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Abstract

Aljjani, Farhadi, Ghodsi, Seddighin, and Tajik considered a restricted version of
the cake-cutting problem and proposed a mechanism based on the expansion process
with unlocking [1, 6]. They claimed that their mechanism uses a small number of cuts,
and that it is envy-free and truthful. We first show that it is not actually envy-free
and truthful. Then, for the same cake-cutting problem, we give a new envy-free and
truthful mechanism with a small number of cuts, which is not based on their expansion
process with unlocking.

1 Introduction

The problem of dividing a cake among players in a fair manner has been widely studied
since it was first defined by Steinhaus [7]. Prcocaccia has claimed in his survey paper [5] as
follows: insight from the study of cake-cutting problem can be applied to the allocation of
computational resources, and designing cake-cutting algorithms that are computationally
efficient and immune to manipulation is a challenge for computer scientists. Recently, the
cake-cutting problem has been studied by computer scientists, not only from the viewpoint
of computational complexity [3], but also from the game theoretical point of view [2].

Alijani, Farhadi, Ghodsi, Seddighin, and Tajik considered the following cake-cutting
problem from the game theoretical point of view [1, 6]:

Given a divisible heterogeneous cake C'= (0,1] = {z | 0 < = < 1}, a set of n strategic
players N = {1,2,...,n} and the valuation intervals T = {C1, Cs, ..., Cy,} with valuation
interval C; = (o, 8] = {x |0 < oy < & < B; < 1} C C of each player i € N, find a
mechanism (that is, a polynomial time algorithm) for dividing the cake into pieces and
allocating pieces of the cake to n players to meet the following conditions (Figure 1):

(i) the mechanism is envy-free, i.e., each player (weakly) prefers his/her own allocated
piece to any other player’s allocated piece,

(ii) the mechanism is strategy-proof (truthful), i.e., each player’s dominant strategy is
to reveal his/her own true valuation interval over the cake (i.e., making a lie will not
lead to a better result), and

(iii) the number of cuts made on the cake is small.

They proposed an expansion process with unlocking and gave a mechanism for the
above cake-cutting problem based on the expansion process with unlocking [1, 6]. They
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0 C,=C=(01] 1
C, =(0.02,0.64]
C, =(0.05,0.68]

€y =(0.03,0.65]
Cs =(0.08,0.87]

Figure 1: An input example for the cake-cutting problem (n = 5). Player 1 is allocated
(0,0.07)U(0.87, 1], player 2 is allocated (0.07,0.27], player 3 is allocated (0.27,0.47], player
4 is allocated (0.47,0.67] and player 5 is allocated (0.67,0.87].

claimed that their mechanism satisfies the above three conditions, i.e., it is envy-free,
truthful and the number of cuts made on the cake is at most 2(n — 1).

In this paper, we first show that the mechanism based on the expansion process with
unlocking proposed by Alijani, Farhadi, Ghodsi, Seddighin, and Tajik in the paper [1, 6]
uses a small number of cuts, but is not actually envy-free and truthful.

Then, for the same cake-cutting problem, we give an alternative envy-free and truthful
mechanism which is not based on the expansion process with unlocking.

2 Mechanism Proposed by Alijani et al.

In this section, we explain the mechanism based on the expansion process with unlocking
proposed by Alijani, Farhadi, Ghodsi, Seddighin, and Tajik by borrowing their description
in the paper [1, 6]. Since our description is the same as their description, although we
changed a little such as notation, we would like to express our sincere gratitude to them.

As mentioned before, in the cake-cutting problem, we are given a divisible heteroge-
neous cake C' = (0,1] = {x | 0 < 2 < 1}, a set of n strategic players N = {1,2,...,n} and
the valuation intervals T = {C4,Cy,...,Cy} with valuation interval C; = (ay, 5;] = {z |
0<a; <z <B <1} CC of each player i € N.

A piece of C is a set of mutually disjoint intervals in C. For an interval I = (a,b] C C,
the length of I, denoted by len(I), is defined by len(I) = b — a. Thus, for a piece

A ={h,1Iz,...,14}, the length of A, denoted by len(A), is defined by the total length

of the intervals in A, i.e., len(A) = LAll len(Ix). The value of an interval I = (a,b] to

player i € N, denoted by V;(I), is defined by the length of interval I N Cj, i.e.,

Vi(I) = len(I N C}).
Thus, for a piece A = {I,Is,..., 1 4}, the value of A to player i € N, denoted by V;(4),
is defined by the total value of the intervals in A to player i € N, i.e.,

|A] |A]
Vi(A) = Vi(ly) =Y _len(Iy N C;).
k=1 k=1
A division of the cake C' among n players N = {1,2,...,n}isaset D = {A;, Aa, ..., Ay}
of pieces, with each piece A; = {I; 1,12, . .., Ii,\A”} to player ¢ € N with the following two
properties:

(i) every pair of pieces are mutually disjoint, i.e., for all 4;,4; (1 < i < j < n),
A;NA; =0, and

(ii) no piece of the cake is left behind, i.e., [J;cy 4i = C.
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The number of cuts in division D = {A1, As,..., An} is (O ,cn |Ai]) — 1. A division
D = {A1, Ay, ..., A} is envy-free, if, for every player ¢ € N and every piece A; € D,
the inequality Vi(A;) > Vi(A;) holds. In this setting, the envy-free notion for division
D ={Ay, Ay, ..., A} with each piece A; = {l;1,li2,...,1;|a,} to player i € N can be
written as follows: for each player i € N and each j € N,

[Aq] |Aql |4;] [4;]
Vi(Ai) =Y Villin) =Y len(Lix N Cy) > Vi(Aj) = > VilTjn) = Y _ len(Ij; N Ci).
k=1 k=1 k=1 k=1

For a set of valuation intervals 7' C T, let DOM(T) be the minimal interval that
includes all members of T as sub-intervals. Thus, for a set T C T,

DOM(T) = (gj}g% o, max ).

