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1 Introduction 

This paper is devoted to an announcement about results in [27] and a survey on re-
lated topics to [27]. We shall introduce separation phenomena of radial solutions to the 
following Lane-Emden equation on the hyperbolic space lHI凡

(H) —今u = lulp-lu in lHI凡

where N:::: ふandp > 1. Here, IHIN is a manifold admitting a pole o and whose metric g 
is defined, in the polar coordinates around o, by 

厨＝記 +(sinhr)2認， r> 0, 8 E§N-1, 

where d82 denotes the canonical metric on the unit sphere§N-1, and r is the geodesic dis-

tance between o and a point (r, 8). Moreover, 今 denotesthe Laplace-Beltrami operator 

on (IHI凡g)given by 

△, f(r, 01, …, 0N-i) =(sinh r)―(N-l)Or {(sinhr)N-lo』(r,01, …，0N-1)} 

+ (sinhr)-2今N-lf(r, 01, …, 0N-1), 

where f : IHIN→ 恥 isa scalar function and△□ is the Laplace-Beltrami operator 
on the unit ball§N-l_ Furthermore, we also define the exponents Ps(N) and PJL(N), 
respectively, by 

and 

N+2 
Ps(N) = 

N-2 

,n(N)~{ 7;_ 2)'-4N +8衣
(N -2)(N -10) 

if N ::; 10, 

if N > 10. 
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The exponents Ps(N) and PJL(N) are called the Sobolev exponent and the Joseph-
Lundgren exponent ([29]), respectively. 

To begin with, we introduce known results on separation phenomena of radial solutions 
to the Lane-Emden equation in the Euclidean space 

(L) —• u = lulp-lu in 股凡

where N~3, and p > 1. This equation was posed by J.H. Lane ([31]) in 1869 and was 
appeared in the astrophysical study of the structure of a singular star ([14, 17, 19]). There 
is also an extensive rnathernatical literature ([12, 13, 18, 20, 21, 23, 29, 36]). Concerning 

separation phenomena of radial solutions, X. Wang [44] and Y. Liu, Y. Li, Y. Deng [32] 
proved the existence of a critical exponent on separation and intersection properties of 

radial solutions to (L). Here, for each a > 0, we denote by叫＝叫(r)the radial solution 
of (L) satisfying叫(0)= a. Then, the following results were obtained: 

Proposition 1.1 (Proposition 3.7 (iv) in [44], Theorem 1 (ii) in [32]). Let p > 1. Then 
the fallowing hold: 

(i) If p E (Ps(N),PJL(N)), then for any a, (3 > 0 with aナ(3,咄 and咋intersect
infinitely many times in (0, oo); 

(ii) If p~Pn(N), then for any a, (3 > 0 with aヂ(3 L , a u and u cannot intersect eac f3 
other in (0, oo), i.e., 咄＜咋 in(0, oo) if aく (3.

h 

Proposition 1.1 implies that p叫N)is the critical exponent with respect to separation 
phenomena of radial solutions to (L). Thereafter, separation phenomena of radial so-
lutions has been researched further in [1, 2, 3, 5, 16, 22, 34, 35] and was also studied 
for the equation (L) replacing砂 byeu ([4, 6, 43]). Furthermore, making use of sepa-
ration property of radial solutions, A. Farina [18] and E.N. Dancer, Y. Du, Z. Guo [15] 
showed the existence of stable solutions to (L). Separation property of radial solutions is 
also applicable to the research on asymptotic behavior of solutions to the corresponding 
semilinear parabolic equation to (L) ([23, 24, 39, 40]). 

On the other hand, from 2000's, the study on elliptic equations on the hyperbolic 
space has attracted a great interest. In particular, the Lane-Emden equation (H) on the 
hyperbolic space has been well-investigated ([7, 8, 9, 10, 11, 25, 26, 28, 30, 33, 41, 42]). 
Now, we shall state known results on separation phenomena of radial solutions to (H). 
Here, for each a > 0, we denote by u{; =咄(r)the radial solution of (H) satisfying 
咄(0)= a, i.e., 咄 isthe solution of the following initial value problem: 

{ u"(r) +:,;, >'(r) + lu(r)l'-'u(r)~0 in (0, +oo), 

u(O) = a. 

