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Abstract 

In this paper, we apply forcing method for Bounded Arithmetic which was <level-
oped by G. Takeuti and M. Yasumoto to three sort theories. As a result, we obtain 
generic extensions which are models of a minimal theory for PSPACE. Proofs are 
sketchy and full length proofs will be given in the paper which is in preparation. We 
also present some problems and ideas for the future research. 

1 A brief (not exhaustive) history of Bounded Arithmetic 

Since the seminal papers by Cook [6] and Buss [3], bounded arithmetic have been consid-
ered in the context of computational complexity as well as proof complexity. 

In 1975, Cook gave a weak system of arithmetic PV which have all polynomial time 

functions and showed that it is related to extended Frege proofs. Then Buss defined a 

hierarchy S~and T~which corresponds to the polynomial time hierarchy in the sense that 

Theorem 1 (Buss [3]) A function is望 definablein S~or TJ+1 if and only if it is 

computable in polynomial time with oracles from羽

This result suggests that separation problems of theories of bounded arithmetic are 

closely connected to separation problems of complexity classes. This connection was soon 

given in more formal manner as a consequence of the KPT witnessing theorem [8] as 

follows: 

Theorem 2 (Buss [4], Zambella [20]) Let i~l, if Tl = S~+l the T2 proves that the 
polynomial hierarchy collapses. For i = 0 the same holds for PV instead of T: 岱

After Buss'thesis, a number of theories are proposed for other complexity classes. In 

particular several weak fragments of Buss'theories are defined for subclasses of PTIME [5]. 

However, compared to Buss'systems which are邸 omatizedby weak forms of induction, 

these theories have rather unintuitive axioms which are hard to investigate. 

•This work was supported by JSPS KAKENHI Grant Number 18K03400. 
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This ine缶ciencywas overcome by Cook and Nugyen [7] who established the theory 

of two-sort bounded arithmetic and proposed various theories for subP classes. In two-

sort bounded arithmetic, there are two sorts of objects, namely natural numbers and 

binary strings. Binary strings are used to code computations of Turing machines, Boolean 

circuits and so on and numbers are mainly used to denote the length of inputs and calculate 

resources required for the computation. 

The base theory is v0 which corresponds to the class AC0 and for many subP com-

plexity classes C, corresponding theory VC is obtained by adding to v0 a single axiom 

which represents a complete problem for the class. 

Turning to stronger complexity classes, Buss'thesis already defined second order theo-

ries which corresponds to PSP ACE and EXPTIME hierarchy. For the class PSP ACE, it is 

possible to construct corresponding theories in two-sort language [12]. Another interesting 
formulation is proposed by Skelley [16] who established a three-sort language and defined 

a theory W[ whose provably total functions are exactly those computable in PSPACE. 

Skelley added third sort of objects, namely superstrings (sets of strings) in order to 

code computations of PSPACE machines. In theories in three sort language, there is no 

way to compute the length a given superstring, yet elements can be recognized as far as 

they are in polynomial range. 

As a result, this formulation enables to construct theories with objects with exponential 

size while prohibiting the totality of the exponentiation. 

2 A brief history of forcing in bounded arithmetic 

The application of forcing methods in bounded arithmetic was initiated by Paris and 

Wilkie [14]. For a L-theory T and a new relation symbol R, T(R) denotes the L(R)-

theory whose axioms are those for T relativized by the language L(R). Then Paris and 

Wilkie showed that 

Theorem 3 (Paris and Wilkie [14]) The theory IE1(R) cannot prove that R is a bi-

jection from n + 1 ton. 

In their proof, the bijection R : n + 1→ n is constructed using a similar manner as in the 

cardinal collapsing in set theoretic forcing. 

After that, Ajtai [1] made a great leap forward. Specifically, he showed that 

Theorem 4 (Ajtai [1]) The the四 I△o(R) cannot prove that Risa bijection from n+l 

ton. 

Although the construction of the bijection is similar to the result by Paris and Wilkie, the 

proof of Ajtai's result requires a complicated argument of probabilistic combinatorics. 