Furthermore, the density of T, denoted by ®(T), is defined by

_AT)
() =T

where A(T) is the total length of DOM(T) that is covered by at least one interval in T
Thus, A(T) < len(DOM(T)) holds. A set of valuation intervals T" C T is called solid, if
for every point € DOM(T), there exists a valuation interval C; in T such that x € C;.
They assume that every piece of the cake is valuable for at least one player. Thus they
assume that the valuation intervals T = {C1,Cy,...,Cy} is solid, i.e.,

Ya=c

1EN

This implies that DOM(T) = C and X\(T) = len(DOM(T)) = 1.

2.1 Expansion process

The main tool in their mechanisms in [1, 6] for dividing the cake is a procedure they
call expansion process. The expansion process expands some associated intervals to the
players, inside their desired areas (i.e., valuation intervals). They use exp(T) to refer to
the expansion process on set T C T of valuation intervals. They initiate the expansion
process for T by associating a zero-length interval I; = (a;,b;] at the beginning of its
corresponding valuation interval C; = (a;, 5;] € T, i.e., I; = (a; = a;,b; = «;]. Denote
by S(T) = {I; | C; € T}, the set of these intervals. They expand the intervals in S(7T')
concurrently, all from the endpoint. The expansion is performed in a way that maintains
two invariants:

(i) The expansion has the same speed for all the intervals in S(7") so as the lengths of
the intervals in S(7") remain the same, and

(ii) each I; = (a;,b;] € S(T) always remains within C; = (o, 5;] € T.

During the expansion, the right endpoint b; of an interval I; = (a;,b;] € S(T) may
collide with the starting point a; of another interval I; = (aj,b;] € S(T). In this case,
1; pushes the starting point of I; forward during the expansion. The push continues to



the end of the process. If I; pushes I;, they say I; is stuck in I;. Note that by the way
they initiate the process, the intervals I; = (a;,b;] € S(T) remain sorted according to the
corresponding «/s. In the special case of equal «; for two players, the one with smaller ;
comes first.

Definition 2.1 (Definition 1 in [1, 6]) During the expansion, an interval I; = (a;, b;] in
S(T') becomes locked, if the endpoint b; of I; reaches the right endpoint 3; of C; = («y, 3]

Definition 2.2 (Definition 2 in [1, 6]) A chainis a sequence I, I5,, ..., I, of intervals in
S(T'), with the property that, for 1 <i < k, I,, is stuck in I, A chain Iy, Io,, ..., Iy,
is locked, if 1,, is locked.

i+1°

The size of a chain is the number of intervals in that chain. By definition, a single
interval is a chain of size 1. The expansion ends when an interval in S(T") becomes locked.
The termination condition ensures that the second invariant is always preserved.

Definition 2.3 (Definition 3 in [1, 6]) The expansion process for T is perfect, if the
associated intervals in S(T) cover the entire DOM(T'). If the process terminates due to a
locked interval before entirely covering DOM(T'), the process is imperfect.

Note that if an expansion process on T ends perfectly, then len(l;) = ®(T) for every
associated interval I; in S(T).

Observation 2.1 (Observation 1 in [1], Observation 31 in [6]) During the expansion
process, every interval I; in S(T) is either being pushed by another interval in S(T), or
its starting point is still on «;.

2.2 Expansion Process with Unlocking

They introduce a more general form of the expansion process. The basic idea is the fact
that during the expansion process, there might be some cases that a locked chain becomes
unlocked by re-permuting some of its intervals, without violating the expansion invariants.

Definition 2.4 (Definition 4 in [1, 6]) Let € = I, I5,, ..., I, be a maximal locked chain.
A permutation I5,, I5,, . . ., I5, of the intervals in C is said to be C-unlocking, if the following
conditions hold.

(i) All the intervals of the permutation are members of the locked chain, i.e., I5, € C for
all i = 1,2,...,r, and the last interval [s, of the permutation is the locked interval
(i.e., 57‘ = O'k).

(ii) For every j < r, the share I5; = (as,,bs;| associated to player d; is totally within the
valuation interval Cy, ., = (ag;,,, 85,,,] of player d;41 (with its right endpoint by,
of Is; = (a(;j, b(;j] strictly less than the right endpoint ﬁ5j+1 of the valuation interval

Cs,y = (05,415 85,,4]), 1-e., as; > ag,,, and bs, < B, for all j with 1 <j <r—1.

