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Abstract

We introduce a formal system of reduction paths as a category-like
structure induced from a digraph. Our motivation behind this work comes
from a quantitative analysis of reduction systems based on the perspective
of computational cost and computational orbit. From the perspective, we
define a formal system of reduction paths for parallel reduction, wherein
reduction paths are generated from a quiver by means of three path-
operators. Next, we introduce an equational theory and reduction rules
for the reduction paths, and show that the rules on paths are terminating
and confluent so that normal paths are obtained. Following the notion of
normal paths, a graphical representation of reduction paths is provided.
Then we prove that the reduction graph is a plane graph, and unique path
and universal common-reduct properties are established. Based on this, a
set of transformation rules from a conversion sequence to a reduction path
leading to the universal common-reduct is given under a certain strategy.
Finally, path matrices are defined as block matrices of adjacency matrices
to count reduction orbits.

1 Introduction

Our motivation behind this work is to analyze quantitative properties of re-
duction systems, e.g., A-calculi [3, 20, 13] in the context of the Church—Rosser
theorem [5] from the perspective of (i) evaluation of computational cost (length),
and (ii) evaluation of computational orbit (path).

Relating to the first perspective, the complexity of proofs and reduction
length (steps) has been investigated in a wide range of fields such as proof theory
and computer science, for instance, Statman [21] for deciding the Sn-equality of
typable A-terms, Schwichtenberg [19] and Beckmann [4] for normalization in the
simply typed A-calculus, and so on. Concerning the complexity of confluence,
there have been several investigations. Here, the confluence property states that
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if M - Ny and M — Ny then Ny - P and Ny — P for some P. Komori,
Matsuda, and Yamakawa [16] investigated how to specify a common reduct of
N; and Ns in terms of M. They showed that a common reduct P can be given
by an iteration of the so-called Takahashi translation [22], denoted by F, in
terms of the number of reduction steps [ from M to N; and r from M to Ns.
That is, for M —! Ny and M —" Nj, they obtained a common reduct F*(M)
with k& = max{l,r}. Ketema and Simonsen [14] investigated the complexity of
confluence by measuring reduction steps to a common reduct. They showed
that the length leading to a common reduct can be bounded by a function
in terms of M and the length from M to Ny and from M to N,. That is,
for M —»! Ny and M —" Ny, they obtained a bound function f(I, M,r) of
N; —™ P and Ny —™ P for some P such that ny,ne < f(I, M,r) where f is
in the fourth level of the Grzegorczyk hierarchy [12]. On the other hand, the
Church-Rosser property [5] states that if M =g N then M — P and N — P for
some P. Although confluence implies Church—Rosser, the two properties should
be distinguished carefully on the complexity analysis [10]. For the complexity
of Church—Rosser, we analyzed the equality (conversion) into expansion and
reduction, and obtained an upper bound function still at the fourth level of the
Grzegorczyk hierarchy [8, 9, 10].

In this paper, from the second perspective we analyze the complexity result
obtained by the existing work in more detail. Compared with [16], the previous
work [10] revealed a common reduct F¥(P) with some P and k < min{l,r}
for M —! Ny and M —" N,. Here, we show that this common reduct can be
considered as an optimal one for any common reduct generated by a so-called
triangle property, by means of counting reduction paths via adjacency matrices.
For counting computational paths, it is necessary to formalize paths so that we
introduce a formal system of reduction paths together with an equational theory
and reduction rules of paths. Then the existence of normal paths makes it pos-
sible to represent reduction paths as plane graphs via a context-free grammar,
and structures of paths as adjacency matrices in an elegant way. The analysis
also clarifies at most how many times F' must be applied to obtain a common
reduct. Moreover, the introduced formal system has an application not only to
A-calculi but also to abstract reduction systems with natural properties' with
respect to parallel reductions. Although there have been many investigations
on the length of reduction paths including [21, 19, 4, 14, 10], to the best of our
knowledge, this paper makes a unique study on the number of reduction paths.

This paper is organized as follows. Section 1 is devoted to background, re-
lated work, motivation, and contribution of this paper. Section 2 gives prelimi-
naries including basic definitions and a guiding example. Section 3 introduces a
formal system of reduction paths. Section 4 provides an equational theory and
reduction rules for reduction paths, and then shows the normal path property.
Based on this, section 5 provides a graphical representation of reduction paths,
and here proves that the graph is a plane graph. Following this, section 6 shows
the unique path and universal common-reduct properties. We also provide a set

IThe properties will be defined soon after, called condition (A) in this paper.
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of transformation rules from conversion sequences to reduction paths under a
certain strategy. Section 6 introduces path matrices to count reduction paths,
Finally, section 8 concludes with remarks and further work.

2 Preliminaries and a Guiding Example

The set of A-terms denoted by A is defined referring to standard texts [3, 20, 13]
as follows:
M,N,PeAu:=x|(Ax.M)|(MN)

We write M = N for the syntactical identity under renaming of bound variables.
The size |M| of a term M is defined by |z| = 1, |(Az.M)| = 1 + |M]|, and
[(MN)| =1+ |M|+|N|. We use the notation — for one-step S-reduction, —
for multiple-step S-reduction, and =3 for S-equality (/5-conversion).

