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Spreading and vanishing for a free boundary problem of a reaction 
diffusion equation with a multi-stable type nonlinearity in high 

space dimensions 

Hiroshi Matsuzawa 
National Institute of Technology, Numazu College 

1 Introduction and Main Results 

This article is b邸 edon a joint work [10] with Dr.Yuki Kaneko(Japan Women's University) 

and Professor Yoshio Yamada(Waseda University). In this article we consider the following 
free boundary problem of reaction diffusion equation: 
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t > 0, 0 < r < h(t), 

t > 0, 

t > 0, 

O~r~h。,

(1.1) 

where r =国 forXE賊凡 r= h(t) denotes a free boundary and is to be determined together 
with u(t,r), △ U=庄＋ N-1 

叫， μandh。are given positive constants. Nonlinearity f is a 
び functionsatisfying 

(F) there exists K > 0 such that f(O) = 0, f(K) = 0 and f(u) < 0 for u > K. 

For any given h。>0, u。isassumed to belong to災'(h。)， where

加 (ho):={ef> E C2([0,h0]): が(0)= ef>(h0) = 0, ef>(r) > 0 in [O, ho)}. 

This problem was introduced first by Du and Lin [4], when N = 1 and f(u) = u(a -bu), 
as a population model which describes the spreading of a new or invasive species. They 

showed that, as t→ oo, either spreading (h(t)→ oo, u(t, ・)→ a/b locally uniformly in 

[O, oo)) or vanishing (h(t)→ hoo < oo, llu(t, ・)llc([O,h(t)])→ 0) occurs. This result is called 
the spreading-vanishing dichotomy. Since their work, this result have been extended by lots 

of researches (see for example [5, 7, 9, 11]). For N~2, Du and Guo [3] considered logistic 
type nonlinearity, Du, Lou and Zhou [6] studied (1.1) with quite general nonlinearities, in 
particular, monostable and bistable nonlinearities. See [8] for more studies of (1.1) with 

N~2. 
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In this talk, we consider f satisfying the following conditions: 

(f晶）

(i) J E C1([0, oo)), J(O) = J(ui) = J(u;) = J(u3) = 0 with O < ui < u; < uふ
f'(O) > 0, f'(ui) < 0 and J'(u3) < O; 

(ii) J(s) > 0 for s E (0, ui) U (u;, u3), J(s) < 0 for s E (ui, u;) U (u3, oo) 
吋

and j J(s)ds > O; 
ui 

(iii) J(u)/(u一恥） is non-increasing in u E (恥，u3)where巫 E(uふ叫）
妬

is uniquely determined by J J(s)ds = O; 
吋

(iv) lims'¥,u, J(s)/(s -u;)" E (0, oo] fort-= N/(N -2) when N > 2, 
and for some,--E (0, oo) when N = 2; 

The typical example off satisfying (i) and (ii) of (J晶） is given by 

加） = ku (1- >) -1ニ
with positive parameters k and q being in certain parameter range. For N 2: 2 we impose 
additional condition (iii) and (iv). These conditions are used to guarantee the uniqueness of 
the "ground state solution" Vaec which will be mentioned below. We also note that f'(u2) > 0 
implies (iv). 

The main purpose of this article is to classify the asymptotic behavior of solutions. When 

N = l and f satisfies (i), (ii) and f'(u2) > 0, Kawai and Yamada [12] have shown that 
asymptotic behaviors of solutions are classified into four cases, in particular, they discovered 
multiple spreading phenomenon corresponding to stable equilibrium points of f. The non-
linearity f satisfying (i), (ii) and f'(碍） > 0 is called positive bistable nonlinearity, which 
was originally defined in [12]. In this article we demonstrate that the results in [12] can be 
extended to the case where N 2: 2. 

Theorem A. Suppose that f satisfies (f晶） • Let(u(t,r),h(t)) beanysolutionto(l.l). Then 
邸 actlyone of the following four cases occurs: 

(i) Vanishing : limt→ oo h(t) :S: ✓ 叩万0).and limt→ oo llu(t, ・)llc([O,h(t)]) = 0, where入1
is the first eigenvalue to the following eigenvalue problem with usual Laplacian△ = 

江」嘉

｛心＝心 inB1(0) := {x E酎： lxl < 1} 
<p = 0 on 8B1(0) 

(ii) Small spreading : limt→ 00 h(t) = oo and limt→ 00 u(t, ・) = u;: uniformly on [O, R] for 
any R > O; 

(iii) Big spreading: limt→ 00 h(t) < oo and limt→ 00 u(t, ・) = u; uniformly on [O, R] for any 

R > O; 
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C) 1v Trans1t10n : limt→ 00 h(t) = oo and limt→ 00 u(t, ・) = Vaec uniformly on [O, R] for any 
R > 0, where Vaec = Vaec(r) is a unique positive decreasing function satisfying 

N-1 
V" + V + f(V) = 0 in (0, oo), V'(O) = 0 and lim V(r) =叫・

r r→OO 

To classify the asymptotic behavior of solutions to (1.1) it is important to investigate 

corresponding stationary problem. When N = 1 we can use a phase plane analysis to study 

the stationary problem. However when N~2 we can not use this method. In this talk 

we will see that some results for some elliptic problems ([1, 2, 13, 14, 15]) can be used to 

investigate corresponding stationary problem. 

