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Abstract 

We introduce a formal system of reduction paths as a category-like 
structure induced from a digraph. Our motivation behind this work comes 
from a quantitative analysis of reduction systems based on the perspective 
of computational cost and computational orbit. From the perspective, we 
define a formal system of reduction paths for parallel reduction, wherein 
reduction paths are generated from a quiver by means of three path-
operators. Next, we introduce an equational theory and reduction rules 
for the reduction paths, and show that the rules on paths are terminating 
and confluent so that normal paths are obtained. Following the notion of 
normal paths, a graphical representation of reduction paths is provided. 
Then we prove that the reduction graph is a plane graph, and unique path 
and universal common-reduct properties are established. Based on this, a 
set of transformation rules from a conversion sequence to a reduction path 
leading to the universal common-reduct is given under a certain strategy. 
Finally, path matrices are defined as block matrices of adjacency matrices 
to count reduction orbits. 

1 Introduction 

Our motivation behind this work is to analyze quantitative properties of re-

duction systems, e.g., 入-calculi[3, 20, 13] in the context of the Church-Rosser 

theorem [5] from the perspective of (i) evaluation of computational cost (length), 
and (ii) evaluation of computational orbit (path). 

Relating to the first perspective, the complexity of proofs and reduction 

length (steps) has been investigated in a wide range of fields such as proof theory 

and computer science, for instance, Statman [21] for deciding the /3ry-equality of 
typable 入—terms, Schwichtenberg [19] and Beckmann [4] for normalization in the 
simply typed入-calculus,and so on. Concerning the complexity of confluence, 

there have been several investigations. Here, the confluence property states that 
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if M → N1 and M → 芯 thenN1→ P and N2→ P for some P. Komori, 
Matsuda, and Yamakawa [16] investigated how to specify a common reduct of 
N1 and芯 interms of M. They showed that a common reduct P can be given 
by an iteration of the so-called Takahashi translation [22], denoted by F, in 
terms of the number of reduction steps l from M to N1 and r from M to N2. 
That is, for M __.,.l N1 and M ゴ N2,they obtained a common reduct戸 (M)
with k = max{l, r }. Ketema and Simonsen [14] investigated the complexity of 
confluence by measuring reduction steps to a common reduct. They showed 
that the length leading to a common reduct can be bounded by a function 
in terms of M and the length from M to N1 and from M to N2. That is, 
for M __.,.l N1 and M ゴ N2,they obtained a bound function f(l, M, r) of 
N1→ ni P and N2→四 Pfor some P such that n1, n2さf(l,M, r) where f is 
in the fourth level of the Grzegorczyk hierarchy [12]. On the other hand, the 
Church-Rosser property [5] states that if M =13 N then M → PandN→ P for 
some P. Although confluence implies Church-Rosser, the two properties should 

be distinguished carefully on the complexity analysis [10]. For the complexity 
of Church-Rosser, we analyzed the equality (conversion) into expansion and 
reduction, and obtained an upper bound function still at the fourth level of the 
Grzegorczyk hierarchy [8, 9, 10]. 
In this paper, from the second perspective we analyze the complexity result 
obtained by the existing work in more detail. Compared with [16], the previous 
work [10] revealed a common reduct戸 (P)with some P and kさmin{l,r} 
for M __.,.l N1 and M デ N2.Here, we show that this common reduct can be 
considered as an optimal one for any common reduct generated by a so-called 
triangle property, by means of counting reduction paths via adjacency matrices. 
For counting computational paths, it is necessary to formalize paths so that we 
introduce a formal system of reduction paths together with an equational theory 
and reduction rules of paths. Then the existence of normal paths makes it pos-
sible to represent reduction paths as plane graphs via a context-free grammar, 
and structures of paths as adjacency matrices in an elegant way. The analysis 
also clarifies at most how many times F must be applied to obtain a common 
reduct. Moreover, the introduced formal system has an application not only to 
入-calculibut also to abstract reduction systems with natural properties1 with 
respect to parallel reductions. Although there have been many investigations 
on the length of reduction paths including [21, 19, 4, 14, 10], to the best of our 
knowledge, this paper makes a unique study on the number of reduction paths. 
This paper is organized as follows. Section 1 is devoted to background, re-
lated work, motivation, and contribution of this paper. Section 2 gives prelimi-
naries including basic definitions and a guiding example. Section 3 introduces a 
formal system of reduction paths. Section 4 provides an equational theory and 
reduction rules for reduction paths, and then shows the normal path property. 
Based on this, section 5 provides a graphical representation of reduction paths, 
and here proves that the graph is a plane graph. Following this, section 6 shows 
the unique path and universal common-reduct properties. We also provide a set 

1The properties will be defined soon after, called condition (A) in this paper. 
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of transformation rules from conversion sequences to reduction paths under a 
certain strategy. Section 6 introduces path matrices to count reduction paths, 
Finally, section 8 concludes with remarks and further work. 

2 Preliminaries and a Guiding Example 

The set of入-termsdenoted by A is defined referring to standard texts [3, 20, 13] 
as follows: 

M, N, p E A ::= X I (入x.M)I (MN) 

We write M 三 Nfor the syntactical identity under renaming of bound variables. 

The size IMI of a term M is defined by lxl = 1, I(入x.M)I= 1 + IMI, and 
l(MN)I = 1 + IMI + INI. We use the notation→ for one-step /3-reduction, → 
for multiple-step /3-reduction, and =13 for (3-equality ((3-conversion). 
We note that M → N iff there exists a finite sequence of terms M,。,... ,Mn 
(n ?: 0) such that M 三 M。→ M1→ ... → Mn三 N. For this we also 
write M → n N with the number of reduction steps displayed. Also note that 
M =13 N iff there exists a finite sequence of terms M,。,... ,Mn (n?: 0) such 
that M 三 M。⇔ M1 ⇔ ・・・ +-+ Mn 三 N where Mi ⇔ Mi+1 denotes either 
Mi→ Mi+1 or Mi+1→ Mi (i = 0, ... ,n -1). Here, the arrow→ in the 
former case (reduction) is referred to as a right arrow, and that in the latter 

case (expansion) is referred to as a left arrow, denoted also by Mi← Mi+l・The 
notation tt(←） [j, k] denotes the number of occurrences of left arrows between 
terms Mj and Mk (0~j~k~n) in the sequence. For the sequence, we also 

write M 1+-------+ N where l = L(n) and r = n-l. Here, a shorthand notation L(i) 

is often used for tt (←） [O, i]. 
Concerning computational cost (reduction length), we briefly review our 
previous result on the Church-Rosser theorem. For a reduction system with one-
step reduction relation→ and term size I , suppose the following two conditions 
(A) and (B). 