We note that M — N iff there exists a finite sequence of terms Mo, ..., M,
(n > 0) such that M = My — M; — --- — M, = N. For this we also
write M —™ N with the number of reduction steps displayed. Also note that
M =g N iff there exists a finite sequence of terms My,..., M, (n > 0) such
that M = My < My < --- < M, = N where M; <> M;;1 denotes either
M; — M;yq or Myyy — M; (i = 0,...,n — 1). Here, the arrow — in the
former case (reduction) is referred to as a right arrow, and that in the latter
case (expansion) is referred to as a left arrow, denoted also by M; <— M;;1. The
notation #(<—)[7, k] denotes the number of occurrences of left arrows between
terms M; and M, (0 < j <k <n) in the sequence. For the sequence, we also

write M “— N where [ = L(n) and r = n —1I. Here, a shorthand notation L(%)
is often used for f(«)[0,4].

Concerning computational cost (reduction length), we briefly review our
previous result on the Church—Rosser theorem. For a reduction system with one-
step reduction relation — and term size | |, suppose the following two conditions

(A) and (B).

(A) We have a binary relation = on terms and a translation I’ between terms
as follows.
(a) If M — N then M = N.
(b) If M = N then M — N.
(¢) If M = N then N = F(M).

(B) We have two monotonic functions f,g: N — N as follows.

If M = N then M —! N with |[N| < f(|M|) and | < g(|M]), where f and
g are respectively in the p-th and ¢-th levels of the Grzegorczyk hierarchy
[12] with p+1,q > 2.

We should remark that the literature expounds the condition (A) by the prop-
erties (1), (2), and (5) in [22], and that the condition (c) of (A) is also called
the triangle property.



The n-fold iteration of f is written as usual: fO(z) = x, f*(x) = f(f" 1(x)).
Then, as demonstrated in [9, 10], the enriched form of the Church-Rosser
theorem holds.

Theorem 1 (Quantitative Church—Rosser [9]) If M “—§ N then there
exists a term P such that M —™ F¥(P) and N —" F*(P) where

1. k=4(«+)[0,7] < min{l,r},

r—1 -1
2 m< S g(f(MD), n< Y g(F(IND), and
i=0 =0

3. m,n are bounded by functions in the level of max{p + 1,q} of the Grze-
gorczyk hierarchy.

As an instance of the theorem, we can take not only type-free A-calculus with
Bn-reduction, but also typed calculi such as Godel’s system T, Girard’s system
F, and so on, by setting f(xz) = 2* and g(z) = x, so that the length m,n are
bounded by an iteration of the elementary function, i.e., functions in the fourth
level of the hierarchy.

The essence of the proof relies upon the harmonized property of the condition
(c) of (A) with respect to = (parallel reduction) and F (so-called Takahashi
translation? [22]). We also write N < M for M = N. We write M =" N, if
M=My= M, = ---= M, =N for somen >0and M; (i=0,1,...,n). We
WriteMQ:)TN,ifMEMO(:)Ml(:)-u(:)MnENforsomenZOandMi
(i =0,1,...,n) where < denotes either = or < together with [ = #(<)[0, n]
and r = n — [. Here, by #(<)[j, k] we mean the number of occurrences of <
between M; and Mj, (0 < j <k <n) in the sequence.

Now the essence of Theorem 1 is extracted by the following proposition in
terms of =-.

Proposition 1 ([8, 9, 10]) If M Ry N, then there exists a term P such that
M =" F¥(P) and N =! FF(P) where k = #(<=)[0, 7].

This paper will show that there exist unique paths of parallel reductions from
M to F¥(P) and from N to F*(P) for some P, respectively, within a certain
reduction graph. Before this, we demonstrate the key idea of the formal system
by way of example. From a given conversion sequence, reduction paths can be
generated by means of an iterated application of the condition (c) of (A). We

show a simple example of by = bs with a common reduct F?(b3) of by and

2This translation is a complete development.
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bs, where b; and — are used instead of M; and =, respectively.

b() — b1 — b2 — b3 — b4 — b5
N Ve N e Ve
F(bo) — F(bl) — F(bg) — F(bg) — F(b4) — F(b5)
N\ e N\ Ve v
F2(by) <+ F2%(by) — F2(by) <« F2(b3) — F2%*by) — F2(bs)
N\ Ve pY v Ve
F3(bg) <« F3(by) — F3(by) « F3(b3) — F3(by) — F3(bs)

Observe that there exists a unique path from by to F2(bs), i.e., by =" F2(bs),
and also a unique path from bs to F3(bg), i.e., b5 =° F3(by). Here, all the
common reducts of by, b5 are points which occur in the area below the two paths
including the boundary, i.e., F2(bg), F2(b3), F?(bs), F?(bs), F>(bo), F3(b1),
F3(by), etc. The common reduct F?(b3) is the unique crossing point of the two
paths by =° F?(bs) and bs =°> F3(by). In particular, the point F?(b3) can
lead to all the common reducts of by, b;, which are generated by the condition
(c) of (A). The example is not a special case, but shows a general property on
reduction paths generated by the condition. We study the following fundamental

properties of reduction paths generated by the triangle property.

1. Unique path property of common reduct (UPP): If a P b, then there
exist m,n and a common reduct ¢ such that we have unique reduction
paths of a =" ¢ and b =" c.

2. Universal common-reduct property (UCR): If a Py b, then there exists a
common reduct ¢ of @ and b such that for any common reduct d of a and
b we have ¢ =" d for some n.

As a result of UPP and UCR, the common reduct F'*(P) in Proposition 1 can
be considered as the optimum one for any common reduct within the reduction
graph generated by the triangle property.