Regarding separation phenomena of radial solutions to (H), E. Berchio, A. Ferrero, 
G. Grillo [7] proved the following: 

p ropos1tion 1.2 (Theorem 2.14 in [7]). Let p > 1 Then there exists a。=a0(N,p) > 0 
such that for any a, {1 E (0, a0] (aヂけ）， u;;and uf cannot intersect each other in (0, oo). 
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Differently from Proposition 1.1, Proposition 1.2 imply that even whenp E (Ps(N),Pn(N)), 
there exist two regular radial solutions which cannot intersect each other in (0, oo). The 
difference is related to the positivity of the first eigenvalue of —今 Indeed, in the proof 

of Proposition 1.2, letting the value at the origin less than the first eigenvalue sufficiently, 

they showed the separation phenomena of radial solutions to (H). 

From Proposition 1.2 and the analogue of Proposition 1.1, we can expect that for 

p 2:'. Pn(N), any two regular radial solutions to (H) cannot intersect each other in (0, oo). 
Indeed, in [8], they state that by numerical analysis, for sufficiently large p and N, any 

two regular radial solutions do not intersect each other in (0, oo). Then, motivated by 

above, we are interested in the following problem: 

Problem 1.1. Is there a critical exponent with respect to separation phenomena of radial 

solutions to (H)? 

Following Problem 1.1, we shall investigate separation phenomena of radial solutions to 

the equation (H). 

Our main results of [27] are the followings: 

Theorem 1.1. Let p 2:'. Pn(N). Then, for any a, f3 > 0 with a =J /3, u~and uダcannot
切tersecteach other in (0, oo). 

Theorem 1.2. Let p E (l,PJL(N)). Then, there exists a1 = a1(N,p) > 0 such that for 

any a, f3 > a1 with a =J /3, 咄 anduff intersect at least once in (0, oo). 

Theorems 1.1-1.2 imply that PJL(N) is the critical exponent with respect to separation 

phenomena of radial solutions to (H). Therefore, we obtain an affirmative answer to 

Problem 1.1. 

As a consequence of Theorem 1.1, we shall also obtain the existence of a singular 

solution of (H). In [27], our result is the following: 

Theorem 1.3. Let p 2:'. Pn(N). Then, there exists a singular solution U叫） of (H) 

such that 

lim UH(r)(sinhr戸 =L,
r→ +o 

and for any a > 0, 

(1.1) 
L 

咄(r)< 臼(r)< 2 in (0, oo), 
(tanhr)戸

where 

L={p:l (N-2-p:l)}古

Here, the inequality (1.1) in Theorem 1.3 implies that for p~PJL(N), the singular 
solution UH (r) and any regular radial solution to (H) also cannot intersect each other in 

(O,oo). 
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For the proof of Theorems 1.1-1.3, see [27]. Here, in the proof of Theorem 1.1, 

applying Sturm-Liouville theory, we shall obtain separation property of radial solutions 

to (H). Then, the method of the proof of Theorem 1. 1 is also applicable to analysis of 

separation phenomena of radial solutions to the following weighted Lane-Emden equation 
in艮凡

(M) 
1 

―△ u = lulp-lu in 酎，
i + lxl2 

where N~3, and p > l. Here, the equation (M) is known as Matukuma's equation 

([37, 38]). In the rest of this paper, we shall introduce the proof of separation property 

of radial solutions to (M). Remark that the result on separation property of radial 

solutions to (M) has been already obtained in [3, 32] and they employ phase plane method. 

In this paper, making use of the argument of Sturm-Liouville theory, we shall derive 
separation property of radial solutions to (M). In addition, we also remark that we 

use the modification of the proof of [5] and the result on separation property of radial 
solutions to (M) has also been derived in [5]. 

2 Matukuma's equation 

2.1 Prehm1nanes 

We shall consider the following Matukuma's equation in酎：

(M) 
1 

―△ u = lulp-lu in 酎，
i + lxl2 

where N 2: 3 and p > 1. Here, for each a > 0, we denote by Ua = ua(r) the radial 
solution of (M) satisfying ua(O) = a. Namely, 叫 isthe solution of the following initial 

value problem: 

{ u"(r) + N; 1,i(r) + 1: ,, lu(r)I''u(r)~0 in (0, +=), 

u(O) = a. 