(A) We have a binary relation⇒ on terms and a translation F between terms 
as follows. 

(a) If M→ N then M ⇒ N. 
(b) If M⇒ N then M → N. 

(c) If M⇒ N then N⇒ F(M). 

(B) We have two monotonic functions f, g: N→ N as follows. 
IfM⇒ N then M→ 1 N with INIさf(IMI)and l~g(IMI), where f and 
g are respectively in the p-th and q-th levels of the Grzegorczyk hierarchy 

[12] with p + l, q ?: 2. 

We should remark that the literature expounds the condition (A) by the prop-

erties (1), (2), and (5) in [22], and that the condition (c) of (A) is also called 
the triangle property. 
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Then-fold iteration off is written as usual: J0(x) = x, r(x) = f(r-1(x)). 
Then, as demonstrated in [9, 10], the enriched form of the Church-Rosser 
theorem holds. 

Theorem 1 (Quantitative Church-Rosser [9]) If M 1← • N then there 
exists a term P such that M→m戸 (P)and N→n戸 (P)where 

1. k =~(•) [O, r] ::::; min{l, r }, 

r-1 l-1 

2. m~L9(l(IMI)), n~Lg(f'(INI)), and 
i=O i=O 

3. m, n are bounded by functions in the level of max{p + 1, q} of the Grze-
gorczyk hierarchy. 

As an instance of the theorem, we can take not only type-free入-calculuswith 

/3r,-reduction, but also typed calculi such as Godel's system T, Girard's system 
F, and so on, by setting f(x) = 2x and g(x) = x, so that the length m, n are 
bounded by an iteration of the elementary function, i.e., functions in the fourth 
level of the hierarchy. 
The essence of the proof relies upon the harmonized property of the condition 

(c) of (A) with respect to⇒ (parallel reduction) and F (so-called Takahashi 
translation2 [22]). We also write N -¢c M for M ⇒ N. We write M 琴 N,if 
M 三 M。⇒M1⇒ ... ⇒ Mn三 Nfor some nミOandMi(i=0,1, ... ,n). We 
write Mい~N, if M 三 Mo⇔ 恥⇔・・・⇔ Mn 三 Nfor some n~0 and Mi 
(i = 0,1, ... ,n) where⇔ denotes either⇒ or -¢c together with l = tt(-¢c) [O, n] 
and r = n -l. Here, by tt(-¢c)仏k]we mean the number of occurrences of -¢c 
between M1 and恥 (0:::::j・：：：：： k :'.:'. n) in the sequence. 
Now the essence of Theorem 1 is extracted by the following proposition in 

terms of⇒. 

Proposition 1 ([8 9 10]) IfM⇔ N, then there exists a term P such that 
M ⇒r戸 (P)and N⇒l戸 (P)where k =恥=)[O,r].

This paper will show that there exist unique paths of parallel reductions from 
M to戸 (P)and from N to戸 (P)for some P, respectively, within a certain 
reduction graph. Before this, we demonstrate the key idea of the formal system 
by way of example. From a given conversion sequence, reduction paths can be 
generated by means of an iterated application of the condition (c) of (A). We 

2 3 
show a simple example of b。←⇒妬witha common reduct F2(b3) of b。and

2This translation is a complete development. 
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b5, where bi and→ are used instead of Mi and⇒, respectively. 
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Observe that there exists a unique path from b0 to戸 (bs),i.e., b。旱戸(bs),
and also a unique path from b5 to戸 (bo),i.e., bs⇒5戸 (b0).Here, all the 
common reducts of b。,b5 are points which occur in the area below the two paths 
including the boundary, i.e., 戸 (b叫，戸(b3),戸 (b4),戸 (bs),F囁o),F3(b1), 
戸 (b叫， etc.The common reduct戸 (b3)is the unique crossing point of the two 
paths b。琴戸(bs)and bs旱戸(b0). In particular, the point戸 (b3)can 
lead to all the common reducts of b0, b5, which are generated by the condition 
(c) of (A). The example is not a special case, but shows a general property on 
reduction paths generated by the condition. We study the following fundamental 
properties of reduction paths generated by the triangle property. 

l. Unique path property of common reduct (UPP): If a← -£b, then there 
exist m, n and a common reduct c such that we have unique reduction 
paths of a⇒ n c and b⇒ m C. 

2. Universal common-reduct property (UCR): If ad  b, then there exists a 
common reduct c of a and b such that for any common reduct d of a and 
b we have c⇒ n d for some n. 

As a result of UPP and UCR, the common reduct戸 (P)in Proposition 1 can 
be considered as the optimum one for any common reduct within the reduction 
graph generated by the triangle property. 

3
 
Formal System of Reduction Paths 

Based on a monoid-like structure such as [15, 17], we introduce a formal system 

of reduction paths for parallel reduction. First, we define a quadruple△ = 
偽O,ふ，s,t〉,called a quiver3 [1], consisting of two sets△。，ふ andtwo maps 
s, t. Here, △。 isthe set of points or vertices denoted by a, b, c, andふ isthe 
set of arrows or atomic paths denoted by a, (3,,. The maps s, t : ふ→ △。 are
provided such that s(a) is called a source of a Eふ andt(a) is called a target 

of a Eふ， respectively,which is denoted by a : s(a)→ t(a) or s(a)~ → t(a). 
For this case, we also write E f---a: s(a)→ t(a). 

3This quadruple is nothing but a directed multigraph, and the notion of quiver has been 
used for the graphical representation of finite dimensional algebras [1]. 
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Let E be a quiver〈△。，ふ，s,t〉,Base be a countable set with △。 ~Base, and 
F: Base→ Base be a point constructor that is an injective mapping such that 
△。nF(Base) = 0. Well-formed paths, denoted by p, q, r E RP, are constructed 
by the following formation rules together with a mapping, called a measure 

function k : RP→ N, where a, b, c E Base, bi, b2 E△。,a,(3,1 Eふ， and
m,n,k EN. 