(iii) The share Is5, = (as,,bs,| associated to player d, is within the valuation interval
Cs, = (ag,, Bs,] of player 61 (with its right endpoint bs,. of I5. = (as,, bs,] strictly less
than the right endpoint 35, of the valuation interval Cs, = (as,, 85,]), i-e., as, < as,
and /3(51 > b(yT.

o7
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Figure 2: From a C-unlocking permutation Iy, I., I, I, in a maximal locked chain C =
I, Iy, 1., 14, 1., we can obtain a chain € = I, I.., I, I, I;, which is no longer locked. From
another C-unlocking permutation Iy, I.., I, we can also obtain a chain ¢” = I,,, I, I, I, I,
which is no longer locked.

The intuition behind the definition of unlocking permutation is as follows:

Let I5,,Is,, ..., Is, be a C-unlocking permutation, where € = I,,,I,,,...,I5 . Then,
the order of the intervals in € can be changed by placing I;,,, in the location I5; for
each j with 1 < j < r and placing I;, in the location I5.. By the definition of unlocking
permutation, after such operations, I5, = I, is no longer locked. Thus, I,, is not a barrier
for the expansion process and the expansion can be continued.

It is worthwhile to mention that there may be multiple locked intervals in a moment.
In such case, they separately try to unlock each interval. For a set T" of valuation intervals,
they use U-exp(T) to refer to the expansion process with unlocking for 7'. See Figure 2
for an example of this process.

Definition 2.5 (Definition 5 in [1, 6]) A maximal locked chain € = I, Ip,,..., Iy, is
strongly locked, if € admits no unlocking permutation.

Definition 2.6 (Definition 6 in [1, 6]) An expansion process with unlocking U-exp(-) is
strongly locked, if at least one of its maximal locked chains is strongly locked.

Definition 2.7 (Definition 7 in [1, 6]) A permutation graph for a maximal locked chain
C=1Iy,1py,...,15, is a directed graph Ge(V, E) defined as follows: For every interval
15, € C, there is a vertex vy, in V. The edges in E are in two types E; and E,, i.e.,
FE = FE;UE,. The edges in E; and E, are determined as follows:

(i) For each I, and I,;, the edge (vo,,v,,) is in By, if i > j and o, < a,,.
(ii) For each I,, and I,,, the edge (v,,;,vs;) is in B, if i < j and by, < fo,.

An example of permutation graph Ge(V, E) is shown in Figure 3. Note that, if there
is an edge (vg,,vs,) in Ej, then I, can be moved to the place where I, is, since I, =
(ao,,00;] C Cop = (Qoy, o] (L., g, < ag; < by, < ag; < bs; < By;). Similarly, if
there is an edge (vg,,vgj) in E,, then I,, can be moved to the place where L,j is, since
I5; = (ao;,bs;] C Co; = (5 By;] and by, < Bo, (i€, g, < ag;, < oy < a5y < by; < B,)-

A trivial necessary and sufficient condition for a maximal locked chain € to be strongly
locked is that Ge contains no cycle including v,,. Thus, € = Iy, I5, I3, I4 in Figure 3(a) is
a strongly locked chain.
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Figure 3: (a) A maximal locked chain C = I3, I5, I3, I of chain Iy, I5, I3, 14, I5. (b) Per-
mutation graph Ge(V, E).

2.3 Description of their mechanism

Their mechanism for finding a proper allocation is based on the expansion process with
unlocking. Generally speaking, they iteratively run U-exp(-) on the remaining players’
shares. This process allocates the entire cake or stops in a strongly locked situation. They
prove some desirable properties for this situation and leverage these properties to allocate
a piece of the cake to the players in the strongly locked chain. Next, they remove the
satisfied players and shrink the allocated piece (as defined in Definition 2.8 below) and
solve the problem recursively for the remaining players and the remaining part of the cake.

Lemma 2.1 (Lemma 4 in [1, 6]) Assume U-exp(-) stops in a strongly locked situation.
Let C = Iy, 1y, ..., 15, be a maximal strongly locked chain and let Ge(V, E) be the
permutation graph of the chain €. Let ¢ be the minimum index such that there is a
directed path from v,, to v,, using only edges in £;. Then there is a directed path from
Vo, to every vertex vy, with ¢ > £ using only edges in E.

(In a strongly locked chain € = Iy, I, I3, I4 in Figure 3, vy, = v4 and oy = 2.)

Definition 2.8 (Definition 9 in [1, 6]) Let C be a cake and I = (I, I.] C C be an interval.
By the term shrinking of I, they mean removing I from C' and gluing the pieces to the

left and right of I together. More formally, every valuation interval (o, ;] turns into
(f (i), f(Bi)] by shrinking of I, where

T (x < Iy)
flx) = { I, (Is <z <L) (1)
x—I.+1I, (z>1).

Definition 2.9 (defined in Lemma 5 in [1, 6]) Let T be a set of valuation intervals. Then
T is called irreducible if ®(T") > ®(T') holds for every T" C T
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Lemma 2.2 (Lemma 5 in [1, 6]) Let T be an irreducible set of valuation intervals. Then
DOM(T) can be divided into at most 2|T'| — 1 intervals each of which is associated to a
valuation interval in 7" such that:

(i) The total length of the intervals associated to any valuation interval in T is exactly
(7).

(ii) The intervals associated to any valuation interval in T are totally within that valu-
ation interval.

They proved this lemma by induction on |T'| using the following lemmas.