After Ajtai's result, Riis [15] gave similar forcing construction for Buss'theories which 
is recently extended by Atserias皿 dMuller [2] and Muller [13]. 
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Another type of forcing construction in bounded arithmetic was given by Krajfcek. His 

line of research is to obtain nonstandard models of weak theories which settle separation 

problems such as PヂNPor problems in proof complexity. Specifically, he used forcing 

methods to obtain the following results: 

Theorem 5 (Krajfcek [10]) Let MF PV and suppose that MF NP  CJc P/poly. Then 

there exists a IT B 
1 elementa可 extensionM'F PV +NP CJc co-NP/poly. 

Theorem 6 (Krajfcek [9]) Let M F V1 and suppose that a there exists a propositional 

formula T E M which does not have a EF proof in M. Then there exists an extension 

M'F V1 in which ,T  is satisfiable. 

The third wave of forcing in bounded arithmetic was presented by Takeuti and Ya— 

sumoto [18], [19]. They gave a forcing construction from a Boolean algebra which consists 

of Boolean circuits in the ground model. Then they showed that the generic extension so 

constructed relates to the separation problem of complexity classes. 

In the rest of the paper we construct generic extensions of three-sort structures. Specif-
ically, we will construct a generic extension from a given countable nonstandard model of 

Wl using a similar argument as in Takeuti and Yasumoto. 

3 Preliminaries 

In this section we briefly review three-sort bounded arithmetic in [16] and define a new 

minimal theory for PSPACE. 

We deal with theories and structures in three sort language虞.The language .C~ 
comprises three sort of variables 

• number variables :x, y, z, .. . 

• string variables :X, Y, Z, .. . 

• superstring variables :X, Y, Z, ... 

and the following function symbols and predicate symbols: 

Z() =0,s(x) =x+l,x+y,x・y,IXl,x臼 Y,X臼 Y.

碍isthe set of .C~formulas in which all quantifiers are either bounded number quan-
tifiers or bounded string quantifiers. 研 isthe set ofぢ formulaswhich are logically 

equivalent to formulas of the form 

ョYep(歪，X,X,Y)

where cp(元，X,X,Y)E碍．炉研 isthe set of formulas of the form 

切<t1・ ・ ・ 汎<tk cp(元，x,Y, X) 
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where cp(元，X,Y,X)E砕
We define theories for three sort as follows. 

Definition 1 wp is the .C~-theory whose axioms are: 

• the finite set of axioms BASIC3 which define symbols in号

. 碍『-2COMP

ヨY1::/x < a (Y(x)⇔ cp(X)) 

where cp(x) E~ 『doesnot contain Y. 

. ~ 『-3COMP
ョY1::/X < a (Y(X)⇔ cp(X)) 

where cp(X) E~ 『doesnot contain Y. 

Wl is the theory Wf extended by 炉~f-3COMP.

Theorem 7 (Skelley [16]) A function is~r definable in Wl if and only if it is in 

FPSPACE土

We define another theory which is obtained by extending W『bya single axiom which 

represents a PSPACE complete problem. 

QBF games is the game played by two players on a quantified Boolean formulas. Let 

ヨXll::/y1・ ・ ・ ヨxzl;/yゆ(x1,... , XゎY1,• • •, Yz) 

be a quantified Boolean formula. Players 1 and 2 in turn chooses assignments for Xi and 

Yi for 1 :S i :S l. Player 1 wins if the assignments satisfy¢and Player 2 wins otherwise. 

It is well-known that computing winning strategies for QBF games is PSPACE com-

plete. We can formalize strategies by superstirngs. define 

Assignl(l, X, Y, T)⇔ IXI = IYI = l I¥ 1::/z < l (X(z)⇔ T(Y 1z) 

and 

Assign2(l, X, Y, F)⇔ IXI = IYI = l I¥ 1::/z < l (Y(z)⇔ F(X「z)

Then define 

True(l, TJ)⇔ヨTVX,Y < l (Assignl(l, X, Y, T)→ 〈X,Y〉戸 T/)

and 

False(l, TJ)⇔ヨFl::/X,Y< l (Assign2(l,X,Y,F)→ <X,Y>~TJ).

Finally define 

Ax-QBF = 1::/l'vrJ (True(l, TJ) V False(l, TJ)). 

and 

QBFV=W『+Ax-QBF. 