Concerning separation property of radial solutions to (M), the following result was ob-

tained in [3, 32]: 

Theorem 2.1 (Theorem 1.2 in [3], Theorem 1 in [32]). Let p ;:=: PJL(N). Then, for any 

a, (3 > 0 with a -/-(3, Ua and Uf3 cannot intersect each other in (0, oo). 

In this section, making use of Sturm-Liouville theory, we shall prove Theorem 2.1. Here, 

the following proof of Theorem 2.1 is the modification of that of [5]. To begin with, we 

define 

2 

t = logr, and va(t) = rv-1ua(r). 
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Then v = Va satisfies 

1 
v" + av'-£P-1v十炉=0, 

1 + e2t 

where 

4 
a=N-2-

p-1' and L = { p : l (N -2 -p : l) r~1 

Remark that a > 0 if and only if p > p.(N). Moreover, to the aim of the proof of 
Theorem 2.1, we prepare the following lemma: 

Lemma 2.1 (Lemma 3.1 in [5]). Let p 2". PJL(N) and T E股. Then there exists no 
function z E C2(-oo, T] satisfying the following (i)-(iii): 

(i) z" + az'+ (り2z > 0 fort E (-oo, T); 

(ii) z(t) > 0 fort E (-oo, T) and z(T) = O; 

(iii) z(t) and z'(t) are bounded on (-oo, T). 

Lemma 2.1 has been already proved in [5]. 

2.2 Proof of Theorem 2.1 

To the aim of the proof of Theorem 2.1, we shall show the following proposition: 

Proposition 2.1. Let p 2'. Pn(N). Then, for any a> 0, Va satisfies 

叫t)< L(l + e2t戸 for t E (-oo, ⑳）． 

Proof. We prove the assertion by contradiction. Assume that there exists T E良 such

that 

叫t)< L(l + e2t戸 for t E (-oo, T), and va(T) = L(l + e2T戸．

Now, we take 

V(t) = L(l + e2t)出，

and V(t) satisfies, fort E (-00,00), 

1 
V"+aV'ーび―iv+ VP 

1 + e2t 

= p: 1 Le2t(1 十げ）凸—2{2+p:l臼+a(l + e町｝＞〇．

Here, the last inequality is followed from a > 0. Moreover, setting 

叩 (t)= V(t) -Va(t), 
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we have 

(2.1) ”’ 
1 

w 
"' 
+aw 

"' 
- Lp-1叫＋

1 + e2t 
e > o, 

where 

(2.2) 8(t) =戸(t)ー碍(t).

Then, applying Lemma 2.1, we shall show the non-existence of Wa-Indeed, we can verify 
that We, satisfies (ii)-(iii) of Lemma 2.1 directly. Furthermore, using the mean-value 
theorem, we observe from (2.2) that 

(2.3) 8(t) < pVP-1(t)四 (t) for t E (-oo, T). 

Hence, combining (2.1) with (2.3), we derive 

碍 +aw~+ (p-1)げ―1叫>0 for t E (-oo,T). 

Since p ::o> Pn(N) is equivalent to 

(p -1)び―1::; 闘）2' 

we see that Wa satisfies (i) of Lemma 2.1. Thus, we observe from Lemma 2.1 that there 
exists no function Wa・This is a contradiction and we complete the proof. ロ

Proof of Theorem 2.1. To begin with, we shall show that for any a, /3 > 0 with a< /3, 

(2.4) Va(t) <叩(t) for tE(-00,00). 

We prove this assertion by contradiction. Assume that there exists T E股 suchthat 

va(t) < v13(t) for t E (-oo, T), and va(T) = v13(T). 

Then, setting 

Wa,fJ(t) = VfJ(t) -Va(t), 

we have 

(2.5) w~,/3 + aw~,/3 -p-l叫，/3+ 1 
1+ e 2t 

氏,/3> 0, 

where 

(2.6) 8a,(3(t) = v~(t) 一硲 (t).

Then, applying Lemma 2.1, we shall show the non-existence of Wa,f3• Indeed, we can 
check that Wa,{3 satisfies (ii)-(iii) of Lemma 2.1 directly. Furthermore, using the mean-
value theorem and Proposition 2.1, we observe from (2.6) that 

(2.7) 0a,{3(t) < pvダ―1(t)wa,f3(t)< pLP-1(1 + e2t)wa,f3(t) for t E (-oo, T). 
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Then, combining (2.5) with (2.7), we obtain 

w:,r, + aw~,r, + (p -l)LP-1wa,r, > 0 for t E (-oo, T). 