Lemma 2.3 (Lemma 6 in [1, 6]) Let € = I, I,,,. .., Iy, be a maximal strongly locked
chain after running U-exp(T') and let £ be the minimum index such that there is a directed
path from v,, to v,, in the permutation graph Ge for € using only edges in ;. Then,
£ > 1 holds.

Lemma 2.4 (Lemma 7 in [1, 6]) Let

z = Bo, — (k= L+ 1)D(T), (2)
where £ is the minimum index such that there is a directed path from v, to v,,. Then,
tg,_, < < ag, holds.

By this lemma, they break DOM(T') into two pieces both of which, they claim, preserve
the properties defined in Lemma 2.2. More specifically, they claim, the piece of cake
(x, Bs,) can be allocated to players oy, 0041, ...,0% using 2(k — ¢ + 1) — 2 cuts. For this,
they consider the valuation intervals T = {C7, , C; Cy, } such that:

pars
Czlrl = (maX{xa a01}7 Bm]
for all ¢ with ¢ < ¢ < k. Note that DOM(T”) = (z, By,] and hence,

R
S k=041 k—(41
Regarding Equation (2), ®(T") = ®(T).

o(T") 3)

Lemma 2.5 (Lemma 8 in [1, 6]) 7" is irreducible, i.e., for all 7" ¢ T', ®(T") > ®(T")
hold.

Lemma 2.5 above states that the set of intervals in 7" admits the properties described
in Lemma 2.2. Furthermore, regarding Lemma 2.3, 7" is a subset of T. By induction
hypothesis, they know that one can cut DOM(T”) into at most 2(k — ¢ + 1) — 2 disjoint
intervals and allocate them to players oy, o¢41,...,0, such that both the properties in
Lemma 2.2 are satisfied. Denote by N, the players with valuation intervals in 7. Re-
garding Equation (2), Lemma 2.6 assures that the conditions in Lemma 2.2 hold for the
remaining cake and the remaining players.

Lemma 2.6 (Lemma 9 in [1, 6]) Let 7" be the intervals related to the players in Np» =
Np\{oe,0041,...,0%} after shrinking of DOM(7”). Then T" is irreducible and ®(7") =
o(T).



Based on Lemma 2.2, they introduce EFGISM as follows: among all subsets of T,
they find a subset 7' of minimum density (and the set with minimum size, if there were
multiple options). Let N(T') be the set of players whose valuation intervals are in T, i.e.,
N(T)={ie N |C; € T}. In Lemma 2.7 below, they show that 7' (and consequently
N(T)) can be found in polynomial time.

Lemma 2.7 (Lemma 10 in [1, 6]) Let 7" be a subset of T of minimum density (and the set
with minimum size, if there were multiple options). Then T can be found in polynomial
time.

The mechanism EFGISM proposed in [1, 6] first finds such T'. Since T has the minimum
possible density, T is irreducible. Hence, EFGISM allocates to every player in N(T), a
piece from DOM(T) with the properties defined in Lemma 2.2. Afterwards, EFGISM
removes the players in N(7') from N and shrinks DOM(T') from C. Next, by recursively
calling EFGISM, it allocates the remaining pieces of the cake to the remaining players.

Theorem 2.2 (Theorem 4 in [1], Theorem 3 in [6]) EFGISM is envy-free, truthful, and
uses at most 2(n — 1) cuts.

2.4 Counter Example of Lemma 2.6

Consider the input example in Figure 1 (also in Figure 3(a)) of the cake-cutting problem.
Thus, the valuation intervals T = {Cy, Cs, C3,Cy, C5} are

Cy = (0,1], C2 =(0.02,0.64], C3 = (0.03,0.65], C4y = (0.05,0.68], C5 = (0.08,0.87].
It is easy to see that the valuation intervals T = {C},C%,Cs,Cy,Cs} is irreducible by
Definition 2.9 (defined in Lemma 5 in [1, 6]), since ®(T7) > ©(T) = 0.2 holds for every
T' C T. For this set T of valuation intervals, if the expansion process with unlocking

for T (i.e., U-exp(T)) is applied, then a maximal locked chain € = I3, I5, I3, I; of chain
I, I, I3, I4, I in Figure 3(a) is obtained, where

I = (0,0.17], I = (0.17,0.34], I3 = (0.34,0.51], I, = (0.51,0.68], I5 = (0.68,0.85].

It is easy to see that C = Iy, I, I3, I is a maximal strongly locked chain, since the permu-
tation graph Ge(V, F) in Figure 3(b) contains no cycle including vy.

Thus, by Lemma 2.3 (Lemma 6 in [1, 6]), the minimum index ¢ such that there is a
directed path from vy to v, in Ge(V, E) using only edges in E; becomes ¢ = 2 > 1. By Eq.
(2) in Lemma 2.4 (Lemma 7 in [1, 6]) and ®(7) = 0.2,

2=B— (4= 0+ 1)D(T) =0.68 — 3 x 0.2 = 0.08,

and ay_1 =a; =0 < x =0.08 < ay =as = 0.17 holds.
Then, we have Npv = {2, 3,4}, T" = {C, C4, C} } with
Ch = (max{r,as}, ] = (0.08,0.64],
Ci (max{z, as}, B3] = (0.08,0.65],
C (max{z, ay}, B4] = (0.08,0.68]

and DOM(T") = 84 — 2 = 0.68 — 0.08 = 0.6 and

Bi—z 0.6

61



62

Thus, by Lemma 2.5 (Lemma 8 in [1, 6]), T/ = {C%,C%, C}} is irreducible.
Thus, we apply the mechanism based on the expansion process with unlocking in [1, 6]
for the valuation intervals 77 = {C%, C%, C'}} and obtain

Ay = (0.08,0.28], As = (0.28,0.48], A4 = (0.48,0.68].