Definition 1 (Reduction paths) 

p,q ERP ::= ida 

a 

(p; q) 

mona,b(P) 

fliPa,b(P) 

2. Measure function k: RP→ N: 

1. Syntax of reduction paths (RP): 

(* identity path *) 

(* atomic path *) 

（ * composition, concatenation *) 

（ * monotonic path *) 

(* flipped path *) 

• k(id) = 0 for the identity path, and k(a:) = 1 for atomic a Eふ．

• k(p; q) = k(p) + k(q), and k(mon(p)) = k(flip(p)) = k(p). 

3. Formation rules for well-typed reduction paths: 

• Identity paths for a E Base: 

ふf---ida : a -v-+ a 

• Atomic paths for a Eふ withs(a) = b1 E△。 andt(a) = b2 E△。:

ふ←a : b1 "N b2 

• Concatenation of paths: 

• Monotonic paths: 

• Flipped paths: 

lf--p:a"Nb ふf--q: b "NC 

ふ卜 (p;q) : a -s,-+ C 

ふ卜p:a"-"+ b 

ふf---mona,b(P): F(a) "-"+ F(b) 

ふf---p:a-v--tb

l f---fliPa,b(P): b -v-+ pk(Pl(a) 
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Our intuitive idea for the formal system is based on the following obser-
vations. The mapping F would represent a reduction strategy as that of [3], 
wherein a cofinal strategy F is defined such that if M → N then N → pn(M) 

for some natural number n. In our case, the condition (c) of (A) implies that if 
M ⇒ n N then N⇒n 戸 (M),like the Z-property [7, 18]. Here, the mapping 
k:RP→ N should provide the number of steps in terms of⇒, so that the value 
k(p) should be associated to the length of the path p. From the definition of 
k, we indeed have the commutative and associative properties with respect to 
concatenations: 

1. k(p; q) = k(q;p) and k((p; q); r) = k(p; (q; r)). 

2. If k(p) = k(q) then k(p; s) = k(q; s) and k(s;p) = k(s; q). 

4 Equational Theory and Reduction Rules of 

Paths 

Here, a term is handled as a point, and then we do not care about the structure of 
terms, but just consider reduction paths generated by path constructors. Next, 
we consider what paths should be equivalent to each other so that equality 
rules on reduction paths are introduced, which are compatible with the path 
constructors ;, mon, and flip. 

Definition 2 (Equational theory£of reduction paths) Let p, q, s E RP, 
and a, b E Base. 

(E。)p R:J p. If q R:J p then p R:J q. If p R:J q and q R:J s then p R:J s. 

(E1) If p R:J q then flip(p) R:J flip(q), mon (p) R:J mon(q), (p; s) R:J (q; s), and 
(s;p) R:J (s; q). 

（恥） (ida; p) R:J p R:J (p; idけfora path p : a -v-+ b. 

(E3) ((p; q); s) R:J (p; (q; s)) for paths p: a -v-+ b, q: b -v-+ c, ands: c -v-+ d. 

(E4) mona,a(ida) R:J idF(a)・

(E5) mon(p; q) R:J (mon(p); mon(q)) for paths p: a -v-+ b and q: b -v-+ c. 

(E叫flip(ida)R:l ida, 

(Eサflip2(a)R:J mona,b(a) for an atomic path a: a -v-+ b. 

(E8) flip(p; q) R:J (flip(q); monk(q)(flip(p))) for paths p: a -v-+ band q: b -v-+ c. 

(E9) flip(mon(p)) R:J mon(flip(p)). 

The intuitive meaning of the rules can be explained by the following diagrams. 
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1. (E4) mon(ida) ;:::::j idF(a), (E5) flip(ida) : ミこ； ida, (E1) flip2(a) ;:::::j mon(a): 

a~a 
flip(ida) 

mon(ida) 
F(a))  F(a) 
idF(a) 

a > b 
°' 
flip(a)」

flip2(a) 
F(a) -—• F(b) 
mon(a) 

2. (Eり(mon(p);mon(q)) ~ mon(p; q) with p: a....-. band q: b ....-. c: 

a)  b)  c 
p q 

F(a) 
mon(p) 
――→ F(b) 

mon(q) 
――→ F(c) 

～
 
～
 

a )  C 
(p;q) 

F(a) 
mon(p;q) 

> F(c) 

3. (E叫(flip(q);monk(q) (flip(p))) ~ flip(p; q) with p : a """ b and q : b """ c: 

a~b 

flip(p) 1 
pk(Pl(a) 

q
 
）
 

C 

flip(q)」
pk(q)(b) 

monk(q) (flip(p))」
pk(p)+k(q)(a) 

～
 
～
 

C (a  

↓ flip(p;q) (p;q) 

pk(p;q)(a) 

4. (E9) flip(mon(p)) ~ mon(flip(p)) with p: a -v-+ b: 

F (a) --------+ 
mon(p) 

F(b) F(b) b 
p 
(a  

flip(mon(p))』～
pl+k(mon(p))(a) 

1 mon(flip(p)) 』flip(p)
pl+k(Pl(a) pk(p)(a) 

Next for reduction paths we define a reduction relation ====} based on£, and 

then show that the system is terminating and confluent. Hence, any reduction 

path can be reduced to a unique normal path with the same source and target. 

We write=ジ forthe reflexive and transitive closure of ====}. 

Definition 3 (Reduction relation⇒ for reduction paths) 

(R1) flip(p)⇒ flip(q), mon(p)⇒ mon(q), (p; s)⇒ (q; s) and (s;p)⇒ (s; q) 
where p⇒ q. 

(R2) (ida;P)⇒ p and (p; idり⇒ p for a path p : a心 b.

(R砂((p;q);s)⇒ (p; (q; s)). 

(R4) mona,a(ida) ====} idF(a)・
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(R5) mon(p; q) ====} (mon(p); mon(q)). 

(R叫flip(ida)⇒ ida. 

(R1) flip2(a)⇒ mona,b(a) for an atomic path a: a -v-+ b. 

