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Abstract 

We discuss the game-theoretical equilibrium of an AND-OR tree. Here, 
correlated distributions on the truth assignments are taken into consider-
ation. In the seminal paper of Saks and Wigderson (1986), they proposed 
a recurrence formula method to calculate the equilibrium value. They 
provided a proof only for the case of complete binary trees. As to unbal-
anced binary trees, without a proof, they wrote that the main result for 
the complete binary trees holds for nearly balanced trees. However, their 
definition of a nearly balanced tree is vague. This note is a commentary 
on the paper of Saks and Wigderson with a particular focus on unbal-
anced binary trees. We propose the concept of a weakly balanced tree as 
an alternative to the concept of a nearly balanced tree. We demonstrate 
that the recurrence formula method of Saks and Wigderson works well for 
weakly balanced trees. 

1 Introduction and notation 

An AND-OR tree is a rooted tree such that each leaf is a Boolean variable, each 

internal node is labeled with/¥ (AND) or V (OR), and AND layers and OR layers 

alternate. At the beginning of computation, the truth assignment is hidden. An 

algorithm is a Boolean decision tree. The goal of an algorithm is to find the 

Boolean value of the root. To this end, the algorithm makes queries to leaves. 

If it has enough information, it skips some leaves. For instance, if it knows the 

value of a child node of an AND node v is 0, then it knows that the value of 

v is 0, and it skips to probe the other child node and its descendants. We are 

interested in an AND-OR trees in the context of Boolean function complexity 

and in the context of game theory. 

More on the background of AND-OR trees may be found in the survey paper 

of Suzuki [3]. In this research note, we get into the main subject immediately. 
All the undefined notions are found in [3] and in the paper of Saks and Wigderson 

[2]. 
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Suppose that T is a binary AND-OR tree. We denote the Randomized 

complexity by R(f砂

冗(h)= minmaxcost(A戸）
AR X 

Here, fr is the Boolean function that T defines. A randomized algorithm de-
notes a probability distribution on the all deterministic algorithms that compute 

fr-AR runs over all randomized algorithms. x runs over all truth assignments 
to the leaves of T. 
Yao's principle is a vari皿 tof von Neumann's minimax theorem. By Yao's 

principle, the following holds. 

冗(h)= maxmincost(AD, d 
d An 

） 

Here, AD runs over all deterministic algorithms that computes fr-d runs 
over all probability distributions on the truth assignments to the leaves of T, 

including correlated distributions. 
A significance the paper of Saks and Wigderson [2] is in that they took cor-

related distributions into account. Before [2], the researchers on AND-OR trees 
put focus on independent and identical distributions on the truth assignments. 

In [2], they gave a recurrence formula. We will review the recurrence formula 
immediately afterwords (Definition 1. 1). They asserted that the recurrence for-

mula gives the value of R(f r), under reasonable assumptions on the shape of a 
tree. Although they provided a proof for the case of complete binary trees, they 

did not provide a proof for the case of unbalanced binary trees. They wrote, 
without a proof, that the above-mentioned result for the complete binary trees 

holds for nearly balanced trees. Nevertheless, their definition of a nearly bal-

anced tree is vague. This note is a commentary on [2] with a particular focus 
on unbalanced binary trees. The goal of this note is to give an alternative to 
the concept of a nearly balanced tree. 

In the case where we restrict ourselves to the truth assignments that make 
the value of the root 0, the resulting quantity is denoted by R,0 (h). The 
quantity R,1 (h) is defined in the same way. 
To each node v, Saks and Wigderson assigned the quantities a。anda1. We 
denote them by ai(v). In Defiition 1.1, for an internal node v, the symobols L(v) 
and R(v) denote the left and right child node of v, respectively. The symbols 

R(h) and R(v) denote different things, although they would be confusing. 

