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Bifurcations of homoclinic orbits in reversible 
systems 
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Graduate School of Informatics, Kyoto University 

1 Introduction 

Consider systems of the form 

わ=f(x; μ), (x, μ) E政2nX恥 (1.1) 

where f: 恥2nX艮→ 即 isanalytic, μis a parameter and n is a positive integer. In [1] 
we studied bifurcations of hornoclinic orbits to hyperbolic saddle equilibria in a class of 
systems of the form (1.1) including Hamiltonian systems. They also arise as bifurcations 
of solitons or pulses in partial differential equations (PD Es), and have attracted much 
attention even in the fields of PDEs and nonlinear waves. In this talk, we continue 
to discuss such bifurcations for reversible systems. The results are also used to study 
bifurcations of radially symmetric solutions in a coupled elliptic system [4]. See [3] for 
the details on our results including the proofs of the main theorems. 

2 Assumptions 

We first make the following邸 sumptions.

(Rl) The system (1.1) is reversible, i.e., there exists a linear involution R such that炉＝

id2n and J(Rx; μ) + Rf(x; μ) = 0 for any (x, μ) E茫 x恥 whereid2n is the 2n x 2n 
identity matrix. Moreover, dimFix(R) = n, where Fix(R) = {x E股2nI Rx= x}; 

(R2) The origin O is an equilibrium in (1.1) for allμE良 i.e.,f (O; μ) = 0. 

Note that O E Fix(R) since RO = 0. By assumption (Rl) there exists a splitting 
茫=Fix(R)① Fix(-R). Without loss of generality we can take the standard scalar 
product〈・,.〉in茫 suchthat Fix(-R) = Fix(R).L A f . undamental charactenst1c of 
reversible systems is that if x(t) is a solution, then so is Rx(-t). We call a solution (and 
the corresponding orbit) symmetric if x(t) = Rx(-t). It is a well-known fact that an 
orbit is symmetric if and only if it intersects the space Fix(R). Moreover, if入ECis an 
eigenvalue of D』(O;μ), then so are —入 and:.°\.

(R3) The Jacobian matrix D』(O;0) has 2n eigenvalues土入1'...'土入nsuch that O < 
Reふ:::;・・・:::; Re入n(i.e., the origin is a hyperbolic saddle). 

(R4) The equilibrium O has a symmetric homoclinic orbit砂(t)with丑(0)E Fix(R) at 

μ= 0. 
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The variational equation (VE) of (1.1) around丑(t)atμ= 0 is given by 

t=D』（砂(t);O)も (2.1) 

to which t =炉(t)is a bounded solution tending to zero exponentially as t→ 士oo.Since 

J(Rx; 0) + RJ(x; 0) = 0, we have Dxf (砂(t);O)R + RDxf (丑(t);0) = 0. Hence, if t(t) 
is a solution to (2.1), then so are土Rt(-t)as well as -t(t). For (2.1), we also say that 
a solution t(t) is symmetric and antisymmetric if t(t) =炭・(-t)and t(t) = -Rt(-t), 
respectively, and show that it is symmetric and antisymmetric if and only if it intersects 
the spaces Fix(R) and Fix(-R) = Fix(R)_j_, respectively, at t = 0. We easily see that 

t=沖(t)is antisymmetric since独(t)= -R砂(-t).

(R5) The VE (2.1) has two linearly independent bounded solution t = c.p1(t) (= xh(t)), Cf. 乃(t),
such that c.p2(0) E Fix(R). 

3 Main results 

Under assumptions (Rl)-(R5), we have the following. 

Lemma 3.1. There exist linearly independent solutions叫t),j = 3, ... , 2n, to (2.1) 
such that they are also linearly independent of炉り(t),j = l, 2, and satisfy the following 
conditions: 

t丹00屈(t)I= 0, tH~oo 尼(t)l=oo forj=3, ... ,n; 

lim lr_pj(t)I = oo for j = n + l, n + 2; 
t→土oo
lim屈(t)l=oo, lim lr_pj(t)l=O forj=n+3, ... ,2n; 
t→ +oo t→ -oo 

with五+1(0)E Fix(R) and咋 +2(0)E Fix(-R). 