(R叫flip(p;q)⇒ (flip(q); monk(q)(flip(p))) for paths p: a -v-+ band q: b -v-+ c. 

(R9) flip(mon(p))⇒ mon(flip(p)). 

Proposition 2 The path reduction⇒ is terminating and confluent. 

Proof. Let :E be the finite set of symbols {flip, mon, ;, id}, and > be the strict 
order such that {flip > mon > ; > id}. Here, for termination it is enough to 

consider id, mon, flip instead of ida, mona,b, fliPa,b, respectively. Then consider 
the well-known lexicographic path order >zp。onthe set :E over a countable set 
of variables induced by> (e.g., [2], Section 5.4.2.). See [11] for the details. 
Next, from Newman's Lemma, it is enough to verify that all critical pairs 

such as flip((p; q); r)) and flip(mon(p; q)) arejoinable. See also [11] for the details. 
ロ

• → 
Proposition 3 (Subject reduct10n) If△ f---p : a -v-+ b and p⇒ q, then 
l f---q : a -v-+ b. 

Proof. By induction on the derivation of p ====} q, see also the diagrams for the 
intuitive meaning of E. ロ
We introduce the following grammar for a syntax of normal paths. 

Definition 4 (Normal paths NP) Let a E△。,aEふ， andi~0. 

NP ::= idか(a)I atom I np 

atom ::= a I flip(a) I mon(atom) 

np ::= (atom; np) 

Now, for any path we have a normal path with the desired property. 

Theorem 2 (Normal reduct10n paths) If l f---p: a -v-+ b then there exists a 
unique normal path q E NP such that p ====} * q and△ f---q : a -v-+ b. 

Proof. By induction on the derivation of E卜p: a -v-+ b with Propositions 2 and 
3. ロ

5 Representation of Reduction Paths 

The formal system of reduction paths provides a graphical representation, de-

Q(ふnoted by of a reduction path generated from△ =〈△。，ふ，s,t〉such

that Q⑤ =〈V,E〉,where V = LJ凶『（ふ） is the set of vertices (points) 
and E = {p E RP I l卜p: a~b for some a, b E V} is the set of edges (ar-
rows). Here, following theorem 2, we consider graphs consisting only of normal 
reduction paths. 
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Definition 5 (Reduction graph) For l =〈△。，ふ，s,t〉,the graph Q心）
with normal paths is defined by the following digraph〈V,E〉:

V = LJ {Fi(b) Ii;::: O}, E = LJ {moni(flipi(a)) Ii;::: O,j = 0, 1}. 
bE△。 aE△l 

First, we show some examples of such graphs with normal paths. For con-
version sequence, we consider a special type of quiver, called a (simply laced) 

Dynkin diagram of type An+l (n~0) [1], such that△。={bo, b1, ... , bn}, ふ＝
{0:1,0:2, ... ,an}, and either ai: bi-1→ bi or ai : bi→ b口 (i=l,2,... ,n). If 
ai : bi-1→ bi then ai is called a right arrow, and ai is a left arrow otherwise. We 
employ the notation tt(←） [i, j] to denote the number of occurrences of a left ar-

〈l,r〉
row between two points bi and bj (0::; i::; j::; n). We also write b。…加，called
a conversion sequence, for type An+l with△。={b。,b1,••·,bn},l=tt(•) [O, n], 
and r = n -l. 

〈1,0〉
1. Case of Q(b。-bリ＝〈V,E〉withtype知：

V=  LJ {Fn(b』 In~O}, E = {mon叫flipn(a1))Im~0, n = 0, l }. 
託 {0,1}

From now we draw no identity paths id for each vertex of the graph. 

〈1,1〉
2. Case of Q(b。い的）＝〈V,E〉withtype Aが

V = LJ {Fn(b』 ln~O},E=LJ{mon叫flipn(ai)) Im~0, n = 0, l }. 
託：{0,1,2} 託：{1,2} 

〈l,r〉
Next, we investigate the structure of the graph Q(b。ゃ⇔ 加），wherethe graph 

〈l,r〉
itself is infinite although the sequence b。←似 isfinite. For this, we show that 
〈l,r〉

Q(b。← 加） is a plane graph, and that there exists a unique path from b。to
炉(bn)within the graph. It is indeed possible to apply the well-known method of 
the use of adjacency matrices4 in order to count reduction paths. However, here 
we adopt a simple method to show the fundamental properties on the graph. 

Let~(bi -v-. 幻)be the number of paths from bi to bj. Then in the graph 
〈l,r〉

Q(b。,w, bn+i) where l = L(n + 1) and r = n + 1 -l, the number of paths 
from b。topL(n+l) (bn+i) is given by the following summation, exactly like the 
multiplication of adjacency matrices. 

tt(b。'SNpL(n+l) (bn+1)) = L tt(b。'SNFi(bn))・ 叩(Fi(bn)'SNpL(n+l)(bn+1)), 
i2'.0 

4See section 7 for encoding a conversion sequence by adjacency matrices, which makes it 
possible to represent the structure of a finite fragment of the graph as an augmented matrix 
elegantly. 
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〈l,r〉
provided that Q(b。← bn+i) is planar, i.e., there exist no paths from b。to
pL(n+l)(bn+d, which never pass through any F叫）• Using this idea, we can 
prove the following statement by induction on n. 

Theorem 3 (Planar and unique path properties) The reduction graph 
〈l,r〉

Q(b。←加） (n :2'. 1) is a plane graph such that there exists a unique path from 
b。to炉(bn)and that there exist no paths from b。toFi(bn) for O :s; i < l. 
Proof. By induction on n, see [11] for the details. ロ

6 Unique Path and Universal Common-Reduct 

Properties 

Based on Proposition 1 and Theorem 3, a path from b。toF1 (bn) is called a 
right main path, and a path from bn to Fr(b0) is called a left main path, see 
also the example of section 2. 

〈l,r〉
Proposition 4 (Unique main paths) In the graph Q(b。"""'bn)of type An+l 
(n :::: 1), for every natural number i :::: w゚ehave the unique path prnperty such 
that there exists a unique path frnm『 (b0)to Fi+1(bn), and that there exists a 
unique path from『(b砂topi+r(bo), where the length of the paths is n. 