For any fixed h。>0 and¢E兄 (ho)we consider a family of initial function u0 =匹 for

び>0. 

Theorem B. Assume that f satisfies (! 晶） • Let (ua(t,r),ha(t)) be the solution to (1.1) with 
如＝吟 forh。>0, ¢E X(h。)and c, > 0. Then there exist two numbers O :S: c,iく吋 such

that 

• the vanishing occurs for c, E [O, びi];

• the small spreading occurs for び€ （吋，吋）；

• the transition occurs forび＝吋；

• the big spreading occurs for c, E (び;,oo). 

Moreover吋>0 if h。< ✓叩万司， and吋=0 if h。~ ✓可万面 where入1is defined as 
in Theorem A. 

Finally, I will give a result about the spreading speed of the free boundary, when the 

small spreading, big spreading or the transition occurs. To investigate the spreading speed 

of the free boundary, we have to consider the following semi-wave problem: 

(SWP)u, {年-cqz + J(q) = 0, q(z) > 0 for z > 0. 
q(O) = 0, μqz(O) = c, ; し閃q(z)=か，

where u* E股 isa positive and stable equilibrium of J. Since Jl1o,ui! is a monostable nonlin-

earity, it follows from [5, Proposition 1.9] that (SWP)u; admits a umque solution pair (cs, qs) 

for anyμ> 0. Moreover, cs = cs(μ) is monotone increasing inμ, limμ → o cs(μ) = 0 and 
limμ → oo cs(μ) =噂 holds,where c名isthe minimal speed of traveling waves determined by 

fl[o,u;]• 
The solvability of (SWP)u; is delicate and it was shown in [12] that one of the following 

two cases holds true: 

(Case A) For everyμ> 0, there exists a unique solution pair (c, q) = (c8, 卯） to (SWP)吋・
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(Case B) There exists a positive numberμ* such that (SWP)uj admits a unique solution 
(c,q) = (c8,q8) forμE (O,μ*) and no solution for everyμE [μ*,oo). 

It was also shown in [12] that if (c8如） exists, then cs < c8 holds. Moreover, by the phase 
plane analysis given in [12], it can be shown that Case B occurs if and only if cf <噂 where
哨isthe unique speed of traveling waves determined by the bistable nonlinearity f I [ui ,uj]. 

Theorem C. Suppose that f satisfies (f晶） and let (u, h) be the solution. 

(i) If a small spreading occurs for (u, h), then 

lim 
h(t) 

= cs, 
t→ 00 t 

where c8 is the number determined by unique solution pair to (SWP)叶

(ii) If a transition occurs for (u, h), 

lim 
h(t) 

t 
= Cg. 

t→00 

(iii) If a big spreading occurs for (u, h), then the following properties holds true : 

In Case A, 

lim 
h(t) 

t 
=c恥

t→OO 

and in Case B, 

lim 
h(t) CB whenμ<μ*, 

t→ oo t = { cs whenμ>μ*, 

where CB is the number determined by unique solution pair to (SWP)uj andμ* is the 
number given in Case B. 

In this article I will give a sketch of proof of Theorem A. For the proof of Theorems B 

and C, please see [10]. 

2 Sketch of proof of Theorem A 

We first recall a general result obtained by Du, Lou and Zhou [6]. 

p ropos1t10n 2.1 ([6]). Assume (F) and let (u(t,r),h(t)) be the solution to (1.1). Then, 
exactly one of the following two cases occurs. 

(1) limt→ 00 h(t) < oo and limt→ oo llu(t, ・)llc([o,h(t)]) = 0. 
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(2) limt→ 00 h(t) = oo and limt→ 00u(t,r) = v(r) in C10c([O,oo)), where v(r) satisfies 

N-1, 
(S) v" + v + f(v) = 0 for r > 0, v'(O) = 0 

and either v = canst. or v'(r) < 0 for r~h。; in the former case, the constant is 
necessarily a nonnegative zero off. 

In what follows we assume that f satisfies (f晶）．
Comparing u(t, r) with a solution to the corresponding ordinary differential equation, we 

can obtain the following lemma. 

Lemma 2.2. For any solution (u(t,r),h(t)) and 8 E (0,-f'(u;)) there exist M > 0 and 
T > 0 such that 

u(t,r) :Su;+Me―M t~T and rE[O,h(t)]. 