Then, in the mechanism based on the expansion process with unlocking in [1, 6], they
apply shrinking of DOM(T”) = (0.08.0.68] and removing of Ny = {2,3,4} and obtain the
remaining players Np» = {1,5} and the valuation intervals

T" ={C{ = (0,0.08] U (0.68,1], C¥ = (0.68,0.87]}
where we consider 0.08 = 0.68 since shrinking of DOM(T") = (0.08.0.68] is done

(in the form of Definition 2.8, the remaining cake is C” = (0,0.4], and the
valuation intervals C7 = (0,0.4], C¥ = (0.08,0.27].)
Note that

1-0.68+0.08-0
2

0.4-0

(I)(T//) _ 5

=02=0(T) (B(T") =

=0.2=9(7)).
However, the valuation intervals
T" = {C{ = (0,0.08] U (0.68, 1], C¥ = (0.68,0.87]}

(T" ={CY = (0,0.4], C¥ = (0.08,0.27]} in Definition 2.8) is not irreducible, since Cf =
(0.68,0.87] ¢ T" (C¥ = (0.08,0.27] C T" in Definition 2.8) is of density

®(CY) =0.87 - 0.68 = 0.19 < 0.2 = &(T") = ®(T)

(®(C¥) =0.27 - 0.08 =0.19 < 0.2 = &(T") = ®(7T) in Definition 2.8).

This implies that Lemma 2.6 (Lemma 9 in [1, 6]) does not hold. Thus, we cannot apply
the mechanism based on the expansion process with unlocking in [1, 6] for the valuation
intervals 7" = {C{ = (0,0.08] U (0.68,1],CY = (0.68,0.87]} (I = {C{ = (0,0.4], C¥ =
(0.08,0.27]} in Definition 2.8) recursively, since 7" is not irreducible.

If we insist on applying the mechanism based on the expansion process with unlocking
in [1, 6] for the valuation intervals 7" which is not irreducible, then we obtain a strongly
locked chain I7' = (0,0.08]U(0.68,0.735], I = (0.735,0.87] (in the form of Definition 2.8, it
is the strongly locked chain I’ = (0,0.135], I = (0.135,0.27] in the remaining cake C” =
(0,0.4] with I{ = (0,0.135] ¢ CY = (0,0.4] and IY = (0.135,0.27] C C¥ = (0.08,0.27]).
If we use ®(T") = 0.2, then z = 85 — (5 — 5 + 1)®(T") = 0.87 — (0.68 — 0.08) — 0.2 =
0.07 (x = B5 — (5 =5+ 1)®(T") = 0.27 — 0.2 = 0.07 in Definition 2.8) since shrinking
of DOM(T”) = (0.08.0.68] is done and we consider 0.68 = 0.08. Thus, we have A5 =
(0.07,0.08] U (0.68,0.87] (A5 = (0.07,0.27] in Definition 2.8) and A; = (0,0.07] U (0.87, 1]
(A1 = (0,0.07] U (0.27,0.4] in Definition 2.8).

In this division D = {A;, A, A3z, A4, A5} of the cake C' = (0,1] with each piece A4;
allocated to player ¢ = 1,2,3,4,5 is not envy-free since, player 5 would envy the piece
Ag = (0.08,0.28] allocated to player 2, since the value of Ay for player 5 is the length of
(0.08,0.28]NC5 = (0.08,0.28] and is 0.2 = 0.28 —0.08, while the value of A5 = (0.07,0.08]U
(0.68,0.87] allocated to player 5 is the length of ((0.07,0.08]U(0.68,0.87])NC5 = (0.68, 0.87]
and is 0.19 = 0.87—0.68 < 0.2. Note that (0.07,0.08] is not contained in C5 = (0.08, 0.87].



Since T" contains valuation intervals {C{} with minimum density ®({C%}) = 0.19,
if we apply the mechanism based on the expansion process with unlocking in [1, 6] for
the valuation intervals {C7} then we obtain A5 = (0.68,0.87]. Finally, if we apply the
mechanism based on the expansion process with unlocking in [1, 6] for the valuation
intervals {C{'} then we obtain A; = (0,0.08] U (0.87,1].

In this division D = {43, Aa, As, A4, A5} of the cake C' = (0, 1] with each piece 4,
allocated to player ¢ = 1,2, 3,4, 5 is not envy-free. Actually, player 5 would envy the piece
Az = (0.08,0.28] allocated to player 2, since (0.08,0.28] N C5 = (0.08,0.28] = Ay and its
value for player 5 is 0.2 = 0.28 — 0.08, while the value of A5 = (0.68,0.87] allocated to
player 5 is the length of (0.68,0.87] N C5 = (0.68,0.87] and is 0.19 = 0.87 — 0.68 < 0.2.

3 Notation in Our Mechnism

In this section, we give notation which will be used in the rest of this paper. It is almost
the same as in the paper by Alijani, Farhadi, Ghodsi, Seddighin, and Tajik [1, 6].