3 Formal System of Reduction Paths

Based on a monoid-like structure such as [15, 17], we introduce a formal system
of reduction paths for parallel reduction. First, we define a quadruple A=
(Ao, A1, s,t), called a quiver? [1], consisting of two sets Ag, A; and two maps
s,t. Here, Ay is the set of points or vertices denoted by a,b,c, and Ay is the
set of arrows or atomic paths denoted by «, 3,v. The maps s,t: Ay — A are
provided such that s(«) is called a source of v € Ay and t(«) is called a target
of a € Ay, respectively, which is denoted by a : s(a) — t(a) or s(a) —= t(«).
For this case, we also write A F a : s(a) — t(a).

3This quadruple is nothing but a directed multigraph, and the notion of quiver has been
used for the graphical representation of finite dimensional algebras [1].
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Let A be a quiver (Ag, Ay, s,t), Base be a countable set with Ay C Base, and
F : Base — Base be a point constructor that is an injective mapping such that
A N F(Base) = ). Well-formed paths, denoted by p, ¢, € RP, are constructed
by the following formation rules together with a mapping, called a measure
function k : RP — N, where a,b,c € Base, bi,bs € Ay, o, 8,7 € Ay, and
m,n,k € N.

Definition 1 (Reduction paths) 1. Syntaz of reduction paths (RP):

p,q € RP == id, (* identity path *)
| « (* atomic path *)
| (p;q) (* composition, concatenation )
| mong(p) (x monotonic path x)
| flipg () (+ flipped path )

2. Measure function k : RP — N:
e k(id) = 0 for the identity path, and k() =1 for atomic a € Ay.
* k(p;q) = k(p) +k(g), and k(mon(p)) = k(flip(p)) = k(p)-

3. Formation rules for well-typed reduction paths:

e [dentily paths for a € Base:

&}—ida:awa

Atomic paths for o € Ay with s(o) = by € Ag and t(a) = by € Ag:

5}—042[)1M->b2

Concatenation of paths:

AFp:awb ﬁkq:bwc
AF(pg)ia~c

Monotonic paths:

Ar pia~b
A+ mongy(p) : F(a) ~ F(b)

Flipped paths:
Abp:a~b

A+ flip, ,(p) : b~ FKP)(a)
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Our intuitive idea for the formal system is based on the following obser-
vations. The mapping F' would represent a reduction strategy as that of [3],
wherein a cofinal strategy F' is defined such that if M — N then N — F"™(M)
for some natural number n. In our case, the condition (c) of (A) implies that if
M =™ N then N =" F"(M), like the Z-property [7, 18]. Here, the mapping
k : RP — N should provide the number of steps in terms of =, so that the value
k(p) should be associated to the length of the path p. From the definition of
k, we indeed have the commutative and associative properties with respect to
concatenations:

L. k(p; q) = k(g; p) and k((p; ¢);7) = k(p; (g;7)).
2. If k(p) = k(q) then k(p; s) = k(q; s) and k(s;p) = k(s;q).

4 Equational Theory and Reduction Rules of
Paths

Here, a term is handled as a point, and then we do not care about the structure of
terms, but just consider reduction paths generated by path constructors. Next,
we consider what paths should be equivalent to each other so that equality
rules on reduction paths are introduced, which are compatible with the path
constructors ;, mon, and flip.

Definition 2 (Equational theory £ of reduction paths) Let p,q,s € RP,
and a,b € Base.

(Eo) prp. Ifg=pthenp=~q. Ifpx~q and q = s then p ~ s.

(E1) ff p)% t(z h)en flip(p) =~ flip(q), mon(p) ~ mon(q), (p;s) =~ (g;s), and

(dasp) = p ~ (psidy) for a path p: a~b.

Es) ((p;q);s) ~ (p; (¢; ) for paths p:a~b, q:b~c, and s : ¢~ d.
Ey) mong q(ida) = idp(q).

Es5) mon(p; q) =~ (mon(p); mon(q)) for paths p:a~>b and q:b~ c.
E;) flip?(a) =~ mong () for an atomic path a: a ~ b

(E2)

(Es)

(E4)

(Es)

(Ee) flip(idy) ~ id,.
(E7) fli

(Es) flip(p; q) = (flip(q); mon*(@) (flip(p))) for paths p: a ~b and g : b~ c.
(E9)

flip(mon(p)) &~ mon(flip(p)).

The intuitive meaning of the rules can be explained by the following diagrams.
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1. (E4) mon(id,) ~ idp(,), (Es) flip(id,) ~ ida, (E7) flip?(a) ~ mon(a):

a idg a a T> b
flip(ida )
flip(a)Jr
mon(id, ip?(a
F(a) "MW pig) F(a) 2 pp)
idF(a) mon(a)

2. (Es) (mon(p);mon(q)) = mon(p:q) with p:a~band q: b~ c:

a b c a — c
P q - (p;q)
F(a) mon(p) F(b) mon(q) F(C) F(a) mon(p;q) F(C)

3. (Eg) (flip(q); monk(@ (flip(p))) = flip(p;q) with p:a~ band qg: b~ c:

o P b q c
flip(p)l ﬂip(q)l ‘ (psa) ¢
Fk(p) (a) Fk(q) (b) ~ Jrflip(p:q)
mon”@(ﬂip(m)l FK®:9) (q)
F@)+k(a) (q)
4. (Ey) flip(mon(p)) ~ mon(flip(p)) with p: a ~ b:
F(a) —— F(b) F(b) b T g
flip(mon(p))l ~ lmon(ﬂip(p)) lflip(p)
FlFk(mon(p)) () F1HE®)(q)  pkp) (a)

Next for reduction paths we define a reduction relation = based on &, and
then show that the system is terminating and confluent. Hence, any reduction
path can be reduced to a unique normal path with the same source and target.
We write == for the reflexive and transitive closure of =—.