By a standard witnessing argument, we have 
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Theorem 8 A function is~f-definable in QBFV if and only if it is in FPSPACE. 

Corollary 1 W{ is a V~f extension of QBFV. 

4 Three-sort Generic extensions 

Throughout the paper, we assume that飢＝〈Mo,M,M〉isa countable and nonstandard 

£ふstructure.
Let BPこM be the set of Boolean programs in飢.Formally, BP consists of sequences 

of the form〈C。,... ,cりsuchthat each Ci is a formula with connectives from 

八， V,・, fo, ・ ・ ・, fi-l・

where the arity of Ji is eq叫 tothe number of propositional variables in Cか

Let n E Mi。¥wandj5 =Po, ... ,Pn-l be a list of propositional variables in飢 anddefine 

BP(p) = {〈C。,... , C1) E BP: propositional variables of C1 are皿 ongp}. 

It is readily seen that there exists a碍『 formula

BooleP(X,p)⇔ XE  BP(p). 

Note that we can naturally introduce Boolean operations in転 p.So we regard瓦 pasa 

Boolean algebra. 

We define a△ f formula 

a日pX⇔ (a E 2n八XEBP(p) I¥ X evaluates to true on a). 

For X, Y E BP(p) define 

X 詞 pY⇔ 'vAE2n(A日pX→A戸PY)

and 

X=BpY⇔ X ::=;BP YI¥ Y韮 pX.

Finally define 

転 p= BP(p)/ =BP. 

We can alternatively define another partial order on BP(p) based on propositional 

provability. Let BPLK be the proof system LK operated on Boolean programs (cf. [16]) 
and define 

X 韮 PLKY⇔洲トヨP(Pis a BPLK-proof of Y from X). 

In the following argument, we assume that JIB= lIBBP unless otherwise stated. 
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A set lI~JIB is an ideal if O E ll, 1 tf_ ll, closed under V and downward closed with respect 

to :::;BP・
An ideal lIこJIBis Mo-complete if for any X E M with X : k→匝

ふ ElI for some i < k⇒ vci Ell. 
i<k 

A set (G~lIB is a filter if O (j_ G, 1 E G, closed under /¥ and upward closed with respect to 

:::;BP・ 

A filter (G~lIB is maximal if exactly one of X E (G or ,X E (G is true for any X E lIB ¥ ll. 

A set ]]])~lIB is dense over an Mi。-completeideal lI if for any X E lIB ¥ lI there exists 

Y E ]]]) ¥ lI such that YさX.

A maximal filter is a TY-generic over an Mo-complete ideal lI if it intersects with any 

dense set over ll. 

The following can be proved by a similar argument as in set theory. 

p ropos1tion 1 Let IT~lIB be an M。-completeideal. For any X E lIB ¥ lI there exists a 

TY-generic (G over IT such that X E (G. 

As in set theory, we define names for the string part and the superstring part. Specif-

ically, define 

MJIB = { X E M : X : a→ JIB for some a E Mo} 

and 
Mlll¥ ={XE M:  X: M廊→ lIB}. 

For XE  M見wedenote its domain by dom(X). 

Now we can define the genric extension. Let 1G s;; lBl be a TY-generic. For X E Mlll¥ 

with X: a→ lIB, we define 
X,r;; = {i <a: X(i) E IG}. 

For XE  M見wedefine 

X,r;; = {X,r;;: X(X) E IG}. 

Define 

MIG= {XIG: XE  M門 MIG= {心： XE M門

Finally, define 

珈G]=(Mi。,MIG,MIG)-

It turns out that the forcing theorem holds for~ 『formulas.For the proof, we need to 

define Boolean values. 

Definition 2 For 1.p(元，X,X)E~ 『,ii E Afi。,A E MJB and A E MJB we define the Boolean 

program [1.p(元，X,X)] E lB inductively as follows: 
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• if s and t be a term with parameters from洲 then

[s = t] = { 1, if洲戸 s= t, 

゜
otherwise. 

• If b E Mi。andA: a→ llll then 

[bEA]={ A(b), ifb<a, 
0, othe加 ise.

