 1.1, we use the following structure. We will only give an idea for the 
proof. 

Lemma 1. Let u be a solution of (1.1). Assume that for every tミ0,u(t) is compactly 

supported. Then for every TE (0, T,』and<I> E C00 (記 X[O, Te)) satisfying 8沖(・,T) = 

叫，T)= 0, 

€ Lf"+青f)<l¥(x, 0) -f (x)暉 (x,O)dx+1T ].)ul'<l>dxdt 

= 11恥Nu(魯—頌—青紐） dxdt. 

Sketch of the proof. Multiplying the equation in (1.1) and <I> and integrating it over酎，

we have 

1NlulP如dx= 1N (叩—△u +~atu) 如 dx.

＝羞 1N(如 +~u)<(>- 幽麟+ 1N u(咽—]叫—△u<(> dx 

Employing integration by parts and integrating it over [O, T], we obtain the desired 
equality. ロ

Next, we fix T/ E C00([0, oo); [O, 1]) as follows: 

,,(s)~{~ec,easing~;/~ 尺く I,

1 0 ifs> 

TJr(t) = ry(t/T). 

Since'fJ(X, t) = 1 satisfies 8;({) —•¢ ーが加=0, we first choose <I> = 
2p' 

'PT/r 
2p' 

= T/r' 
where p'= p/(p -1) is the Holder conjugate of p. Then we have the following. 
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Lemma 2. Let f, g be nonnegative and smooth with supp(!, g) C B(O, 凡） and g羊0.
IJT0 > 2凡， thenfor every TE (2R。,Tc), 

T 

CJ,gE+ I I T~ 

0 ]RN 

lulPTJ界dxdt:S:: CT(N-I-~)立 ([/21股)ul喩 dxdt) , 

where C f,g = Ji股Ng+al叫―1f dx > 0. In particular, we have 

T 

CJ,gE+ I I圃疇dxdt:S:: C可 N-l声．
0 炉

Sketch of the proof. Applying Lemma 1 with <I> = ry2P', we have 

T 国＋！！』噂dxdt
0 IR.N 

= h~2LN u(a疇—△n別ー］疇') dx dt. 

:S:: C11~」~ppu(t) lulry~'-2 (五＋人） dxdt 

T 

:S:: C1 (/ / lulPTJ界
p T l lP'?  

T/2 RN dxdt) (1/2 h(o,Ro+t)伍＋戸） dxdt) 

It should be mentioned that the restriction p >炉 comesfrom the integrability of 

lxl-p'in B(凡+t). The remaining part is just a straight forward computation. ロ

Next, to find a good test function, we introduce 

叩，t)= (叫+t + lxl)_N-J-a (2R。+t -lxl) ―止炉~, x E B(0,2R。+t), 

which is a self-similar solution of the equation o知—△①—馴ゆ= 0 given by 

如(x,t) = (2R。+t + lxl)―/3 F ({J'N -1 + a'N -1・ 21x1)
2 '2凡十t-lxl2 

with a particular choice fJ = N -1. The function F(・, ・, ・, z) stands for the Gauss hy-
pergeometric function (如 forgeneral fJ is introduced in [1]). But because of the simple 
structure of cp, by direct computation we can verify that cp satisfies the linear conjugate 

equation 磨—△戸—砂＃= 0 on supp u. The followmg emma 1s a consequence of the 
-2p' choice of <T? = cp町.This lemma can be understood as the concentration phenomena 

to the wave front {lxl ~ t} for the wave equation (with scale-invariant damping term). 
Lemma 3. Let f, g be nonnegative and smooth with supp(!, g) C B(O, R。)and g羊0.
厄＞叫， thenfor every TE (2R。,Tc:), 

T 

紅rN-N—；丑 p:::::j j lu疇 'dxdt.
T/2 艮N

where o is a positive constant independent of E. 
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Sketch of the proof. Applying Lemma 1 with <I> = fry2P', we have 

T 

叫 <:cf)g+青f)ii(x, 0) -f (x)a必(x,O)dx+1 LI叩疇dxdt

= h121N u(励戸+2疇疇—自励戸） dxdt. 

<p <p 知~C2「 j lulTJ桝'-2 - -
T/2 suppu(t) (戸十 Tlxl+ T) dxdt. 

~Ci (£~21N lu疇,dx dt)½(£~2 hco,Ro十t)(晨+rix1 + ajy'dxdt)?' 

where we have used 8t(j5 ::::; 0 and the conjugate equation for (j5. The remaining part is 

just a straight forward computation. ロ

Finally, we give a proof of Theorem 1. 1. 

Proof of Theorem 1.1. Assume that T0 > 2R。.Then combining Lemmas 2 and 3, we 

already have the following inequality:for every TE (2凡，冗），

Cj,gE +臼TN_N-J+"p さ CTN-1—凸．

Then we see that if p <如:~, then K, =ー(N-1 -~) > 0 and therefore 

T:::; (c79E)~. 
On the other hand, if p < p8(N + a), then N-Ha -1 -_L  =一1(N+a,p)2 p-1 2(p-1) く 0and 

therefore 

応（二）ロ
Since Te is the m訟 imalexistence time, we can choose T arbitrary close to Te. This 

means that Te satisfies the same estimate as T as above. The proof is complete. ロ
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