Definition 3 (Reduction relation = for reduction paths)

(R1) flip(p) = flip(g), mon(p) = mon(q), (p;s) = (g;s) and (s;p) = (s;q)
where p — q.

(R2) (ida;p) = p and (p;idy) = p for a path p:a ~b.
(R3) ((p:q)is) = (pi(g;3))-

(R4) mon(w(ida) — idF(a)-
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Proposition 2 The path reduction = 1is terminating and confluent.

Proof. Let % be the finite set of symbols {flip, mon,;,id}, and > be the strict
order such that {flip > mon > ; > id}. Here, for termination it is enough to
consider id, mon, flip instead of id,, mon, p, flip, ;, respectively. Then consider
the well-known lexicographic path order >, on the set 3 over a countable set
of variables induced by > (e.g., [2], Section 5.4.2.). See [11] for the details.

Next, from Newman’s Lemma, it is enough to verify that all critical pairs
such as flip((p; ¢); 7)) and flip(mon(p; ¢)) are joinable. See also [11] for the details.
O

Proposition 3 (Subject reduction) If AbFp:a~ bandp = q, then
AFqg:a~0.
Proof. By induction on the derivation of p = ¢, see also the diagrams for the

intuitive meaning of £. m|
We introduce the following grammar for a syntax of normal paths.

Definition 4 (Normal paths NP) Let a € Ag, o € Ay, and i > 0.

NP = idpi(q) | atom | np
atom =« flip(e) | mon(atom)
np == (atom;np)

Now, for any path we have a normal path with the desired property.

Theorem 2 (Normal reduction paths) If& Fp:a~ b then there exists a
unique normal path ¢ € NP such that p =—>* q and A+ q:a~b.

Proof. By induction on the derivation of At p:a~ bwith Propositions 2 and
3. |

5 Representation of Reduction Paths

The formal system of reduction paths provides a graph_ipal representation, de-
noted by G(A), of a reduction path generated from A = (Ag, Ay, s,t) such
that G(A) = (V,E), where V = Uiso F'(Ap) is the set of vertices (points)
and E={p e RP | At p:a~ b forsomea,be V} is the set of edges (ar-
rows). Here, following theorem 2, we consider graphs consisting only of normal

reduction paths.



Definition 5 (Reduction graph) For A = (Ao, Ay, s,t), the graph g(&)
with normal paths is defined by the following digraph (V, E):

V= J{F®)|i=0}, E= [ {mon'(flip’(a)) |i>0,j=0,1}.
beAg [S1<VAN

First, we show some examples of such graphs with normal paths. For con-
version sequence, we consider a special type of quiver, called a (simply laced)
Dynkin diagram of type A, 41 (n > 0) [1], such that Ag = {bo, b1,...,bn}, A1 =
{a1,a2,...,a,}, and either o; : b,y — b; or o : b; = b;—1 (1 =1,2,...,n). If
«; : bj_1 — b; then «; is called a right arrow, and «; is a left arrow otherwise. We
employ the notation £(«)[¢, j] to denote the number of occurrences of a left ar-

row between two points b; and b; (0 < ¢ < j < n). We also write by w by, called
a conversion sequence, for type A, 1 with Ag = {bg,b1,...,b,}, I = #(+)[0,n],
and r=n—1[.

1. Case of G(bg vl b1) = (V, E) with type As:

V= |J {F"(t:) |n >0}, E={mon™(flip"(c1)) | m > 0,n =0,1}.
1€{0,1}

From now we draw no identity paths id for each vertex of the graph.
2. Case of G(by et be) = (V, E) with type As:

V= J {F"b:)|n>0}E= ] {mon™(flip"(cx;)) | m > 0,n =0,1}.
1€{0,1,2} ie{1,2}

Next, we investigate the structure of the graph G(bg Ly b,), where the graph

l, . . .
itself is infinite although the sequence by & b,, is finite. For this, we show that

l, . . .
G(bo & b,) is a plane graph, and that there exists a unique path from by to

F'(b,) within the graph. It is indeed possible to apply the well-known method of

the use of adjacency matrices* in order to count reduction paths. However, here

we adopt a simple method to show the fundamental properties on the graph.
Let #(b; ~» bj) be the number of paths from b; to b;. Then in the graph

G(bo e bp+1) where | = L(n+ 1) and » = n+ 1 — [, the number of paths

from by to FL+1) (b, 1) is given by the following summation, exactly like the
multiplication of adjacency matrices.

(b0 ~ FH D (b, 1)) = 3 800 ~ Fi(ba) - 8(F (ba) ~ FXOD (b)),
i>0

4See section 7 for encoding a conversion sequence by adjacency matrices, which makes it
possible to represent the structure of a finite fragment of the graph as an augmented matrix
elegantly.
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l, . . .
provided that G(bg &0 bp+1) is planar, i.e., there exist no paths from by to

FL+1 (b, 1), which never pass through any F’(b,). Using this idea, we can
prove the following statement by induction on n.

Theorem 3 (Planar and unique path properties) The reduction graph

L . . .
G(bo o bp) (n > 1) is a plane graph such that there exists a unique path from

bo to F'(b,) and that there exist no paths from by to Fi(b,) for 0 <i <.

Proof. By induction on n, see [11] for the details. O

6 Unique Path and Universal Common-Reduct
Properties

Based on Proposition 1 and Theorem 3, a path from by to F'(b,) is called a
right main path, and a path from b, to F"(by) is called a left main path, see
also the example of section 2.