• If B E Mo and A E M廊 then

[BE A] = { A(B), if B E dom(A), 

゜
， otherwise. 

• [r.p八ゆ]= [r.p] /¥ ['I/;], [r.p Vゆ]= [r.p] V [心]and [,r.p] = ,[r.p]. 

• If t is a term then 

［ヨx< tr.p(x)] = V[r.p(x)], [如<tr.p(x)] = (¥ [土）］．
x<t x<t 

• ［ヨX:::;t cp(X)』consistsof the following formulas: 

釦 (qo,...'qi) = [cp(〈qo,... ,qり）］，
如 (qぃ..., qz) =¢1,i-1(0, qぃ...,qz) V仰，i-1(1,qi, ... , qz), 

¢= Vz:c:t切，l+l・

・[¥IX:S: t cp(X)] consists of the following formulas: 

如 (qo,...'qz) = [cp(〈qo,... ,qり）』，
如 (qi,... , qz) =¢1,i-1 (0, qi, ... , qz) I¥切，i-1(1,qi, ...'qリ，
cp = 1¥1:s;t仰，l+l・

It is easy to see that the Boolean translation [・] satisfies the following basic properties: 

Lemma 1 The translation [・] satisfies the DeMorgan law. That is for anyゃ(X)E堺
and a term t, 

[¥/X:::; t cp(X)] =BP[, ヨXさt,cp(X)] and 
［ヨX さtcp(X)』=BP[,¥IX :S: t ,cp(X)]. 

Lemma 2 For any cp(X) E~ 『withparameters, a term t and A E 2n, A日p [ヨX :S: 
如(X)]if and only if there exists B E 2t such that〈A,B〉FBP[cp(X)] where X is 
interpreted by B. Similarly A FBP [¥IX :S: tcp(X)] if and only if for any B E 2t, 

〈A,B〉日P[cp(X)>.
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Theorem 9 (Forcing Theorem) Let ip(元，X,X)E :E『,aEAfi。,A E MJB and A E MJB 

and <G~JIB be a TY-generic. Then 

叩 [G]F r.p(a,Aる巫）⇔ [r.p(a, A, A)] E G. 

Before proving Forcing Theorem, we prove a technical lemma: 

Lemma 3 Wf proves that there exists a PSPACE function F(x, ¢) such that for any 
Boolean program¢(元，z),

ョz< t〈x,z〉FBPの（戸）⇔ 〈X,F(X,¢)〉FBP¢(元，z).

(Proof). We can construct F using binary search provably in W[- 口

(Proof Sketch of Theorem 9). 
We prove the theorem by induction on'P・It suffices to prove the following cases since 

other cases are identical to the proof in [18]. 
LetBEM見AE MIIB and B E dom(A). Then 

9.n[G] F BIG Eふ⇔ 底 E{AG: A(A) E G}⇔ A(B) E G. 

Suppose that the claim holds for心(a,X,Z,X)E~ 『皿dlet t be a term with param-
eters from元，X.By the inductive hypothesis, we have 

洲 [G]Fヨz::; t心(a,底，z,底）

if and only if there exists Z : t→ lBl such that [心(a,X, Z, X)] E G. So it suffices to show 

that this condition holds if and only if 

［ヨZさt心(a,x, z, X)] E G. 

The only-if part is implied by the fact that for any Z: t→ 匝

［心(a,x,z, X)]韮 p [ヨz::;t心(a,X,Z,X)] 

which is a consequence of Lemma 2. 

For if part we remark that 

Lemma 4 Let心(a,X,Z,X)E~ 『andt be a term with parameters from元，X.W{ proves 

that there exists a family Cn of Boolean programs such that 

¥:/n¥:/A E勿 (A日p [ヨz:Stい(a,x, z, X)] 
⇔ 〈A,仇（元，ふX)〉曰BP[ゆ(a,x, z, X)]), 

where in the LHS of the equivalence, Z is interpreted by Cn(元，X,X).
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(Proof Sketch of Lemma 4). 