Since pミPJL(N)is equivalent to 

(p -l)Lp-l~(り 2'

we see that Wa,r, satisfies (i) of Lemma 2.1. Therefore, we observe from Lemma 2.1 that 

there exists no function Wa,f,・This is a contradiction and we obtain (2.4). Then, the 
inequality (2.4) is equivalent to 

ua(t) < ur,(t) for t E (-oo, oo). 

Thus, we complete the proof. ロ

References 

[1] S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equa-

tion in町， J.Differential Equations, 194 (2003), no. 2, 460-499. 

[2] S. Bae, Infinite multiplicity and separation structure of positive solutions for a semi-
linear elliptic equation in町， J.Differential Equations, 200 (2004), no. 2, 274-311. 

[3] S. Bae, T.-K. Chang, On a class of semilinear elliptic equations in応 J.Differential 

Equations, 185 (2002), no. 1, 225-250. 

[4] S. Bae, Entire solutions with asymptotic self-similarity for elliptic equations with 

exponential nonlinearity, J. Math. Anal. Appl., 428 (2015), no. 2, 1085-1116. 

[5] S. Bae, Y. Naito, Existence and separation of positive radial solutions for semilinear 
elliptic equations, J. Differential Equations, 257 (2014), no. 7, 2430-2463. 

[6] S. Bae, Y. Naito, Separation structure of radial solutions for semilinear elliptic equa-
tions with exponential nonlinearity, Discrete Contin. Dyn. Syst., 38 (2018), no. 9, 
4537-4554. 

[7] E. Berchio, A. Ferrero, G. Grillo, Stability and qualitative properties of radial solu-
tions of the Lane-Emden-Fowler equation on Riemannian models, J. Math. Pures 

Appl. (9) 102 (2014), no. 1, 1-35. 

[8] M. Bonforte, F. Gazzola, G. Grillo, J. L. Vazquez, Classification of radial solutions 

to the Emden-Fowler equation on the hyperbolic space, Cale. Var. Partial Differential 

Equations 46 (2013), no. 1-2, 375-401. 

[9] C. Bandle, Y. Kabeya, On the positive, "radial" solutions of a semilinear elliptic 

equation in lHI凡Adv.Nonlinear Anal. 1 (2012), no. 1, 1-25. 



83

[10] C. Bandle, M.A. Pozio, A. Tesei, The Fujita exponent for the Cauchy problem in the 
hyperbolic space, J. Differential Equations 251 (2011), 2143-2163. 

[11] M. Bhakta, K. Sandeep, Poincare-Sobolev equations in the hyperbolic space, Cale. 
Var. Partial Differential Equations 44 (2012), no. 1-2, 247-269. 

[12] H. Brezis, Elliptic equations with limiting Sobolev exponents-the impact of topology, 
Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S17-S39. 

[13] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving 
critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477. 

[14] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover, New 
York (1967). 

[15] E.N. Dancer, Y. Du, Z. Guo, Finite Morse index solutions of an elliptic equation 
with supercritical exponent, J. Differential Equations 250 (2011), no. 8, 3281-3310. 

[16] Y. Deng, Y. Li, F. Yang, On the positive radial solutions of a class of singular 
semilinear elliptic equations, J. Differential Equations, 253 (2012), no. 2, 481-501. 

[17] V.R. Emden, Gaskugeln, Anwendungen der mechanischen Warmentheorie auf Kos-
mologie und meteorologische Probleme, Teubner, Leipzig (1907), Chap. XII. 

[18] A. Farina, On the classification of solutions of the Lane-Emden equation on un-
bounded domains of酎， J.Math. Pures Appl. (9) 87 (2007), no. 5, 537-561. 

[19] R. H. Fowler, Further studies of Emden's and similar differential equations, Q. J. 
Math. (Oxford Series) 2 (1931), 259-288. 

[20] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equa-
tions, Comm. Partial Differential Equations 6 (1981), no. 8, 883-901. 

[21] B. Gidas, J. Sp ruck, Global and local behavior of positive solution of nonlinear elliptic 
equations, Comm. Pure Appl. Math. 34 (1981), 525-598. 

[22] C. Gui, Positive entire solutions of the equation△ u + f(x,u) = 0, J. Differential 
Equations, 99 (1992), no. 2, 245-280. 