Proposition 4 (Unique main paths) In the graph G(by & by) of type Ayi1
(n > 1), for every natural number i > 0 we have the unique path property such
that there exists a unique path from F'(by) to F'F'(b,), and that there exists a
unique path from F'(b,) to F'*"(by), where the length of the paths is n.

. . i+, . .
Consider the conversion sequence b sy b, that is obtained by the concatena-

tion of two sequences b w bo and by w b, for some b. Then from Theorem 3,
there exists a unique path from b to Fi+!(b,), which consists of the two unique
paths from b to F'(bgy) and from F*(bg) to Fi*!(b,). Similarly we have a unique
path from F*(b,) to F* " (bg).

Proposition 5 (Unique crossing point) In the graph G(bg & bn) of type
Api1 (n > 1), for every natural number i with 0 < i <, the right main path
from by to F'(b,) has a unique crossing point with each path from F'(b,) to
FiJr'r’(bO)_

We have a crossing point FX("+9)(b,.,;) of the two paths by Proposition 1 [9, 10].
If the paths had more than one crossing point, then this would give more than
one path from by to F'(b,), which contradicts Proposition 4.

Theorem 4 (Universal common-reduct) In the graph G(bg &) by) of type
Any1 (n > 1), the common reduct F¥(b,) has the universal common-reduct

property: For any common reduct ¢ of by and b, there exists a reduction path
from F*(b,.) to c where k = #(<)[0,7].

Proof. The two main paths divide the plane graph G(bg &) b,,) into the follow-
ing four regions Ry, R, R3, R4.



1. The region R; consists of all points which lie to the right of the right main
path and simultaneously to the left of the left main path including the
boundary except F*(b,.).

2. The region Ry consists of all points which lie to the left of the left main
path and simultaneously to the left of the right main path excluding the
boundary.

3. The region Rj3 is the symmetric case of Rs.

4. The region Ry consists of all points which lies to the right of the left main
path and simultaneously to the left of the right main path including the
boundary.

Then neither Ry, Ro, nor R3 contains a common reduct of b; and b,, by Propo-
sition 4. Only the bottom region R4 can contain common reducts of by, b,.
The point F¥(b,) is indeed a common reduct of by, b, by Proposition 5, from
which we have a reduction path leading to every point in this region. Therefore,
F(b,) is the universal common reduct of by and b,,. O

Now we have unique paths to the common reduct F¥(b,), so that a set

of rules with an application strategy can transform conversion sequences into
L
reduction paths, leading to the universal common reduct. Let p : by &) b, of
type Ap41 (n > 0). Then applying the following transformation rule =>; to the
L, . .
left-hand side of by & b, generates the left main path. And applying the rule

=, to the right-hand side of by & b, does the right main path, as follows.
1. FromLeft-Transformation rule =—;:

e Start rules:

(a) & = 2%
(b) (L —, (flip(a),1)
e Step rules:
(a) (p,n) ’i> =, (p,n) : (mon™ (a),n)

(b) (p,n) «<i —, (p,n) . (mon” (flip(@)),n+1)

b b

2. FromRight-Transformation rule =,

e Start rules:

(a) ¢ =, &0
(b) & — <f|ip(a),1>
e Step rules:
a  (pmn) (mon™(e),n)  (p,n)

(a‘) %7 — —r )
(b) i} (p,n) — (mon™ (flip(e)),n+1) . (p,n)

b T b

21
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3. FromBoth-Transformation rule =,.:
The rule of FromLeft-Transformation is applied r times to the left-hand

l, .
side of a given conversion sequence by e b,, and that of FromRight-
Transformation is applied [ times from to right-hand side, simultaneously.

2,3
For instance, take a simple example <*; %3: &2, 4. % from by <<«m> bs. Then we
obtain the common reduct F2(b3) of by and bs as follows:
a.%.8.43
(flip(a1),1) . g Qs ag (flip(as),1)

lr 9 9 ’ ’
(flip(a1).1)  (mon(a2),1) as . (mon(flip(a)),2) . (flip(as).1)

Ir ) ) ) ’

_y,  Miean1), (mon(a).1), (mon(fip(as))2), . (monfip(an)).2) . (fin(as).1)

which provides the right main path (flip(«1); mon(aa); mon(flip(as))) : by ~
F?(b3) and the left main path (flip(as); mon(flip(ag))) : bs ~ F2(b3).

Next, we introduce a path matrix to represent all arrows in a finite subset
of E.

7 Path Matrices

If a quiver is finite, then generated reduction paths are represented by an ad-
jacency matrix. Given a conversion sequence, then based on Definition 5, we
construct such adjacency matrices P, called path matrices, as block matrices.
The number of reduction paths of length m can be counted by operating on the
matrix power P™. Let by w b, be a conversion sequence of type A, 1. Then
the adjacency matrices are defined in the following.

Definition 6 (Atomic matrix) An atomic matric A = (a; ;) with 1 <1i,j <
n+ 1 is defined from by v bn, as follows:

1 G =1ifbi_y < b; (1<i<n).

2. aiiv1=114f b1 — b (1 <i<n).

3. a;; = 0 otherwise.

In other words, the exclusive or (disjunction) of a; 41y and agqyy,; is 1 for
i=1,2,...,n, and a; ; = 0 otherwise.