〈i+l,r〉
Consider the conversion sequence b """'如 thatis obtained by the concatena— 

〈i,O〉〈l,r〉
tion of two sequences b """'b。andb。;w,加 forsome b. Then from Theorem 3, 
there exists a unique path from b to Fi+1(bn), which consists of the two unique 
paths from b to『(b0)and from『(b0)to Fi+1(bn)-Similarly we have a unique 
path from炉(bn)to pi+r(bo), 

〈l,r〉
Proposition 5 (Unique crossing point) In the graph Q(b。…加）。ftype 
An刊 (n:::: 1), for every natural number i with O :S i :S l, the right main path 
from b。toF1 (bn) has a unique crnssing point with each path frnm『 (bn)to 
炉+r(bo). 

We have a crossing point pL(r+i) (br+i) of the two paths by Proposition 1 [9, 10]. 
If the paths had more than one crossing point, then this would give more than 
one path from b。toF1(bn), which contradicts Proposition 4. 

〈l,r〉
Theorem 4 (Universal common-reduct) In the graph Q(b。…加） of type 
釦+1(n :::: 1), the common reduct戸 (br)has the universal common冗 duct
prnpe廿y:For any common reduct c of b。andbn, there exists a reduction path 
from戸 (br)to c where k =は（←）[O,r]. 

〈l,r〉
Prnof. The two main paths divide the plane graph Q(b。"""'bn)into the follow-
ing four regions R 1, R2, R3, R4. 
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1. The region R1 consists of all points which lie to the right of the right main 
path and simultaneously to the left of the left main path including the 
boundary except戸 (bふ

2. The region R2 consists of all points which lie to the left of the left main 
path and simultaneously to the left of the right main path excluding the 
boundary. 

3. The region R3 is the symmetric case of R2. 

4. The region R4 consists of all points which lies to the right of the left main 
path and simultaneously to the left of the right main path including the 
boundary. 

Then neither R1, R2, nor R3 contains a common reduct of bi and bn by Propo-
sition 4. Only the bottom region R4 can contain common reducts of b。,bn. 
The point戸 (br)is indeed a common reduct of b。，如 byProposition 5, from 
which we have a reduction path leading to every point in this region. Therefore, 
戸 (br)is the universal common reduct of b。andbn, ロ
Now we have unique paths to the common reduct戸 (br),so that a set 
of rules with an application strategy can transform conversion sequences into 

〈l,r〉
reduction paths, leading to the universal common reduct. Let p : b。い心如 of
type An+l (n :;:> 0). Then applying the following transformation rule=方 tothe 

〈l,r〉
left-hand side of b。<-vv-t加generatesthe left main path. And applying the rule 

〈l,r〉
＝⇒ r to the right-hand side of b。…加 doesthe right main path, as follows. 

1. FromLeft-Transformation rule⇒ 1: 

• Start rules: 

(a)~ ⇒ l 
〈a,O〉
） 

(b) +-"- ===;> l 〈flip(a),1〉、

• Step rules: 

(a) 
〈p,n〉 a
)；→ ⇒ l 

〈p,n〉〈mon"(a),n〉
)' ， ） 

(b) 
〈p,n〉 a
)；← ⇒ l 

〈p,n〉〈mon"(flip(n)),n+l〉
)' ， 

2. FromRight-Transformation rule⇒ r: 

• Start rules: 

(a)? ⇒ r 

(b)~ ⇒ r 

• Step rules: 

〈a,O〉
（ 

〈flip(a),1〉
（ 

（） 
a 〈p,n〉

a ←;  （ ⇒ r 
<monn(a),n>• 〈p,n〉
（ ， 9、

(b)→； 
a 〈p,n〉
く ⇒ r

〈monn(flip(a)),n+l〉〈p,n〉
， （ 
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3. FromBoth-Transformation rule⇒ lr: 
The rule of FromLeft-Transformation is applied r times to the left-hand 

〈l,r〉
side of a given conversion sequence b。,wt bn, and that of FromRight-
Transformation is applied l times from to right-hand side, simultaneously. 

. l l a, a a3 a a 〈2,3〉
For mstance, take a s1mp e examp e←；ふ←;ふ--4from b。,wt b5. Then we 
obtain the common reduct戸 (b砂ofb。andb5 as follows: 

塁彗；巴喜；弩
〈flip(a,),l〉 a a3 <>• 〈flip(as),l〉

；ヽふ；←；→；（＝⇒h 

＝⇒h 
〈flip(a1),l〉〈mon(a2),l〉〈mon(flip(a4)),2〉〈flip(as),l〉
:・)  . a3 ← ・ （・、9

＝⇒l 
<flip(a1),l >• <mon(a2),l>• <mon(flip(a3)),2>• <mon(flip(a4)),2>• 〈flip(as),l〉
> ))  （（  

which provides the right main path (flip(a: り；mon(a: 砂；mon(flip(a:3))) : b。~
戸（妬） and the left main path (flip(a:5); mon(flip(山）））： b5 ""'F2 (b砂．
Next, we introduce a path matrix to represent all arrows in a finite subset 
of E. 

7 Path Matrices 

If a quiver is finite, then generated reduction paths are represented by an ad-
jacency matrix. Given a conversion sequence, then based on Definition 5, we 
construct such adjacency matrices P, called path matrices, as block matrices. 
The number of reduction paths of length m can be counted by operating on the 

〈l,r〉
matrix power P匹 Letb。…如 bea conversion sequence of type An+l・Then 
the adjacency matrices are defined in the following. 

Definition 6 (At・ om1c matrix) An atomic matrix A=  (ai,j) with l~i,j~ 
〈l,r〉

n + l is defined from b。…似， asfollows: 

1. ai+l,i = 1 if bi-1← bi (1~i さ n).

2. ai,i+l = 1 if bi-1→ bi (1~i さ n).

3 0 . ai,J = otherwise. 

In other words, the exclusive or (disjunction) of ai,(i+l) and a(i+l),i is l for 
i = 1,2, ... , n, and ai,J = 0 otherwise. 