We are given a divisible heterogeneous cake C' = (0,1] = {z | 0 < = < 1}, a set of n
strategic players N = {1,2,...,n} with valuation interval C; = («;, 3] = {z | 0 < o <
x < B; <1} C C of each player i € N. We denote by Cu the set of valuation intervals of
all the players N, i.e., Cy = {C; | i € N}.

The valuation intervals Cy is called solid, if for every point z € C, there is a valuation
interval C; € Cn containing . We assume that the valuation intervals Cp is solid in this
paper, i.e.,

U ca=c (4)
C,eCn

A piece of the cake C' is a set of mutually disjoint intervals in C'. Thus, A; =
{Ail,AiQ,...7Aiki} is a piece of C'if and only if each A;; (j = 1,2,...,k;) is an interval
of €' and any two distinct A;; and 4;, (1 <j<j <k are disjoint (i.e., 4;; N A, = 0).
For a piece A; = {A;,, Aiy, ..., Aj, } of C foreachi e N, let A; = A;) UA;,U---UA,;, . A
union A; of mutual disjoint sets Aii, Ay, ..., Ay, is called a direct sumof A;, A, ... 7i4ik_
and is denoted by A; = A;, + Ay + -+ Ay . '

Let A; = {Ai,, Aiy, ..., Aj } be a piece of the cake C for each i € N and let 4; =
Aip + Ay + -+ A, . Then }lN = {A1,Ag,..., Ay} is called an allocation of the cake
C to n players N if any two distinct 4; and A; (1 < ¢ < j < n) are disjoint and
YienAi = Ai+ Ay +---+ Ay = C. Foreachi € N, A; = {Ail,Ah,...,Aiki} (also,
A = A, + A, +---+ A, ) is called an allocated piece of the cake C' to player i in
AN = {Al,ﬂg, cen ,.An} (Fig{lre 4).

For an interval X = (2/,2”] of C, the size of X, denoted by csize(X), is defined by
" —2'. For a direct sum X = X; + X5+ -+ X}, i.e., a union of mutual disjoint intervals
X; (1=1,2,...,k) of C, the size of X, denoted by csize(X), is defined by the total sum
of csize(X;) (Figure 4). Thus, csize(X) = csize(X1) + csize(X2) + - - - + csize(Xy).

Let X = {X1, Xo,...,X}} be a piece of C and let X = X; + X3 + - + Xj. For each
i € N and valuation interval C; of player i, the utility of X for player i, denoted by ut;(X),
is the total sum of csize(X; N C;) for all X; € X, i.e.,

ut; (X) = csize(Xy N C;) + csize(Xo N Cy) + -« - + csize( Xy N Cy). (5)

We sometimes use ut;(X) in place of ut;(X). Thus, ut;(X) = csize(X1 N C;) + csize(Xa N
C;) + -+ - + csize( X N C;).
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Figure 4: An allocated piece to player 5 is {As,, As,} (n = 6). csize(Ag) = csize(4g,) +
csize(Ag,) + csize(Ag,) for Ag = Ag, + As, + As,-

Let Ay = {A1,As,...,An} be an allocation of the cake C' to n players N and let
Ai = {4, A, . .. ,Aiki} be an allocated piece of C' to player i € N. If

ut;(A;) > ut;(A;) forall j € N\ {i}, (6)

then the allocated piece A; is called envy-free for player i. If, for every player i € N, the
allocated piece A; is envy-free for player i, then the allocation Ay = {A1,As,..., A} of
the cake C to n players N is called envy-free.

Let M be a mechanism for the cake-cutting problem. For an arbitrary input Cy =
{C1, Cy, ..., Cp} to the mechanism M, let Ay = {A1,As,...,An} be an allocation of
the cake C' to n players N obtained by M with A; = {4;,, Ai,, ..., A, } for each i € N.
If the allocation Ay = {A1,As,...,A,} for every input Cy = {Cl,é’g, ..., Cp} to the
mechanism M is envy-free, then the mechanism M is called envy-free.

Now, for each player i € N, assume that only player i makes a lie and gives a false
valuation interval C!. Thus, let

G/N(’L) = {01,02,...,Ci_l,C{,Ci_,_l,...,Cn} (7)

be an input to the mechanism M and let an allocation of the cake C to n players N
obtained by M be

A;v(z):{Allv 127"'7 ;_1,.%[;, g—}—lv"‘v‘A;x} (8)

with A = {4, A

s A;k/ } for each j € N. The utilities of A; and A/, for player i are
j
ki ki
ut;(A;) = Z csize(A;; N Cy), uty(Aj) = Z csize(Agj NGCy) 9)

Jj=1 J=1

(note that ut;(A}) # Zfil csize(A;j NCY)). If ut;(A;) > ut;i(Aj), then player ¢ does not
want to tell a lie and player ¢ will report the true valuation interval C; to the mechanism M
(this implies that to report the true valuation interval C; is a dominant strategy of player
1). For each player i € N, if this holds, then no player wants to tell a lie and all players
want to report true valuation intervals to the mechanism M. In this case, the mechanism
M is called truthful (allocation Ay = {A1, As,...,An} of C to n players N obtained by
M is also called truthful).
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Figure 5: Example of 6 valuation intervals Cy,Cy, ..., Cg (solid line). An interval X = (2/,2"] is
of size 2" — 2’ and three valuation intervals C3, Cy, C5 are contained in X (thus, N(X) = {3,4,5}).
Thus, the density of the interval X is p(X) = IHSTI,. The interval (z’,y"] is not a minimal interval

with respect to density, since no valuation interval within (2, y”] contains y” as endpoint. However,
the density of (2',3"] is defined by p((2',y"]) = ¥5=.