Definition 7 (Path matrix) Let A be an atomic matriz, and 'A be its trans-
posed matriz, then a path matriz P with type ((n + 1)%, (n + 1)?) is defined by
using the tensor product® @ as follows:
n
P=L1®A+ Z(Ei,i—H ® A)
i=1
5From the definition, the tensor product X ® Y provides the matrix that has every element
of X, scalar multiplied with Y, i.e., z; ; - Y for X = (z; ;).




where the identity matriz I,,.1 has type (n + 1,n + 1). The element matriz
E,q = (ei;) with (n + 1,n + 1) denotes the matriz such that e;; = 1 for
(1,7) = (p,q), and e; ; = 0 otherwise.

It should be remarked that the transposed matrix ‘A represents an effect of an
application of flip to each atomic path. That is, flipped paths that are obtained
from atomic paths are coded by ‘A. An application of mon with the point
constructor F' increases the type of the matrix, which is represented by the use
of the tensor product. It should be clear that by the definition, the path matrix
‘P has the following form:

A A O O O O

O A A O 0O O

O 0O A A : O O

i @A+ (Bpe'd)=[ 0 0 0 A 4 o)

1=1

o}

O O O O : A '

O o0 o0 O -~ 0 A

where the atomic matrix A is assigned to every diagonal position of the block
matrix, and the transposed ‘A is assigned to each position to the right of A.

Let P™ = (p; ;) with 1 <i,j < (n+1)2. Then the element p; ; represents
the number of paths with m arrows (length m) from by to F'9(by), where j =
(n+1)-g+k+1and 0 <k < n, see also the forthcoming example in this
section.

For natural numbers n,m and square matrices X,Y with the same type,
define the following matrix C(X™,Y"™). The matrix represents all paths of
length (n 4+ m), which are obtained by choosing n paths that are coded by X
and m paths that are coded by Y.

Definition 8 1. C(X°,Y°) = I where I is the identity matrix.
2. C(XO,ymtly = ym+l,
3. C(X™H,Y0) = xnt1,
4. C(XmH ymHly = (X, Y™y L X 4 (XL Y™ LY

Then we have (X + Y)¥ = Zf:o C(X*= Y?%) by induction on k. Now, for
1 < k < n, the matrix power P* can be expressed by the small matrices A and
t A as follows, which can be verified by induction on k:

Ak C(AR-1 t4) C(A, A tA" o - 0O
0) Ak C(AF=1,14) cam " ko

10 o) AF C(AF=1tA)

@) @) 0] A¥ C(AF=1 tA)

0 O 0 0] 0] 0 AR
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For k > n, P* can be expressed similarly as follows:

Ak C(AR1,1A)

C(Ak—m tA™)
O AF C(AF—1tA)

C(Ak_"'H, tAnfl)

0 0 Ak AR )
0 0 o) Ak (AR )
0 0 o) . 0 Ak

That is to say, (1,4)-matrix of P™ (i =1,...,n+ 1) is described as follows.
1. Case of m < n:

C(A™=H1 (TA)i=1) for 4 =1,2,... . m+ 1,

((1,4)-matrix of P ):{ O foriemio . . mil

2. Case of m > n:

((1,4)-matrix of P™) = C(A™ =D (tA)-1), fori=1,2,...,n+1.

From the definition of the adjacency matrix, we should remark the following
facts. The points by and F'(b;) (¢ > 0) cannot be connected by using m arrows
with m < i —1, so that ((1,(n+1)-q + i+ 1)-element of P™) = 0 for m < 1.
That is, ((1,7 + 1)-element of C(A™ 4, (*A)9)) = 0 for m < 1.

Recall L(i) = #(+)[0,4], and let L(i) > 1. We have no paths from by to
b; trivially, if L(¢) = 1. Similarly, we have no paths from by to F4(b;) with
q < L(i), so that ((1,(n+1) - ¢+ i+ 1)-element of P™) =0 for ¢ < L(¢). That
is, ((1,4 + 1)-element of C(A™~9,(*A)9)) = 0 for ¢ < L(i).

Remark 1 1. ((1,i+ 1)-element of C(A™~ %, (*A)?)) =0, for m < i.
2. ((1,3+ 1)-element of C(A™ 4, (*A)?)) =0, for q < L(7).

For the unique path property we have the following main theorem.

l
Theorem 5 (Unique path property) Given by Ly by, with type Ay 11. Then
foreachi=1,2,...,n,

((1,(n+1)- L(i) + i+ 1)-element of P™) = 0y
where L(i) = $§(+-)[0,4] and 0y, is the Kronecker delta. In other words, for
each i = 1,2,...,n, there exists a unique path from by to FL(i)(bi) where the
length of the path is i.

Proof. From the form of P™ and the remark above, it is enough to show that

((1,7 + 1)-element of C(A™~ L@ (1AL =5,



with m > ¢ for each i = 1,2,...,n by induction on i. See Appendix A for the
details. a

Take a simple example by < by — by < bz from by @ b3 of type A4. Then
we have the following atomic matrix A and the transposed *A:

0 0 0 0 0 ag; 0 0

o a1 0 a23 0 tA 0 0 0 0
A=1"9 0 0 o0 and A= 0 ag
0 0 au 0 0 0 0 0

where ag; = ag3 = as3 = 1. The path matrix P with type (42,4?%) is obtained
as follows.