Definition 7 (Path matrix) Let A be an atomic matrix, and tA be its trans-

posed matrix, then a path matrix P with type ((n + l)2, (n + l)2) is defined by 
using the tensor product!'Ras follows: 

n 

P = In+lRA+ L(Eい+1幻A)
i=l 

5From the definition, the tensor product X 0 Y provides the matrix that has every element 
of X, scalar multiplied with Y, i.e., Xi,j• Y for X = (xi,j)-
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where the identity matrix In+l has type (n + 1, n + l). The element matrix 
Ep,q = (ei,j) with (n + l, n + l) denotes the matrix such that ei,j = l for 
(i,j) = (p, q), and ei,j = 0 otherwise. 

It should be remarked that the transposed matrix tA represents an effect of an 
application of flip to each atomic path. That is, flipped paths that are obtained 
from atomic paths are coded by tA. An application of mon with the point 
constructor F increases the type of the matrix, which is represented by the use 
of the tensor product. It should be clear that by the definition, the path matrix 
P has the following form: 

A tA 

゜゚ ゜゚゜
A tA 

゜ ゜゚
゜゚
A tA 

゜゚In+l⑳ A+  t(Ei,i+l幻A)=I。
゜゚

A tA 

゜i=l 

゜
゜゚゜゚

A tA 

゜゚゜゚ ゜
A 

where the atomic matrix A is assigned to every diagonal position of the block 
matrix, and the transposed tA is assigned to each position to the right of A. 
Let炉=(p叫 with1 :c:; i,j :c:; (n + 1)2. Then the element Pl,j represents 
the number of paths with m arrows (length m) from b。to戸 (b砂 wherej = 
(n + l)・q + k + l and 0さk:c:; n, see also the forthcoming example in this 
section. 
For natural numbers n, m and square matrices X, Y with the same type, 
define the following matrix C(X叫Y門. The matrix represents all paths of 
length (n + m), which are obtained by choosing n paths that are coded by X 
and m paths that are coded by Y. 

Defimt10n 8 1. C(X0, Y0) = I where I is the identity matrix. 

2. C(Xo, ym+l) = ym+l. 

3. qxn+l, yo) = xn+l. 

4. qxn+l, ym+l) = C(X叫ym+l).X + qxn+i, y門・Y.

Then we have (X + Y)k = L k i=O C(Xk-i, yりbyinduction on k. Now, for 
1 :c:; k < n, the matrix power炉 canbe expressed by the small matrices A and 
囁 asfollows, which can be verified by induction on k: 

が C(Ak-1,tA) . . . C(A, tAk-1) tAk O . . . 0 

〇が C(Ak-1,tA) . . . C(A, tAk-1) 叫 0
0 0 が C(Ak-1,tA) 

0 0 0 が C(Ak-1,tA)

。 。 ゜ ゜ ゜
0 Ak 



24

Fork~n, 炉 canbe expressed similarly as follows: 

が C(Ak-1,tA) 

0 が C(Ak-1,tA) 

0 0 が C(Ak—□A) 
0 0 0 が C(Ak— 1,tA)

C(Ak-n, tA門
C(Ak-n+l, tAn-1) 

゜゜ ゜ ゜
Ak 

That is to say, (1, i)-matrix of炉 (i= 1, ... , n + l) is described as follows. 

1. Case of m < n: 

((1, i)-matrix of炉）＝｛ C(Am-i+l'(tA)i-1) for i = 1, 2, ...'m + 1, 
0 for i = m + 2, ... , n + l. 

2. Case of m :::=: 訟

((1, i)-matrix of P門=C(Am-(i-1)'(tA)i-1), for i = 1, 2, ...'n + l. 

From the definition of the adjacency matrix, we should remark the following 
facts. The points b。andFq(bi) (q~0) cannot be connected by using marrows 
with m :c::; i -1, so that ((1, (n + 1)• q + i + 1)-element of P門=0 form< i. 
That is, ((1, i + 1)-element of C(Am-q, (tA)り） = 0 form< i. 
Recall L(i) = rt(←） [O, i], and let L(i)~1. We have no paths from b。to
bi trivially, if L(i) = 1. Similarly, we have no paths from b。toFq(bi) with 
q < L(i), so that ((1, (n + 1)・q + i + 1)-element of P門=0 for q < L(i). That 
is, ((1, i + 1)-element of C(Am-q, (tA)り） = 0 for q < L(i). 

Remark 1 1. ((1, i + l)-element of C(Am-q, (tA)り） = 0, form< i. 

2. ((1, i + l)-element of C(Am-q, (tA)q)) = 0, for q < L(i). 

For the unique path property we have the following main theorem. 

〈l,r〉
Theorem 5 (Unique path property) Given b。…加 withtype An+l. Then 
for each i = 1, 2, ... , n, 

((1, (n + 1)• L(i) + i + l)-element of P門=Dm,i 

where L(i) =~(•) [O, i] and Dm,i is the Kronecker delta. In other words, for 
each i = l, 2, ... , n, there exists a unique path from b。toFL(i) (bi) where the 
length of the path is i. 

Proof. From the form of炉 andthe remark above, it is enough to show that 

((1, i + 1)-element of C(Am-L(i), (tA)L(i))) = Dm,i 
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with m~i for each i = 1, 2, ... , n by induction on i. See Appendix A for the 
details. ロ

〈2,1〉
Take a simple example b。← bi→ 的←妬fromb。…妬 oftype釦.Then 
we have the following atomic matrix A and the transposed tA: 

0
知

0

0

（

＼

 ＝
 

A
 

0
 a
 a
 a
 

3

3

 
4
 
a
 

0

2

0

 

a
 

＼

）

 

0
 0
 0
 0
 

and 

0

0

 0
 0
 

（

＼

 ＝ 
tA 

1

3

 

2
0
2
0
 

a

a

 

0

0

 0
 0
 

¥

）

 
3
 

0

0

4

0

 

a
 

where a21 = a23 = a43 = 1. The path matrix P with type (4叫4りisobtained 
as follows. 