[23] C. Gui, W.-M. Ni, X. Wang, On the stability and instability of positive steady states 
of a semilinear heat equation in町， Comm.Pure Appl. Math. 45 (1992), no. 9, 
1153-1181. 

[24] C. Gui, W.-M. Ni, X. Wang, Further study on a nonlinear heat equation, J. Differ-
ential Equations, 169 (2001), 588-613. 

[25] S. Hasegawa, A critical exponent for Henon type equation on the hyperbolic space, 
Nonlinear Anal. 129 (2015), 343-370. 



84

[26] S. Hasegawa, A critical exponent of Joseph-Lundgren type for an Henon equation on 
the hyperbolic space, Communications on Pure and Applied Analysis, 16 (2017), no. 

4, 1189-1198. 

[27] S. Hasegawa, Separation phenomena of radial solutions to Lane-Emden equation on 
the hyperbolic space, in preparation. 

[28] H. He, The existence of solutions for Henon equation in hyperbolic space, Proc. Japan 

Acad. Ser. A Math. Sci. 89 (2013), no. 2, 24-28. 

[29] D. D. Joseph, T. S. Lundgren, Quasilinear Dirichlet problems driven by positive 

sources, Arch. Rational Mech. A叫， 49(1972/73), 241-269. 

[30] Y. Kabeya, A unified approach to Matukuma type equations on the hyperbolic space 
or on a sphere, Discrete Contin. Dyn. Syst. 2013, Dynamical systems, differential 

equations and applications. 9th AIMS Conference. Suppl., 385-391. 

[31] J .H. Lane, In the theoretical temperature of the Sun under the hypothesis of a gaseous 

mass maintaining ots volume by its internal heat and depending on the laws of gases 

known to terrestrial experiment, Am. J. Sci. Ser. II 50 (1869), 57-74. 

[32] Y. Liu, Y. Li, Y. Deng, Separation property of solutions for a semilinear elliptic 

equation, J. Differential Equations, 163 (2000), no. 2, 381-406. 

[33] G. Mancini, K. Sandeep, On a semilinear elliptic equation in lHI尺Ann.Sc. Norm. 

Super. Pisa CL Sci. (5) 7 (2008), no. 4, 635-671. 

[34] Y. Miyamoto, Intersection properties of radial solutions and global bifurcation dia-
grams for supercritical quasilinear elliptic equations, NoDEA Nonlinear Differential 

Equations Appl., 23 (2016), 1-24. 

[35] Y. Miyamoto, K. Takahashi, Generalized Joseph-Lundgren exponent and intersection 
properties for supercritical quasilinear elliptic equations, Arch. Math. (Basel), 108 

(2017), no. 1, 71-83. 

旦土2
[36] W.-M. Ni, On the elliptic equation△ u + K(x)un-2 = 0, its generalizations, and 

applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493-529. 

[37] W.-M. Ni, S. Yotsutani, On Matukuma's equation and related topics, Proc. Japan 

Acad. Ser. A Math. Sci., 62 (1986), no. 7, 260-263. 

[38] W.-M. Ni, S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related 

topics, Japan J. Appl. Math. 5 (1988), no. 1, 1-32. 

[39] P. Pol紐ik,E. Yanagida, On bounded and unbounded global solutions of a supercritical 

semilinear heat equation, Math. Ann., 327 (2003), 745-771. 

[40] P. Pol紐ik,E. Yanagida, A Liouville prope仕yand quasiconvergence for a semilinear 

heat equation, J. Differential Equations, 208 (2005), 194-214. 



85

[41] F. Punzo, On well-posedness of semilinear parabolic and elliptic problems in the 
hyperbolic space, J. Differential Equations 251 (2011), no. 7, 1972-1989. 

[42] S. Stapelkamp, The Brezis-Nirenberg problem on IHin. Existence and uniqueness of 

solutions, Elliptic and parabolic problems (Rolduc/Gaeta, 2001), World Sci. Publ., 
River Edge, NJ, (2002), 283-290. 

[43] J .I. Tello, Stability of steady states of the Cauchy problem for the exponential 

reaction-diffusion equation, J. Math. Anal. Appl., 324 (2006), no. 1, 381-396. 

[44] X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. 

Math. Soc., 337 (1993), no. 2, 549-590. 