A A O O

s | O A1 oO
“lo o a4
0O 0 0 A

From P*¥ (2 < k < 7), we obtain the number of reduction paths from b; to
Fm™(b;) (1 < m < 3) with length k for each 0 < 4,5 < 3. For instance,
the number of reduction paths of by ~ F3(b3) with length 5 is obtained as

3 by (1,16)-element of P°, and that of by ~ F3(by) with length 7 is obtained

as 21 by (2,15)-element of P7. See also G(bo 3 bs) below for the instance

bg < by — by < b3, where all the arrows in this graph are coded by P.

bo < bl — bg < bg
N\ e N\
F(by) <« F(b1) — F(ba) <« F(bs)
pY e pY
FZ(bo) — F2(b1) — F2(b2) — FZ(b3)
hY Ve hY
Fs(bo) $— Fg(bl) — FS(bg) < Fs(bg,)

8 Concluding Remarks

From the motivation of quantitative analysis of reduction systems we introduced
a category-like structure induced from a quiver, together with the three path
constructors based on the well-known triangle property. In section 2, we started
with S-reduction. However, it should be remarked that the property of Propo-
sition 1 still holds for parallel Sn-reduction and moreover holds even for the
parallel reductions defined for other reduction systems such as Girard’s system
F and Godel’s system T as well [22]. This might mean that the formal system
of reduction paths extracts some abstract and common property from such re-
duction systems that satisfy the condition (A). Next, the equational theory and
reduction rules for reduction paths are introduced to obtain normal reduction
paths. Based on the normal paths, simple and planar reduction graphs are con-
structed from a conversion sequence. To count reduction paths, it is natural to
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define path matrices by adjacency matrices induced from a finite fragment of
the reduction graphs consisting of normal paths. Then the unique path prop-
erty (UPP) and universal common-reduct property (UCR) are established. As
a result, the common reduct F*(P) in Proposition 1 can be considered as the
optimum one among those which are generated by the condition (c) of (A) (tri-
angle property). It is now straightforward to define transformation rules from
conversion sequences to reduction paths leading to the universal common reduct.

Our formal system of reduction paths simply regards terms as points, and
a finite fragment of a reduction graph can be represented by a path matrix.
From the augmented matrix, we can obtain an adjacency matrix representing
a quiver which is generated from a given quiver of type A, 1. Quivers are well
known as representations of algebras [1]. It would be worthwhile to investigate
this viewpoint further, which might induce an algebraic semantics of lambda-
calculus such that lambda-terms are interpreted as vector spaces and reduction
paths as linear maps. One possible way to make a higher order extension is to
introduce a Groupoid-like structure as in [6]. This subject should be investigated
further.
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A Proof of Theorem 5

We recall the statement of Theorem 5:
Given by Ly by, of type A, 11. Then for each i = 1,2,...,n, we have
((1,(n+1)- L(#) + i + 1)-element of P™) = b, ;

where L(i) = #(<)[0, ] and 0, ; is the Kronecker delta. That is, for each
i=1,2,...,n, there exists a unique path from by to F()(b;).

Proof. From the form of P™ and Remark 1, it is enough to show that

((1,7 + 1)-element of C(A™ L@ (tA)L@)) =4, ;
with m > ¢ for each ¢ = 1,2,...,n by induction on i.

1. Case of i =1 and L(1) =1, i.e., by < b1:

From the definition of A, we have as; = 1, and (1,2)-element of ‘A is
indeed ag; = 1.

Next, (1,2)-element of C(A™~1 tA) is 0 for m > 2. In fact, for m > 2,

C(A™=1 tA)

(A AT + A A AT+ (AT (PA) A+ ATH(CA)
(A AT + A AT e (AT (PA) A+ AT (1)),
where ((1,2)-element of (*A)(A™~1)) =0 for m > 2, and the first raw of

A with a1 2 = 0 consists only of 0, which implies that ((1,2)-element of
A - B) =0 for any B.

2. Case of i =1 and L(1) =0, i.e., by — b1:
From the definition of A, we have a1 = 1.
In fact, ((1,2)-element of C(A™, (*A)%)) = 0 for m > 2.

3. Case of L(i) = #(<-)[0,i] = #(+-)[0,i + 1] = L(i + 1) with i + 2 < n, ie.,
b; — b;11 where a;y; 42 = 1:

(a) First, we will show that for m =i+ 1,
((1,i + 2)-element of C(A™ L0 (2 4)LE+Y) — 1,
Here, for L(i) > 1 we have
C(A™—LG+D) (t g)LG+1D))
= C(Ame(iH)’ (tA)L(iJrl)fl) C(tA) + C(AmflfL(iH)’ (tA)L(i+1)) A
For L(i) = 0, we have C(A™, (*A)?) = A™, which is the same as the base

case.



From the induction hypothesis (I-H), for m = i we have

((1,i 4 1)-element of C(Ame(i)7 (tA)E@D)) =1,

Now, ((1,7 + 2)-element of C(A 1L+ (¢t A)LG+1))) = 1 i5 obtained as
follows:

(1,7 + 2)-element, of C(A 11U+ t AL(+1)y)
n+1
= > ((1,5)-el.of C(ATFI=EEFD EALCEIZL)) (5,4 + 2)-el. of FA)
j=1
n+1 ) ) )
+ ) (1, )€l of C(A™ FEHD LALEFDY) - ((,i + 2)-el. of A)
j=1
= ((1,i+1)-el.of C(A™I=LO tALO=1)) (41,7 4 2)-el. of L A)
+((1,7 + 3)-el. of C(AFI=E@) EALO=1Y) (4 35 4 2)-el. of T A)
+ (1,7 + 1)-el.of C(ATLO) TAL@DY) (i + 1,7 + 2)-el. of A)
+ (1,7 + 3)-el. of C(ATL@ TAL@DY) . (5 + 3,7 + 2)-el. of A)
= ((1,i+ 1)-element of C(A™=LO tALO=1)) .0 ;5,1 =0