A
 a
 a
a
 

（

＼

 ＝
 
e, 

t
A
A
 a
a
 

o
t
A
A
0
 

＼

）

 

o
o
t
A
A
 From 炉 (2~k~7), we obtain the number of reduction paths from bi to 

F叫朽） (1 < m~3) with length k for each O <・・<_ i,J _ 3. For mstance, 

the number of reduction paths of b。""'F列妬） with length 5 is obtained as 
3 by (1, 16)-element of P尺andthat of b1 ""'F3(b2) with length 7 is obtained 

〈2,1〉
as 21 by (2, 15)-element of P7. See also Q(b。…妬） below for the instance 
b。← b1→ 妬←妬， whereall the arrows in this graph are coded by P. 

b。

F(bo) 

戸(bo)

戸 (bo)

↑
＼
↑

＼

↑
＼
↑
 

↓
／

↓
／
に
↓
／
ビ
↓

↑
＼

↑
＼
↑
＼
↑
 

b1 

F(b1) 

戸 (bリ

戸 (b1)

b2 

F(b2) 

戸 (b2)

戸 (b2)

b3 

F(b3) 

戸 (b3)

戸 (b3)

8
 
Concluding Remarks 

From the motivation of quantitative analysis of reduction systems we introduced 

a category-like structure induced from a quiver, together with the three path 

constructors based on the well-known triangle property. In section 2, we started 

with (3-reduction. However, it should be remarked that the property of Propo-

sition 1 still holds for parallel f3rJ-reduction and moreover holds even for the 
parallel reductions defined for other reduction systems such as Girard's system 

F and Godel's system T as well [22]. This might mean that the formal system 
of reduction paths extracts some abstract and common property from such re-

duction systems that satisfy the condition (A). Next, the equational theory and 

reduction rules for reduction paths are introduced to obtain normal reduction 

paths. Based on the normal paths, simple and planar reduction graphs are con-
structed from a conversion sequence. To count reduction paths, it is natural to 
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define path matrices by adjacency matrices induced from a finite fragment of 
the reduction graphs consisting of normal paths. Then the unique path prop-
erty (UPP) and universal common-reduct property (UCR) are established. As 
a result, the common reduct戸 (P)in Proposition 1 can be considered as the 
optimum one among those which are generated by the condition (c) of (A) (tri-
angle property). It is now straightforward to define transformation rules from 
conversion sequences to reduction paths leading to the universal common reduct. 
Our formal system of reduction paths simply regards terms as points, and 
a finite fragment of a reduction graph can be represented by a path matrix. 
From the augmented matrix, we can obtain an adjacency matrix representing 
a quiver which is generated from a given quiver of type An+l. Quivers are well 
known as representations of algebras [1]. It would be worthwhile to investigate 
this viewpoint further, which might induce an algebraic semantics of lambda-
calculus such that lambda-terms are interpreted as vector spaces and reduction 

paths as linear maps. One possible way to make a higher order extension is to 
introduce a Groupoid-like structure as in [6]. This subject should be investigated 
further. 
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A Proof of Theorem 5 

We recall the statement of Theorem 5: 

〈l,r〉
Given b。…加 oftype An+l・Then for each i = 1, 2, ... , n, we have 

((1, (n + 1)• L(i) + i + 1)-element of P門=<5m,i 

where L(i) =~(•) [O, i] and <5□ is the Kronecker delta. That is, for each 
i = 1, 2, ... , n, there exists a unique path from b。topL(i)(bi)-

Proof. From the form of戸 andRemark 1, it is enough to show that 

((1, i + 1)-element of C(Am-L(i), (t A)L(il)) =如，t

with m ;::=: i for each i = 1, 2, ... , n by induction on i. 

1. Case of i = 1 and L(l) = 1, i.e., b0← bじ
From the definition of A, we have a2,1 = 1, and (1, 2)-element of t A is 
indeed a2,1 = 1. 

Next, (1, 2)-element of C(Am-1, t A) is O for m ;::=: 2. In fact, form ;::=: 2, 

C(Am-1, tA) 

= (t A)(Am-1) + A(tA)(Am-2) + ... + (Am-2WA)A + Am-l(tA) 

= (t A)(Am-1) + A(C A)(Am-2) + ... + (Am-3)(t A)A + Am-2(t A)), 

where ((1,2)-element of (tA)(Am-1)) = 0 form;::=: 2, and the first raw of 
A with a1,2 = 0 consists only of 0, which implies that ((1, 2)-element of 
A• B) = 0 for any B. 

2. Case of i = 1 and L(l) = 0, i.e., b0→ 恥
From the definition of A, we have a1,2 = 1. 

In fact, ((1, 2)-element of C(A叫 (tA)0))= 0 form;::=: 2. 

3. Case of L(i) =~(•) [O, i] =~(•) [O, i + 1] = L(i + 1) with i + 2 .:::: n, i.e., 
bi→ bi+l where ai+l,i+2 = 1: 

(a) First, we will show that for m = i + 1, 

((1, i + 2)-element of C(Am-L(i+l), (t A)L(i+ll)) = 1. 

Here, for L(i) 2:: 1 we have 

C(Am-L(i+l), (t A)L(i+l)) 

= C(Am-L(i+l), (t A)L(i+l)-1). (t A)+ C(Am-1-L(i+l), (t A)L(i+l)). A. 

For L(i) = 0, we have C(A叫 (tA)o)= A叫 whichis the same as the base 
case. 
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From the induction hypothesis (I-H), form= i we have 

((1, i + 1)-element of C(Am-L(i), (t A)L(i))) = 1. 

Now, ((1, i + 2)-element of C(Ai+l-L(i+l), (t Al(i+ll)) = 1 is obtained as 

follows: 

((1, i + 2)-element of C(A•+l-L(i+l), t AL(i+ll)) 

n+l 
L ((1, j)-el. of C(Ai+l-L(i+l), t AL(i+l)-l))• ((j, i + 2)-el. oft A) 
j=l 
n+l 
+ L((l,j)-el.of C(A臼ーL(i+l)'tAL(i+l))) ・((j, i + 2)-el. of A) 

j=l 

((1, i + 1)-el. of C(A•+l-L(i), t AL(i)-1))• ((i + 1, i + 2)-el. oft A) 

+((1, i + 3)-el. of C(Ai+l-L(いAL(il-1))• ((i+3,i+2)-el.oftA) 

+ ((1, i + 1)-el. of C(Ai-L(いAL(il)).((i + 1, i + 2)-el. of A) 
+ ((1, i + 3)-el. of C(Ai-L(i), t AL(i)))• ((i + 3, i + 2)-el. of A) 

((1,i + 1)-element of C(Ai+l-L(i), tAL(i)-1))・0・: ai+2,i+l = 0 

+o・ai+2,i+3 ・: Remarkl-1 

= 1, 

+ 1・1・.-I-Hand ai+l,i+2 = 1 

+ 0・ai+3,i+2・: Remarkl-1 

where we have aj,i+2 = 0 except for j = i + l, i + 3. 