Therefore, to prove Theorem A, it is important to investigate problem (S), in particular, 

constant solution to (S) and solution v = v(r) to (S) with O :S v(r) :S u3 for r~0, v'(r) < 0 

for r~h。•

Lemma 2.3 ([13, 14]). Problem (S) has a unique ground state solution, namely a positive 

solution Vdec = Vdec(r) satisfying v; ふ(r)< 0 for r > 0 and limr→ oo Vctec (r) = ui. Moreover 
Vdec(O) E (uふ碍） holds. 

To investigate the solution set of problem (S) we consider the following initial value 
problem: 

(IVP) { v" + N; 1的 +f(v)=Ofor r>O, 

v(O) = (, v'(O) = 0. 

For given (E [O, 吋],let v = v(r) = v(r; () be the unique solution to (IVP). The following 
proposition is a key to prove Theorem A. 

Proposition 2.4. (i) If (E (怜ec(O)叫）， thenthere exists Rぷ） > 0 such that v(R心）；く）＝
0 and v(r; () > 0 for r E [O, R1(()) and v'(r; () < 0 for r E (0, R1(()]. 

(ii) If〈=Vdec(O), then v(r; () = vd叫） for r 2 0. 

(iii) If (E (ui, Vdec(O))¥{ un, then the one of the following two cases occurs; 

(iii-a) v is monotone for all r >> 1 and lim v(r; () = u;, or 
r→OO 

(iii-b) v(r; () E (ui, u3) takes local maximum and minimum infinitely many times and 
oscillates. 

(iv) If(E (0, ui), then there exists R2(() > 0 such that v(R2((); () = 0 and v(r; () > 0 for 
r E [O, R2(()) and v'(r; () < 0 for r E (0, R2(()]. 
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(v) If (= 0, ui, u2 or u3, then v(r; ()三 0,ui, u2 or u3, respectively. 

Remark . I will give a brief remark about how the results [1, 2, 15] are used to get the above 
lemma. Please see [10] for details. 

• Since fl1o,ui] is monostable nonlinearity, we can get (iv) by using a Liouville type the-
orem for monostable nonlinearity in [2]. 

• Since fl[ui吋lis bistable nonline紅 ity,for (E (ui, u3) we can use the result for classifi-
cation of solution to (IVP) with bistable nonlinearity in [1]. 

• To get (i) we use a nonexistence of positive upper solution to —• u = EU on exterior 
domains in [15]. 

By Proposition 2.4 we get the following corollary. 

Corollary 2.5. Let v be any solution to (S) which satisfies O ::::; v(r)さu3for r 2 0 and 

v三 const. or v'(r) < 0 for r > h。•

Then v E {O, ui, u2, u3, Vdec}, or v = v(r) satisfies 

v(O) E (u~, Vdec(O))¥{u;}, v'(r) < 0 for r 2 h。and lim v(r) = u;. 
r→OO 

Now I will give the proof of Theorem A. 

Proof of Theorem A. Step 1. We show that if limt→ 00 h(t) < oo, then limt→ co h(t) < 
《応万呵 andlimt→ co llu(t, ・)llc([O,h(t)]) = 0. 

By Proposition 2.1 we have that if h00 = limt→ 00 h(t) < oo then limt→ co llu(t, ・)llc([O,h(t)]) = 

0. Hence it remains to show that h00 :':'.: ✓ 応万呵.Suppose that h00 > ✓ 可万而.There 

exists T > 0 such that h(T) > ✓ 応刀布り.Take£. E (✓ 応刀噴り，h(T))and consider the 
following eigenvalue problem: 

{―△ cp=心 inBc(O), 
cp = 0 on 8Bc(O). 

Let入fand cpc(x) (normalize maxxEB,(O)四(x)= 1) are the first eigenvalue and the correspond-
ing eigenfunction. Then we have入｛＝ふ／炉 and入f< f'(O). Then it is easy to show that for 
sufficiently small c > 0, c四 becomesa lower solution and then lim inft→ co llu(t, ・)llc([O,h(t)]) > 
0 which is contradiction. Now Step 1 has been completed. 

Suppose that h00 = oo. By Proposition 2.1 we have 

lim u(t,r) = v(r) locally uniformly in [O,oo) 
t→co 

where v(r) is a solution to (S) with O S v(r) S u3 and either v = canst. or v'(r) S O in 
(h。,oo). By Corollary 2.5, to complete the proof of Theorem A, it is enough to exclude the 

possibility that v三 0and limr→ 00v(r)=u;. 
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Step 2. v季0.