For an interval X = (2/,2"] of C, let N(X) be the set of players in N whose valuation
intervals are entirely contained in X and let Cy(x) be the set of valuation intervals in Cy
which are entirely contained in X. Let nx be the cardinality of N(X) (Cn(x)) . Thus,

N(X) = {ieN|C;CX,C; €Cy}, (10)
eN(X) = {C;eCn|ie NX)}, (11)
nx = [N(X)|=Cnx)l- (12)

As we defined the solidness of the valuation intervals Cy in the cake C' in Eq.(4), we
define the solidness of the valuation intervals €y(x). For an interval X = (2/,2"] of C,
the valuation intervals €y (x) is called solid, if for every point z € X, there is a valuation
interval C; € Cy(x) containing z, i.e.,

U a=x (13)

CiEGN()Q

Definition 3.1 For an interval X = (2, 2"] of C, the density of the interval X, denoted
by p(X), is defined by

csize(X) 2" —a
p(X) ol i (14)

Definition 3.2 For an interval X = (2/,2”] of C, if there are valuation intervals C; =
(Ozi,ﬂi] and Cj = (Oéj,ﬁj] in GN(X) = {Ck € Cy ‘ k € N(X)} such that 2’ = «; and
z” = Bj, then X = (2/,2"] is called a minimal interval with respect to density.

Figure 5 shows densities of some intervals. Note that, if X # @ (i.e., csize(X) # 0)
and nx = 0 then p(X) = oc. Note also that, there are at most n? minimal intervals
X = (2, 2"] with respect to density, since 2’ is a left endpoint of a valuation interval, z”
is a right endpoint of a valuation interval and there are n valuation intervals.

Let X be the set of all nonempty intervals in C. Let ppin be the minimum density
among the densities of all nonempty intervals in C| i.e.,

Pmin = 1i0 p(X). (15)

Let Xinin be the set of all intervals in C' of minimum density, i.e.,

Xinin = {X € X[ p(X) = pmin}- (16)
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] C[,:C:(O,I] 1
Cy=(0.05,0.35] Cs =(0.47.0.92]
—_— —— (,=(0.5,08]
C; =(0.08,0.23] — (,=(0.58,0.73]
Figure 6: Example of the valuation intervals C,Cs,...,Cs. The minimum density is

Pmin = 0.15 and the intervals of minimum density are C,Cs,C5,Cy,C5. Among them,
C1 and C5 are the minimal intervals of minimum density and C; and Cy are the maximal
intervals of minimum density and interval Cy is of density p(Cg) = % = 0.1666...

Definition 3.3 An interval X € X, is called an interval of minimum density. An inter-
val X of minimum density is called a minimal interval of minimum density if X contains no
other interval of minimum density properly. Similarly, an interval X of minimum density
is called a maximal interval of minimum density if no other interval of minimum density
contains X properly (Figure 6).

Lemma 3.1 Let X = (2/,2”] be a minimal interval with respect to density in the cake
C. Suppose that p(Y) > p(X) holds for each nonempty interval Y = (y/,y"] properly
contained in X (i.e., ) # Y C X). Then Cyx) is solid (i.e., UCieC‘N(X) C; = X).

Proof: We show that Cy(x) is solid, i.e., for each point z in X = (2/,2"] (2' <z < 2"),
there is a valuation interval C; = («;, 8i] € Cy(x) containing .

Suppose contrarily that no valuation interval in €y (x) contains . Thus, each valuation
interval C; = (i, fi] € Cn(x) satisfies 8; < x or x < ;. Since X = (2/,2"] is a
mininal interval with respect to density, there are valuation intervals C; = («j, ;] and
Cr = (g, Bx] in Cn(xy with aj = 2’ < 2 and ), = 2 > 2. Thus, we have a; < 3; < =
and z < ag < fk. Let y be the largest right endpoint among valuation intervals in Cy(x)
whose right endpoints are smaller than x. Similarly, let z be the smallest left endpoint
among valuation intervals in Cy(x) whose left endpoints are larger than or equal to z.
Thus e = 2 —y > 0and 6 = z—2 > 0. Let Y = (2/,y] and Z = (z,2”]. Then
Cj = (a]'7ﬁj] CYCX,ny >0, C, = (ak7,6’k} CZcCcX,nz>0,andY NZ = (.
Thus, each valuation interval C; = («ay, ;] € (‘?N(X) satisfies B; <y < xorx <z < q; ie.,
each valuation interval C; = («a;, 8] € Cn(x) is either in Cy(y) or in Cy(z). Therefore,
eN(X) = GN(y) + GN(Z) and ny = ny +ny. Since Csize(Y) = p(Y)ny, p(Y) > p(X),
csize(Z) = p(Z)ngz, and p(Z) > p(X), we have

/

csize(X) a2’ -2 2 —z4z-—zt+ax—y+ty—2a

X = = =
p( ) nx nx ny + ny
_csize(Z) +0+e+csize(Y)  p(Z)ng+p(Y)ny +0+€
o ny + ny o ny +ny
p(Z)ng +p(Y)ny _ p(X)ngz + p(X)ny
(2) My - p(X) (X)ny o(X),
nyz + ny nz +ny
a contradiction. Thus, we have UCiGGN(X) C; =X, ie., Cr(x) is solid. O

For an interval X = (2/,2”] of minimum density, we have the following lemma using
Lemma 3.1. It is almost clear, so we omit a proof.
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Lemma 3.2 Let X = (2/,2"] be an interval of minimum density pyin. Then it is a
minimal interval with respect to density and the valuation intervals Cyx, is solid.