We can use binary search to find a witness B such that 

IBIさtI¥〈A,B〉日p [ゆ(a,x, z, X)>

using the BP to check [心（叩，X,Z, X)]. Moreover, such an algorithm is easily transformed 
into BPs. ロ

Now we can finish the proof of forcing theorem. Let Cn =〈Cn,O,• • •, Cn,t〉bethe list 

of BPs given in Lemma 4 and define 

C: t→ JIB, C(i) = Cn,i(元，x,x).

Then Lemma 4 shows that 

［ヨZs;加(a,x, z, X)]韮 p [ゆ(a,X, C, X)] 

which completes the proof. □ (Theorem 9) 

Theorem 10 If洲 FW/ and G E lE is a TY-generic then洲 [G]FW『.

(Proof). It suffices to show that皿[G]satisfies叫g-3COMP.Let t.p(元，X,Y,X)E碍
a, b E Mo, A E MJB皿 dA E MJB. Define 

Z={〈X,[1.p(b, X, A, A)]〉： XE  MlB, X: X→ lE for some x < a}. 

By Theorem 9, it is readily shown that 

畑 [G]Fvx < a (XE底⇔ 1.p(b,X, 兄，ふ））．

Since the Boolean algebra JEEP is based on the computation model for PSPACE, we 

expect that the generic extension is at least closed under PSPACE functions. Next, we 

will show that this is in fact the case. 

Theorem 11 If洲 FW[ and G <;;; JIB is a TY-generic then洲 [G]FQBFV. 

(Proof Sketch). First we remark that computing stategies for QBF games is in PSPACE 

provably in W[. Let r, E M be a QBF with 2Z variables. Then there exists Boolean 

programs Ca, Da E M for a < l such that 

VX,Y (IXI = IYI = l八'vz< l (X(z)⇔ Cz(Y「z)= 1→ 〈X,Y〉戸 T/))

or 

VX, Y (IXI = IYI = l I¥'vz < l (Y(z)⇔ Dz(X「z)= 1→ 〈X,Y〉巳 rJ))

hold in苅．
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For X,Y: a→ JIB, set 
岱=Ca(Y), Dx = Da(X) 

and define T, F E MJB as 

T={〈Y,Cり： YEM主Y:a→JIB for some a < l}, 

F={〈X,Dx〉:XEM見X:a→JIB for some a< l}. 

Claim. Either one of the followings holds in珈

1. for any X, Y: l→ JIB, 

（八(X(z)⇔ T(Y「z))→[〈X,Y〉F77]) =BP 1. 
z<l 

2. for any X, Y : l→ llll, 

（八(Y(z)⇔咋(X「z))→[<X,Y>~rJ]) =BP 1. 
z<l 

This claim is implied from the fact that in叫 Ax-QBFis true and is witnessed by Ca 

and Da. 
Now from 1 of Claim, we obtain that for X, Y: l→匝

八(X(z)⇔ T(Y「z))E (G⇒ [〈X,Y〉FrJ] E (G 
z<l 

which implies that 

叩[G]巨lc/X,Y (Assignl(X, Y応）→ 〈X,Y〉戸叩）．

Similarly, from 2 of Claim, we obtain that for an X, Y : l→ 且

八(Y(z)⇔ F(X fz)) E G⇒ [<X,Y>~77] E (G 
z<l 

which implies that 

団 [G]巨'vX,Y (Assign2(X, Y応）→ 〈X,Y〉巳叩）．

Thus we have proved the claim of the theorem. 

Corollary 2 If洲 FW[ and GこlEis a TY-generic then研 [GJFv研(Wl).

ロ
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5 Some remarks 

We finish the paper by giving some miscellaneous results on three sort forcing together 

with ideas for future works. 

5.1 When generic is an element of generic extension 

Under some assumption, we can regard generic (G~lE as a superstring of the generic 
extension洲 [G].This is unlike the case for two-sort generic extensions. 

Definition 3 The Boolean algebra匝 basedon the set BP(p)~M is bounded in皿 if

there exists a term t(n) such that 

叩 F¥/XE BP(p)ヨYEBP(p) (IYI < t(n) /¥ X =BP Y). 

Theorem 12 Let皿 p==W{. IJJE is bounded then for any TY-generic G~lE, GE MG. 