Since h00 = oo, there exists T > 0 such that h(T) > ✓ 応万可り.Then we can show 

liminf llu(t, ・)llc([o,h(t)]) > 0 and then v季0by th e same argument as m Step 1. 
t→OO 

Step 3. v does not satisfy limr→ oo v(r) = u;. 
Let Vdec(r) be Vdec(r) with N = 1, that is Vdec is the unique solution to 

v" + f(v) = 0, v'(O) = 0, lim v(r) = u~, v'(r) < 0 for r > 0. 
r→OO 

For any~> 0, 豆(t,r) := Vdec(r —~) satisfies 
N-l 

面ー元ー 豆r- J(五）
r 

N-l 
=—心(r -~)— r V~ec(r -~) -f(vdec(r -rn 

N-l 
= - v~ec(r -~) > 0 for t > 0, ~< r < oo. 

r 

We will see that if limr→ 00 v(r) = u; then for sufficiently large~> 0, 冠 becomesan upper 
solution. 

Take E > 0 any small such that u; + E: < Vdec(O) and suppose that limr→ oov(r) = u;. 
Then there exists K > h。suchthat v(K) ::; 叫＋討2. Since limt→ 00u(t,r) = v(r), there 
exists T > 0 such that 

u(t, K)さv(K)+ E/2 ::; ぢ+E: < Vdec(O) for t~T. 

On the other hand, since u(T, h(T)) = 0 and Vdec > ui, there exists~> K such that 
叩，r)satisfies 

u(T,r)::; 叶 <Vdec(r ー~) =可(T,r) for~::;r::;h(T). 

u(t, h(t)) = Oく叫<Vdec(h(t) -~) =豆(t,h(t)) for t~T. 

M oreover smce u r r(t,) < 0 for r > h。,we have 

u(パ） ::; u(t, K) ::; Vdec(O) =豆(t,~) for t~T. 

Therefore simple comparison principle applied over region {(t, r)lt~T and~::; r::; h(t)} 
yields that 

u(t, r) ::; Vdec(r -~) for t~T and~::; r ::; h(t). 

Letting t→ 00 we obtain v(r) ::; Vdec(r -~) for r~r Since limr→oo叫ec(r)=叫， for
sufficiently large r > 0 the above inequality leads to a contradiction. 

Now the proof of Step 3 and Theorem A has been completed. ロ

Acknowledgement 

The author and his collaborators would like to thank organizers for giving them the oppor-

tunity to talk about their recent study at RIMS workshop. 



68

References 

[1] H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of 
positive solutions for semilinear problems in政凡 IndianaUniv. Math. J., 30 (1981), 
141-157. 

[2] E. N. Dancer and Y. Du, Some remarks on Liouville type results for quasilinear elliptic 
equations, Proc. Amer. Math. Soc., 131(2002), 1891-1899. 

[3] Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a 
free boundary, II, J. Differential Equations, 250 (2011), 4336-4366. 

[4] Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a 
free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. 

[5] Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free 
boundaries, J. Eur. Math. Soc., 17 (2015) 2673-2724. 

[6] Y. Du, B. Lou and M. Zhou, Spreading and vanishing for nonlinear Stefan problems in 
high space dimensions, J. Elliptic Parabol. Equ., 2 (2016), 297-321. 

[7] Y. Du, H. Matsuzawa and M. Zhou, Sharp estimate of the spreading speed determined 
by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014) 375-396. 

[8] Y. Du, H. Matsuzawa and M. Zhou, Spreading speed and profile for nonlinear Stefan 
problems in high space dimensions, J. Math. Pures Appl., 103 (2015), 741-787. 

[9] Y. Kaneko, K. Oeda and Y. Yamada, Remarks on spreading and vanishing for free 
boundary problems of some reaction-diffusion equations, Funkcial. Ekvac., 57 (2014), 
449-465. 

[10] Y. Kaneko, H. Matsuzawa and Y. Yamada,A free boundary problem of nonlinear diffu-
sion equation with positive bistable nonlinearity in high space dimension I -classification 

of asymptotic behavior, preprint. 

[11] Y. Kaneko and Y. Yamada, A free boundary problem for a reaction-d~ げ'usionequation 
appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492. 

[12] Y. Kawai and Y. Yamada, Multiple spreading phenomena for a free bounda可 problemof 

a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential 
Equations, 261 (2016), 538-572. 

[13] L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in 
R凡Arch.Rational Mech. Anal., 81 (1983) 181-197. 

[14] L.A. Peletier and J. Serrin, Uniqueness of non-negative solutions of semilinear equations 
in股凡 J.Differential Equations, 61 (1986), 380-397. 



69

[15] J. Serrin and H. Zhou, Cauchy-Liouville and universal boundedness theorem for quasi-

linear elliptic equations and inequalities, Acta Math., 189(2002), 79-142. 

National Institute of Technology, Numazu College, 

Ooka 3600, Numazu-city, Shizuoka 410-8501, JAPAN 

E-mail address: hmatsu@numazu-ct.ac. jp 

沼津工業高等専門学校教養科松澤寛