Definition 1.1. [2] 

1. For positive real numbers x, y, z and w, we define w(x, y, z, w) as follows. 

xz+yw + zw 
w(x,y,z,w) = 

z+w 
(1) 

2. To each node v, we assign quantities a0(v) and a1(v) as follows. If vis a 
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leaf, a0 (v) = a1 (v) = 1. If v is an internal node labeled with /¥, 

釘 (v)=釘(L(v))+釘(R(v)), (2) 

ao(v) = ¥.LI(ao(L(v)), ao(R(v)), a1(L(v)), a1(R(v))). (3) 

If v is an internal node labeled with V, 

ao(v) = ao(L(v)) + ao(R(v)), (4) 

a1(v) = ¥J!(a1(L(v)), a1(R(v)), ao(L(v)), ao(R(v))). (5) 

In addition, we define a(v) by 

a(v) = max{a0(v), 釘 (v)}. (6) 

3. Throughout the rest of the paper, we let P denote the conjunction of the 
following two assertions. If v is an internal node labeled with /¥ then we 
have (7) and (8). If vis an internal node labeled with V then we have (9) 
and (10). 

a0(L(v)) +釘(R(v))~a0(R(v)),

ao(R(v)) + a1(L(v))~ao(L(v)) 

a1(L(v)) + ao(R(v))~ 釘 (R(v)),

a1(R(v)) + ao(L(v))~a1(L(v)) 

(7) 

(8) 

(9) 

(10) 

Saks and Wigderson [2] provided a sufficient condition for ai = R, in other 
words, the randomized complexity is given by the recurrence. 

Theorem 1.2. /2} Suppose that the property P (of Definition 1.1} holds at 
every internal node v of T. Then we have ai (T) =凡(Jr).Here, the left-hand 
side denotes the value of ai at the root of T. 

Proof. In the original paper, the last formula is佑 =Ci=di=冗.Here, Ci and 
di are quantities defined by means of similar recurrence formulas as ai. In this 
note, we omit the definitions of them. The proof of this theorem is omitted in 
the original paper. We include a proof. 
We prove it by induction on the height k of the tree T. The base case is 
trivial. Assume that if the height of a tree is k or less, then the theorem holds. 
Suppose that the height of the tree T is k + l and the root of T is labeled /¥. 
When the root is labeled V, it can be shown similarly. Assume that each inter-
nal node of T satisfies the property P. By the induction hypothesis, ai(TL) = 
Ci(TL) = di(TL), ai(TR) = Ci(TR) =山(TR)holds. Note that the values of 
w(x,y,z,w) are the same for (x,y,z,w) = (ao(TL),ao(TR),a1(TL),a1(TR)), 



4

(Co(n), 化(T幻，化(TL),£1 (TR)), and (da(TL), da(TR), di (TL), di (T幻）. Through-
out the rest of the proof, we denote the common value by屯
Proof of a1 (T) =£1 (T) = d1 (T): Since the root is labeled with /¥, the 
recurrence formulas defining a1(T), £1(T) and d1(T) are the same. Thus they 
are equal. 
Proof of a0(T) =£0(T) = d0(T): The following holds by the definition of d,. 

do(T) = max{do(TL), do(TR),'¥} 

Now, we are going to show the following. 

do(TL) s;w 

do(T叫s:;w

Then by (3) and (11), we will get d0(T) ='Y = a0(T). 

(11) 

(12) 

(13) 

By the property P, d0(TL) ::::; d0(TR) + d1 (TL) holds. Therefore, we have the 
following. 

do(TL) :S do(TR) + d1 (TL) 

do(TL)d1(TR) :S do(TR)d1(TR) + d1(TL)d1(TR) 

do(TL)d1(TR) + do(TL)d1(TL) :S do(TR)d1(TR) + d1(TL)d1(TR) + do(TL)d1(TL) 

do(TL) :S 
do(TR)d1 (TR)十山(T瓜山(TR)+d。(TL)d1(TL)

山(T瓜十d1(T叫

='¥ 

Therefore the inequality (12) is shown. In the same way, we get the inequality 
(13) by means of d0(TR) :S d0(TL) + d1(TR)- Thus, by we have shown the 
following. 

do(T) =¥[I= ao(T) (14) 

Now, recall the following. 

£o(T) = min{£o(TL) +£1(TR), £o(TR) +£1(TL), w} (15) 

Again, by the property P, we have the following. 

約(TR):S£o(TL) +£1 (TR) 

£o(TL) :S£o(TR) +も・(TL)

(16) 

(17) 

By multiplying the both sides of (16) by positive real number£1 (TR), we get 
the following. 

£o(TR)£1(T叫::;Co(TL凡(T叫十£1(松）2

Then it is not difficult to see the following. 

£o(TL)£1 (TL)+£o(TR)£1 (TR)+化・(TL)ん・(TR):::;(£o(TL)+£1(TR))(も・(TL)+£1・(TR))
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By dividing the both sides of the above by positive real number£1(TL) +£1 (TR), 
we have the following. 