Let <I>(t) = (凸(t)'...'匹n(t)).Then <I>(t) is a fundamental matrix to (2.1). Define 
叱(t),j = 1, ... , 2n, by 

〈1/Jj(t),匹 (t)〉＝紐 j,k = 1, ... , 2n, 

where 6汁,is Kronecker's delta. The functions朽(t),j = 1, ... , 2n, can be obtained by 
the formula w(t) = (<I>*(t))-1, where w(t) = (加(t)'...'ゆ2n(t))and the superscript * 
represents the transpose operator. We can also have 

lim I化(t)I= oo for J = 1,2; 
t→土00

lim I化(t)I= oo, lim見(t)I= 0 for j = 3, ... ,n; 
t→十00 t→ -oo 
lim I化(t)l=O forj=n+l,n+2; 

t→土00

lim I化(t)I= o, lim I的(t)l=oo forj=n+3, ... ,2n. 
t→ 00 t→ -oo 

with叫(0),砂n+2(0)E Fix(-R*) and吟(0),心n+1(0)E Fix(R*). Moreover, w(t) is a fun-
damental matrix to the adjoint equation 

t=-D』（砂(t);O)*~- (3.1) 
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(a) Saddle-node bifurcation (b) Transcritical bifurcation (c) Pitchfork bifurcation 

Figure 1. Bifurcation diagrams: Supercritical ones are plotted in Figs. (a) and (c). 

Note that if l(t) is a solution to (3.1), then so are土R*l(-t)as well as —l(t). 
We look for a symmetric homoclinic orbit of the form 

X=抄(t)+ a四 (t)+ 0(✓lal4 + lμl2) (3.2) 

satisfying x(O) E Fix(R) in (1.1) whenμ ヂ0,where a E R Let 1,, be a positive real 

number such that 1,, <¼Reふ， and define the Banach space 

が={z E C0(恥町） 1門Eに(t)le"'ltl < oo, z(t) = -Rz(-t), t E股｝

where the supremum is taken as the norm. Let II : 炉 → fZ'0 be a projection given by 

IIz(t) = q(t)五+2(t)/00い (T),z(T)〉dT,
-oo 

where q: 罠→ 股. . f . 1s a contmuous unction sat1sfymg 
00 

sup lq(t)le糾ti< oo, q(t) = q(-t) and q(t)dt = 1. 100 
Define two constants a2, b2 as 

切=/00い (t),D』（砂(t);0)〉dt,
-oo 

1 00 
b2 = 2 loo〈い(t),D訂（妙(t);O)(四 (t),四 (t))〉dt

We obtain the following result as in Theorem 2.7 of [1]. 

Theorem 3.1. Under assumptions (Rl)-(R5), suppose that a2, b2ヂ0. Then a saddle-
node bifurcation of symmetric homoclinic orbits occurs atμ= 0. Moreover, it is super-

and subcritical if a2的<0 and> 0, respectively. See Fig. l(a). 

We next assume the following instead of (R4). 
(R4') The equilibrium x = 0 has a symmetric homoclinic orbit沖(t;μ) in an open 

Un-
interval I 3μ= 0. Moreover, 〈ゆn+2(t),砂(t;μ)〉=0 for any t E股 andμEJ. 

der assumption (R4') we have a2 = 0, so that we cannot apply Theorem 3.1. Let~=~µ,(t) 
be a unique solution to 

t = Dxf (xh(t); 0)~+ (id -II)Dμ,f(xh(t); 0) 
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with〈'Pn+2(0),~(O)>= 0 and~(O) E Fix(R), and define 

励=1=〈7Pn+2(t),D叩（抄(t);O)四 (t)+ D訂（抄(t);O)ぽ(t)'四 (t))〉dt,
-oo 

where砂(t)=砂(t;0). 

Theorem 3.2. Under assumptions (Rl)-(R3), (R4') and (R5). suppose that a2,b2 =J 0. 
Then a tmnscritical bifurcation of symmetric homoclinic orbits occurs atμ= 0. See 
Fig. l(b). 

Finally we consider the Z2-equivalent or equivariant case, and assume the following. 

(R6) Eq. (1.1) is冨 equivalentor equivariant, i.e., there exists a 2n x 2n matrix S such 

that炉=id2n and Sf(x; μ) = J(Sx; μ). 

Especially, if x =元(t)is a solution to (1.1), then so is x = S元(t).We say that the pair元(t)
and S元(t)are S-conjugate if元(t)ヂS元(t).We have the decomposition茫 =X+① x-, 
where Sx = X for X E x+皿 dSx = -x for x E x-. We also need the following 
assumption. 

(R7) We have x-= (X+)_j_. For every t E恥丑(t)'心n+1(t)Ex+ and四 (t),'lj,い (t)E 
x-. 

Assumption (R7) also means that <p1(t) E x+. Moreover, a symmetric homoclinic 
orbit of the form (3.2) has an S-conjugate counterpart for ex =J O since it is not included 
in x+. In this situation, we have a2, 的=0 and cannot apply Theorems 3.1 and 3.2. Let 
~=釘t) be a unique solution to 

t=D』（砂(t);O)~+½(id -II)D打（砂(t);0)(四 (t)'四 (t))

with〈'Pn+2(0),~(O)>= 0 and~(O) E Fix(R), and define 

恥＝「OO〈い(t),~ 叩（砂(t);O)(四 (t),<p2(t), 四 (t))+叩（砂(t);0)(尽(t)'四 (t))〉dt.