(Proof). Suppose that lE is bounded by the term t(n). Then by I; 『-3COMPin皿 we
have 

B ={XE M: XE  BP(p) I¥ IXI-:::: t(叫 EM.

Define 

Q={〈x,x〉:XE  B} E MJB. 

Then it is easy to see that YIG = G. ロ

Corollary 3 Fork E w, let BPk be the class of languages which are decidable by Boolean 

programs wich size bounded by O(nり.If 

叩 Fwf+PSPACEこBP(k)

then GE洲 [G]whenever GこJIBis a TY-generic. 

The idea behind Corollary 3 comes from the result of Santhanam and Williams which 
states that 

Theorem 13 (Santhanam and Williams [17]) For any k E w, P <Jc Size(nり．

Using this, Krajicek and Oliveira [11] showed that 

Theorem 14 (Krajfcek and Oliveira [11]) For any k E w there exists L E P such 

that L ff_ Size(州） is consistent with PV. 
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It is unknown whether a similar separation holds for PSPACE and Boolean programs. 

So it would be interesting to start with the ground models which satisfies or negates the 

condition 

PSPACE~BPk 

and study their generic extension. 

Specifically, we can formalize the statement of Theorem 13 as 

SWk(n)三 VeヨXEBF'sげ YEBPn(IYIさcnk→X咋 PY).

Let洲 FW[ + ,SWk(n) for some k E w. Then by Theorem 12, any TY-genric G is a 

member of叩 [G].

Now suppose we have some combinatorial principle expressed by three-sort formula, 

say VS <l>(S) which is either true, false or even cannot be decided in the standard model. 

If we can construct some ideal lI such that 

畑 [G]F ,<l>(G) 

where CG is a TY-genric over IT then we have 

QBFVげVS<I>(S). 

It is an interesting problem to find a natural combinatorial principle which is expressed 

by such <I>(S). 

5.2 Separation problems and generic extensions 

We can show that the separation condition for P and PSP ACE affects the strength of 

the generic extension. Namely, let lIBc be the Boolean algebra which consists of circuits 

in 9J1. Then we can construct generic extension in the same manner as for JIB BP and show 

that 9J1[G] is a model of the three-sort conservative extension of PV. Moreover, we have 

the followings: 

Theorem 15 If皿 FWl + P = PSPACE then洲 [G]F QBFV for any TY-generic 

(G E lIBc. 

Theorem 16 If飢 FWl + P =J PSPACE then叩 [G]F QBFV for some TY-gene加

GE翫．

On the other hand, it seems much harder to show that generic extension for lIBBP 

satisfies or excludes研induction.

Problem 1 Prove or disprove that if皿←町+PSPACE = EXPTIME then 

叫G]F r:f-IND 

for any TY-generic G. 
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Problem 2 Prove or disprove that if洲 FWl +PSPACEヂEXPTIMEthen 

叫CG]~ ~f-IND 

for some TY-generic (G. 

In general, the problem of whether the generic extension satisfies axiom schemata for 

琉 formulasis difficult. This is mainly because we have forcing theorem only for碍
formulas. So we need neat techniques to treat涅fU IIf formulas in the generic extension. 

Concerning the separation of EXPTIME from PSPACE, we can prove the follow-

mgs: 

Theorem 17 If飢ヒ叫+EXPTIME= PSPACE then洲 [<G]is closed under EXPTIME 

functions for any TY-generic <G E転 p.

Theorem 18 If叩 p==W{ + EXPTIME =J PSPACE then飢 [<G]is not closed under 

EXPTIME functions for some TY-generic <GE JIBBP・ 

5.3 Generic extensions for other classes 

In principle, if we can define Boolean algebras for complexity classes other than PSPACE, 

we can construct generic extensions which are models of some minimal theory for the class. 

An exa.Illple for such a class is EXPTIME. Actually, we can define a Boolean algebra 

which consists of succinct Boolean circuits and show that the generic extension satisfies 

the axiom stating that any succinct circuit can be evaluated. 

Another interesting case is counting classes. However, we do not even know any theory 

for counting classes. 

Problem 3 Define a three sort theory for the class pp#P_ Also define a Boolean algebra 

for the class. 
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