Ca(TL) +£1 (TR)~\[f (18) 

In the same way, by means of (17), we have the following. 

Co(T叫十 £1(TL)~\[f (19) 

By (15), (18) and (19), it holds that C0(T) ='1T. Hence, by (14), it holds 
that a0(T) = C0(T) = d0(T). 
Proof of ai(T) = Ri(h): We have shown that Ci(T) =佑(T)= di(T) for i = 
0, 1. By the definition of di and [2, Theorem 4.3], it holds that Ci(T) :S Ri(h) :S 
di(T). Hence, ai(T) =丸(fr).This completes the induction step. ロ

2 Weakly balanced trees 

We are going to propose the concept of a weakly balanced tree as an alternative 
to the concept of a nearly balanced tree. We will show that weakly balanced 
trees have the property P, and thus their equilibrium are given by the recurrence 
formula of Saks and Wigderson. 

Definition 2.1. A binaly tree T is weakly balanced if each internal node v 
satisfies the following. 

If vis labeled with/¥ then a0(R(v)) :S 2a0(L(v)) and a0(L(v)) :S 2a0(R(v)). 
If v is labeled with V then a1 (R(v)) :S 2釘 (L(v))and a1(L(v)) :S 2釘 (R(v)).

Lemma 2.2. If tree T is weakly balanced then each node v satisfies the following 
condition. 

If v is labeled I¥ then !! 釘 (v):S ao(v) :S a1(v). 
~ If v is labeled V then評o(v):S a1(v) :S ao(v). 

We abbriviate a0(L(v)), a1(R(v)) and a1(L(R(v))) to L。,R1, LR1 and so 
on. 

Proof. We prove the lemma by induction on the height k of T. The base case is 
trivial. Assume that if the height of a tree is k or less, then the theorem holds. 
Suppose that the height of T is k + 1 and the root of Tis labeled with /¥. The 
case where the root is labeled with V is shown in the same way. 
Our goal is the following two inequalities. 

3 
-a1(v) S ao(v) 
4 

ao(v) S a1(v) 

In order to show (20), it is enough to show the following. 

3(£1十凡）2 S 4(£。L1+R。凡 +L1凡）

(20) 

(21) 



6

This is equivalent to the following. 

〇::::;4(L。Li+恥凡 +L直1)-3(L1 +凡）2 (22) 

Since the tree is alternating, L。,Li, R。,R1 are given by the recurrence formula 
for V nodes. Therefore, by the induction hypothesis, we have L1~L。, R1~R。•

The following inequalities show that the right side of (22) is non-negative. 

4(L山 +R⑳ +L1凡）ー3(L1+凡）2 2:: 4(Li + Ri + L心）ー3(L1+凡）2

= Li -2L⑳ +Ri 

= (L1 -R吊

Thus we get (20). In order to show (21), it is enough to show the following. 

L凸 +R。凡 +L潰1さLI+Ri + 2L直1

This is equivalent to the following. 

Li +Ri +L戊— L山— RoR1 2". 0 

We are going to show the above under the assumption of L。 ~R。•

LI +Ri +L丸— L心ー枷R1

L1 (L1 -Lo) + Rf + L潰1-R訊1

3 
> L1(-L。-Lo)+ Rf+ L濱 1-R。凡 [Inductionhypothesis] 
4 
1 
=--L凸 +Ri+L潰 1-R。R1
4 
1 
2".--R心 +Ri+L漬1-R。凡 [A ・
4 

ssumpt10n] 

1 4 

4 3 
ミーー ・-R山 +Ri+L漬1-R。凡 [Induction hypothesis] 

1 
=--R山 +Ri+L濱 1-R訊1
3 
2 
-Li凡十Rf-R。凡
3 
2 

＝凡(R1+ -Li -Ro) 
3 
2 3 

ミ凡(R1+-·-L。—馳） [Induction hypothesis] 
3 4 
1 

＝凡(R1+ -L。-Ro) 
2 

3 1 
2". R1(-R。+-L。-Ro) [Induction hypothesis] 
4 2 
1 1 

＝凡(-L。——
2 4 
Ro) 

1 
=4凡(2L0-Ro) 2". 0 [Weakly balanced] 

The case of R。<L。isshown in the similar way. 口
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By using the above lemma, we are going to show the following theorem. 

Theorem 2.3. If T is weakly balanced, then T satisfies P at every internal 
node v. 

Theorem 2.3 and Theorem 1.2 immediately imply the following. 