We obtain the following result as in Theorem 2.9 of [l]. 

Theorem 3.3. Under assumptions (Rl)-(R7), suppose that巫，恥 =J0. Then a pitchfork 
bifurcation of homoclinic orbits occurs atμ= 0. Moreover, it is super-and subcritical if 
励応<0 and> 0, respectively. See Fig. l(c). 

4 Example 

We now illustrate our theory for the four-dimensional system 

れ=X3, お=X1 -国 +8碕）X1 -(3坪 2,

む＝叩，ね＝叫—坊（吋 +2xか）四― (3坪1 -(33xt 
(4.1) 
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wheres> 0 and /3j, j = 1, 2, 3, are constants. Eq. (4.1) is reversible with the involution 

R: (x1,x2,xふ四）→ (x1, X2, -X3, —叩），

for which Fix(R) = { (x1, x2江 3,X4) E配 Ix3, x4 = O}, and has an equilibrium at the 
origin x = 0. Thus, assumptions (Rl) and (R2) hold. Moreover, the Jacobian matrix of 
the right hand side of (4.1) at x = 0 has two pairs of positive and negative eigenvalues 
with the same absolute values so that the origin x = 0 is a hyperbolic saddle. Thus, 
邸 sumption(R3) holds. 

Suppose thatあ=0. Then there exist a pair of symmetric homoclinic orbits 

吐(t)= (土v'2sech t, 0, 干v'2sech t tanh t, 0) 

to x = 0. Thus, assumption (R4) holds. Henceforth we only treat the homoclinic orbit 
xり(t)for simplification and denote it by砂(t).The VE (2.1) around x =丑(t)for (4.1) 
is given by 

ti= 6, む=(1-6 sech2t)も，

む =~4, t4 = (s -2/31 sech2 t)6. 

(2a) 

(2b) 

Eq. (2b) has a bounded symmetric solution, so that assumption (R5) holds, if and only 
if 

/31 = 
(2ふ+4£+1)2-1 

゜
, £E NU {O}, (4.3) 

while Eq. (2a) always has a bounded solution corresponding to~= 沖(t). Moreover, if 
condition (4.3) holds, then the differential Galois group of the VE given by (2a) and (2b) 
is triangularizable. 

Fix the values of坊 and{33ヂ0such that Eq. (4.3) holds. Takeμ=あ asa control 
parameter. Applying Theorem 3.1, we show that a saddle-node bifurcation of symmetric 
homoclinic orbits occurs atあ=0 for almost all values of s at least. We next assume that 
均=0. Then assumption (R4') holds. Takeμ= (31 as a control parameter. Applying 
Theorem 3.2, we show that a transcritical bifurcation of symmetric homoclinic orbits 
occurs at the values of針 givenby (4.3) for almost all values of s at least. Finally, we 
assume that (32,(33 = 0. Then Eq. (4.1) is Zrequivariant with the involution 

S: (x1,X2,Xふ叩） f-t (x1, -X2, 紅—叩）

and assumption (R6) and (R7) hold. In particular, x+ = {x2,x4 = O} and x-= 
{x1, 知=O}. Applying Theorem 3.3, we see that a pitchfork bifurcation of symmetric 
homoclinic orbits occurs at the values of凡givenby (4.3) if的ヂ 0for almost all values 
of s at least. 

Finally we give numerical computations for pitchfork bifurcations of homoclinic orbits 
in (4.1). We take s = 2 so that Eq. (4.3) gives /31 = 1.70710678 ... for C = 0, 凡＝
7.5355339 ... for C = 1 and (31 = 17.36396103 ... for C = 2 as the value of (31 for which 
assumption (R5) holds. To numerically compute symmetric homoclinic orbits, we used the 
computer tool AUTO [2] to solve the bondary value problem for (4.1) with the boundary 
conditions 

Lsx(-T) = 0, x(O) E Fix(R), 
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Figure 2. Bifurcation diagrams for s = 2 and /3公/33= 0: (a)£= O; (b)£= 1; (c)£= 2. Here 
f3i is taken as a control parameter. 

where T = 20 and l伶 isthe 2 x 4 matrix consisting of two row eigenvectors with negative 

eigenvalues for the Jacobian matrix of (4.1) at the origin, 

(>'->'~>
Figure 2 shows bifurcation diagrams for /32, 応=0 when /31 is taken as a control parameter. 

Note that there exist a branch of四（＝四） = 0 for all values of /31, and a pair of branches 
of solutions which are symmetric about四=0. We observe that a pitchfork bifurcation 

occurs at values of /31 satisfying (4.3) for£= 0, 1, 2. The x2-components of symmetric 

homoclinic orbits born at the bifurcation in Fig. 2 are also plotted in Fig. 3. 
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