+0-aiq243 ‘. Remarkl1-1
+1-1 - I-H and Aj4-1,i+2 = 1
+0-aiy3,i+2 *." Remark1-1
fr— 1,

where we have a; ;42 = 0 except for j =i+ 1,7+ 3.
(b) Next, we will show that for m > i+ 2,
(1,7 + 2)-element of C(A™~LEFD (2 4)LE+LY) — g,
The induction hypothesis (I-H) gives that for m > i + 1, we have

((1,4+ 1)-element of C(Am*L(i), (tA)L(i))) =0.
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(1,7 + 2)-element, of C(A™~LGFY 't gLG+1)y)

n+1
= ) ((1,5)-el.of C(A™EOHD EALEFD=T)) (i + 2)-el. of 'A)
j=1
n+1
+ 3 (1, j)-el. of C(AmTEEHD=L L ALGEEDY) (.7 + 2)-el. of A)
j=1

= ((1,i4 1)-element of C(Ame(i), tAL(i)fl)) S Q420+
+((1,i 4 3)-element of C(A™~ LD tALO=1)) g, 00 0g
+ ((1,24 1)-el. of C(A(mfl)*L(i), tAL(i))) S Q4142
+ (1,7 + 3)-el. of C(AM =L@ tAL@Yy g g0
= 0 vai42:41=0
+((1,7 + 3)-el. of C(A™ 1= (LO=D L ALD=1)y g, 1p g
+0 "LIHwith(m—1)>i+1
+ (1,7 + 3)-el. of C(AM =L@ tAL@Yy g0
= 0 ‘" Remarkl-2 with L(i) — 1 < L(i) = L(i + 2) for a;42,+3 =1
+0 - L(i) < L(i)+ 1= L(i+2) for aj43,42 =1
= 0.

4. Case of L(i + 1) = §(+)[0,i+ 1] = L(4) + 1 with i + 2 < n, i.e., b; < b1
where a;49,;41 = 1:

(a) We will show that for m =i+ 1,
(1,7 + 2)-element of C(A™~ LD (tA)LE+Y) — 1,
Here, we have

C(Am*lz(iJrl)7 (tA)L(iJrl))
_ C(Am_l_L(i), (tA)L(i)) . (tA) + C(Am—L(i)—Q7 (tA)L(i)+1) A

From the induction hypothesis, for m = ¢ we have
(1,4 + 1)-element of C(A™ L) (14)E0)) = 1.

Now, ((1,i + 2)-element of C(A*+1—L0+1) (¢ A)LG+1))) = 1 is obtained as



follows:

(1,7 + 2)-element of C(ATH1-LUFY ¢ gLG+1)y)
n+1
= ) ((1,j)-elof C(A™EW FADY) . ((j,i+ 2)-el. of 'A)
j=1
n+1
+ ) (1, j)-el of C(A™EOFD EALDF)) (i + 2)-el. of A)
j=1
= ((1,i+1)-el.of C(A™L@ tALDY)) . ((5 4 1,7 4 2)-el. of tA)
+((1,7 + 3)-el.of C(A™LW TALDYY (5 + 3,7+ 2)-el. of T A)
+ (1,7 + 1)-el. of C(ATLO=1 TALOFLY) (41,47 4 2)-el. of A)
+ (1,7 + 3)-el. of C(AT L1 EALDHLY) (G 4 37 4 2)-el. of A)
= 1-1 o I-H and ajy0,41 =1
+0-ait2,i+3 . Remark1-1
+ (1,7 + 1)-el. of C(ATLO=LEALOHLY) 0 g0y 500 =0
+0-a;43,i+2 .» Remark1-1
= 1,

where we have a; ;42 = 0 except for j =i+ 1,7+ 3 with i +2 <n.
(b) Next, we will show that for m > i+ 2,
(1,7 + 2)-element of C(A™~LEFD (2 4)LE+LY) — g,
The induction hypothesis (I-H) gives that for m > i + 1, we have

((1,4+ 1)-element of C(Am*L(i), (tA)L(i))) =0.
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(1,7 + 2)-element of C(A™~ LG+ ¢ gLG+1)y)
n+1
D (1, j)-el.of C(A™~EEHD FAECHD=L) ) (i + 2)-el. of *A)
j=1
n+1 ] )
+ > (1, j)-elof C(AM=EEHFD=L L AL ) (i + 2)-el. of A)
j=1
((1,i + 1)-element of C(A(m_l)_L(i)7 tAL(i))) C Q42 041
+((1,7 + 3)-element of C(Am_l_L(i)7 tAL(i))) © Q1243
+ ((1,7 + 1)-element of C(A7"_L(i)_27 tAL(i)H)) S Q41,42
+ ((1,47 4+ 3)-element of C(Am_L(i)_z, tAL(i)H)) © Q1342

0 o THwith(m—1)>i+1
+((1,4 + 3)-el. of C(Am_l_L(i)7 tAL(i))) S Q42,43
+0 VQit1,i42 =0

+ ((1,i+ 3)-el. of C(AM~1=EOFD (L) LOFY)) g, a0
0 . Remarkl1-2 with L(i) < L(i + 1) = L(i + 2) for a;42,43 =1

0.

5. Following the similar pattern, for m = n we can show

((1,n + 1)-element of C(A™ L") (*A)EM)) = 1.

Similarly, for m > n + 1 we can also show

((1,n + 1)-element, of C(A™~LM) (t4)E(M)Y)) =,