Theorem 2.4. (The main theorem) If v is a root of a weakly balanced tree T, 

then R(fr) = a(v). Recall that a(v) = max{a0(v), a1(v)}. 

In the reminder of this section, we prove Theorem 2.3. 

Proof. (of Theorem 2.3) Suppose that T is a weakly balanced tree. We prove 

the theorem by induction on the height k of T. The base case is trivial. For 
the induction step, let T be a weakly balanced tree with height k + 1 where the 

root v is labeled with /¥. The case of V is similar. By the induction hypothesis, 
the property P holds at each internal node other than the root v. Our goal is 
to show that the property P holds at the root v. 

Suppose that R。 ~L。. The other case can be shown similarly. In the 

case where the right child of the root v is a leaf, then R。=1 holds. By the 
assumption of R。ミ L。,it holds that L。=1. Since R。=L。=1, the property 
P holds at the root. In the rest of the proof, we assume that the right child of 

the root is not a leaf. 
Now, the property P is equivalent to the conjunction of L0 + R1~R。...(◇） 
and Ro +L1~L。. However, the latter is obvious because of the assumption of 
R。 ~L。. Thus, it is enough to show the former (◇） . From the definition of ai, 
we get the following. 

R。=RL。+RR。
R1= 
RL。RL1+RR。RR1+RL。RR。

RLo+RR。
By substituting the above two right-hand sides for R。and凡 in(◇）， we 
know that the following is a sufficient condition for (◇）． 

L。+
RL。RL1+RR。RR1+RL。RR。

RLa+RR。 ~RL。 +RR。

We multiply both sides of the above inequality by positive real number 

RL。+RRo. Then the following is a sufficient condition for (◇）． 

恥RLo+L。RR。+RL。RL1+ RRoRR1 + RL。R凡 ~(RLo + RRo)2 

This is equivalent to the following. 

恥RL。+L。RR。+RL。RL1+ RRoRR1 -RL5 -RR各― RR。RL。 ~o

By Lemma 2.2, RL1~RL。 and RR1~R恥 hold. Therefore, the following 
inequality is a sufficient condition for (◇）． 

L。RLo+L。RR。 -RR。RL。 ~o
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Each of the following is equivalent to the above inequality. 

RRo(L。-RLo) + L。RL。 ~o

RLo(L。-RRo)+L。RR。 ~o

Thus, our goal is achieved if we can show that at least one of the following 
two inequalities hold. 

L。 -RL。 ~0, L。 -RR。 ~o

Case 1, R凡 ~RLo. Since the tree is weakly balanced, we have L。ミりR。•
Thus we get the following. 

1 1 1 
Lo-RL。 ~-R。 -RLo = -(RR。+RLo)-RL。=-(RR。-RLo)~0 

2 2 2 

Case 2, otherwise. Then we have RR。<RL。.In this case, we can show L。―
RR。 ~0. This completes the proof of (◇） . Thus, we have shown Theorem 2.3. 

ロ

3 Examples of Weakly Balanced Tree 

Saks and Wigderson [2] gave examples of nearly balanced trees. Among them, 
we look at two types of trees. One is a tree such that there is a positive integer 
h and for every leaf, the height is either h or h + 1. It is possible that some 
leaves have height h and the others have height h + 1. The other is a Fibonacci 
tree. In [2], they did not give a definition of a Fibonacci tree. We will give a 
definition. In this section, we observe that the above-mentioned two types of 
trees are weakly balanced. 
By means of induction on the height and Lemma 2.2, we can show R。:::;2L。
in a tree such that every leaf has height h or h + 1. Therefore, such a tree is 
weakly balanced. 

Definition 3.1. We define a Fibonacci tree as follows. 
A Fibonacci tree of height 1 is the tree consists of just one leaf. 
A Fibonacci tree of height 2 is the tree consists of just one leaf. 
A Fibonacci tree of height n + 2 is a binary AND-OR tree T such that the 
left subtree of the root is a Fibonacci tree of height n, and the right subtree 
of the root is a Fibonacci tree of height n + 1. Here, the left subtree is the 
subtree which consists of L(v), the left child of the root of the original tree, and 
all descendants of L(v) in the original tree. The right subtree is defined in the 
same way. 

By means of induction on the height and Lemma 2.2, we can show R。さ 2L。
in a Fibonacci tree. Therefore, a Fibonacci tree is weakly balanced. 
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