(b) Next, we will show that for m~i + 2, 

((1, i + 2)-element of C(Am-L(i+l), (t A)L(i+ll)) = O. 

The induction hypothesis (I-H) gives that for m~i + 1, we have 

((1, i + 1)-element of C(Am-L(i), C A)L(i))) = O. 
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((1, i + 2)-element of C(Am-L(i+lいAい+il))
n+l 
L((l,j)-el. of C(Am-L(i+l)'t AL(i+l)-1))・((j,i + 2)-el. oft A) 

J=l 

n+l 
+ L((l, j)-el. of C(Am-L(i+l)―1,tAい+1)))・((j,i + 2)-el. of A) 
j=l 

((1, i + 1)-element of C(Am-L(i), t AL(il-1)). ai+2,i+1 

+((1, i + 3)-element of C(Am-L(i), t AL(i)-l)) . ai+2,i+3 

+ ((1, i + 1)-el. of C(A (m-l)-L(i), t AL(il))• ai+l,i+2 

+ ((1, i + 3)-el. of C(Am-1-L(i)'t AL(i))). ai+3,i+2 

Q・_-ai+2,i+l = Q 
+((1, i + 3)-el. of C(Am-1-(L(i)-1)'t AL(i)-1)) . ai+2,i+3 

+ 0・: I-H with (m -1)~i + 1 

+ ((1, i + 3)-el. of C(Am-1-L(i)'t AL(i))). ai+3,i+2 

= 0・: Remarkl-2 with L(i) -1 < L(i) = L(i + 2) for ai+2,i+3 = 1 

+O・: L(i) < L(i) + 1 = L(i + 2) for ai+3,i+2 = 1 

= 0. 

4. Case of L(i + 1) = tt(←） [O, i + 1] = L(i) + 1 with i + 2::; n, i.e., bi← い
where ai+2,i+l = 1: 

(a) We will show that for m = i + 1, 

((1, i + 2)-element of C(Am-L(i+l), (t A)L(i+ll)) = 1. 

Here, we have 

C(Am-L(i+l), (t A)L(i+l)) 

= C(Am-1-L(i), (t A)L(i)) . (t A) + C(Am-L(i)-2, (t A)L(i)+l) . A. 

From the induction hypothesis, for m = i we have 

((1, i + 1)-element of C(Am-L(i), (t A)L(il)) = 1. 

Now, ((1, i + 2)-element of C(Ai+l-L(i+l), (t A)L(i+ll)) = 1 is obtained as 
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follows: 

((1, i + 2)-element of C(Ai+l-L(i+l), t AL(i+l))) 

n+l 
L((l, j)-el. of C(Ai-L(i)'t AL(i)))・((j,i + 2)-el. oft A) 

j=l 
n+l 
+ L ((1, j)-el. of C(Ai-(L(i)+l) ,t AL(i)+i))• ((j, i + 2)-el. of A) 

J=l 

((1, i + 1)-el. of C(Ai-L(i), t AL(il))• ((i + 1, i + 2)-el. oft A) 

+((1, i + 3)-el. of C(Ai-L(i), t AL(i)))• ((i + 3, i + 2)-el. oft A) 

+ ((1, i + 1)-el. of C(Ai-L(i)―1, t AL(i)+l)) . ((i + 1, i + 2)-el. of A) 

+ ((1, i + 3)-el. of C(Ai-L(i)-1, t AL(i)+l))• ((i + 3, i + 2)-el. of A) 

1・1・,-I-Handai+2,i+1 = 1 

+ 0・ai+2,i+3・: Remarkl-1 

= 1, 

+ ((1, i + 1)-el. of C(Ai-L(i)-1, t AL(i)+l)) . 0・."ai+l,i+2 = Q 

+ 0・ai+3,i+2・: Remarkl-1 

where we have aj,i+2 = 0 except for j = i + l, i + 3 with i + 2:::; n. 

(b) Next, we will show that for m 2: i + 2, 

((1, i + 2)-element of C(Am-L(i+l), (t A)L(i+ll)) = O. 

The induction hypothesis (I-H) gives that for m 2: i + 1, we have 

((1, i + 1)-element of C(Am-L(i), C A)L(i))) = O. 
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((1, i + 2)-element of C(Am-L(i+l), t AL(i十1)))

n+l 
区(l,j)-el. of C(A m-L(i+l), t AL(i+l)-1))・((j,i + 2)-el. oft A) 
J=l 

n+l 
+ L((l, j)-el. of C(Am-L(i十1)-1占曹+1l))• ((j, i + 2)-el. of A) 
j=l 

((1, i + 1)-element of C(A(m-l)-L(i), t AL(i)))• ai+2,i+l 

+((1, i + 3)-element of C(Am-l-L(i), t AL(i)))・ai+2,i+3 

+ ((1, i + 1)-element of C(Am-L(i)-2, t AL(i)+l)) . ai十l,i+2

+ ((1, i + 3)-element of C(Am-L(i)-2, t AL(i)+l))・ai+3,i+2 

0・:  I-H with (m -1) 2 i + 1 

+((1, i + 3)-el. of C(Am-1-L(i)'t AL(i))). ai+2,i+3 

+ 0・:  ai+l,i+2 = 0 

+ ((1, i + 3)-el. of C(Am-1-(L(i)+l)'(t Al(i)+1)) . ai+3,i+2 

0・: Remarkl-2 with L(i) < L(i + 1) = L(i + 2) for ai+2,i+3 = 1 

+0・: L(i) + 1 = L(i + 1) < L(i + 1) + 1 = L(i + 2) for ai+3,i+2 = 1 

= 0. 

5. Following the similar pattern, form= n we can show 

((l, n + 1)-element of C(Am-L(n), (t A)L(n))) = l. 

Similarly, form~n + l we can also show 

((l, n + 1)-element of C(Am-L(n), (t Af(nl)) = 0. 

口