4 Structures of Intervals of Minimum Density

In this paper, we will give a mechanism in later section, for a given input of a cake C' =
(0,1], a set of n players N = {1,2,...,n}, and solid valuation intervals Cx = {C; | i € N}
with valuation interval C; = (ay, 3;] of each player i € N and Ug,ece,C; = C, which
finds an allocation Ay = {A1,As,..., A} to players N with A; = {4;,,A4;,,..., 4, }
(Ag = Ay, + Agy + -+ Aiki) for each player ¢ € N satisfying the following. '

a) The mechanism is envy-free.

(a)
(b) The mechanism is truthful.
(¢c) A; CC; for each i € N.

)

(d) Xien A =C.

In this section, we discuss structures of intervals of minimum density which play a
central role in our mechanism.

Lemma 4.1 Let X; = (2, 27] be a minimal interval in the cake C' with respect to density.

Let X; = (z},2] be another minimal interval in C' with respect to density such that

17

XiNX; #0. If p(X;) > p(X;) and p(X; N X;) > p(X;), then p(X; U X;) < p(X5).

Proof: If Xz \ Xj = (Z), then Xz U Xj = Xj and P(Xz U X]) = p(XJ) S P(Xz) holds.
Similarly, if X; \ X; =0, then X; UX; = X; and p(X; U X;) = p(X;) < p(X;) holds.

Thus, we assume X; \ X; # () and X; \ X; # () below. By symmetry we can assume
vy <l <af <afsince X; N X; #0, Xi\ X; # 0, and X; \ X; # () (Figure 7). Let

Y=XNnX;=\y"], Z=X,UX;= (2"

Thus, y' =2}, y"=a}, 2 ==, 2'=2. By Definition 3.1,

N(XZ) = {k eN ‘ Cr C X;,Cy € GN}, GN(Xi) = {Ck € Cn | ke N(XZ)},

N(X]) = {k eN | C C Xj,Ck S GN}, CN(XJ,> = {Ck € Cy ‘ ke N(Xj)},
N(Y)={keN|C,CY,C,€CN}, Cyy)={Cr€Cn]|keN(Y)},
N(Z)={ke N|C, C Z,Cr € CNn}, Cniz) ={Cr€Cn|keN(Z)},

Cniry = Crix) N Crx;y)-

Note that, Z = X; U X; = (#/,7"] is a minimal interval with respect to density, but
Y = X;NnX; = (v,y"] may not be a minimal interval with respect to density, since
X; = (v}, 2]] and X; = (2, 2}] are two distinct minimal intervals in C' with respect to
density and a valuation interval Cy, = (ax, ] € Cn(x,)UCn(x,) Withy' = 2/ = a; (or with
y" = a! = B;) may not be contained in Y if 8 > y" (or if a < 3’). Furthermore, since
a valuation interval Cy = (o, Bk] € Cy(x;) With ] = o, < 2} is not contained in Cpy(y;)
(and is not in Cy(y)) and a valuation interval Cy = (cu, Bi] € Cn(x;) With 2} = By > 2

is not contained in Cy(x,) (and is not Cy(y)), we have Cyyy C Cy(x,) C Cn(z) and
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Figure 7: Two intervals X; = (z},2;] and X; = (2},27] in Proof of Lemma 4.1. A

valuation interval Cy = (aj, k] is not in X; nor Xj;, but in Z = X; U Xj.

GN(y) C GN(Xj) C GN(Z)~ Thus, ny = |N(Z)| >nx, = ‘N(Xz)‘ > ny = ‘N(Y)| > 0 and
nz =|N(Z)| > nx; = [N(X;)| >ny = [N(Y)| > 0. Let

Cw =Cniz) \ (Cnixy) UCn(x;): nw = [Cw|.

Note that a valuation interval Cy, = (ay, 8] € Cn with 2} < o < x; and 2/ < B < :U;-’ is
in Cw = Cn2) \ (Cn(x,) UCn(x;)) (Figure 7). Thus, by the inclusion-exclusion principle,
we have

ngz =nx, +nx, —ny +nw
and the density p(Z) of interval Z = X; U X is

. I / /! / I / /" /

(z) = &Z) 5 zj — o) +a —ai — @} — )

p = = = .
ngz nx, +nx; —ny +nw nx, +nx; —ny +nw

(i) We first discuss the case of ny > 0. Since ny > 0 and by the definition of density
of an interval in Definition 3.1, we have

nx, p(Xi) = aj —aj, nx, p(X;) =2 —af, nyp(Y) =z} -2}, and

o2) = .73;-/ — x; +a — ) — (2 — :r;)
nx, +nx; —ny +nw
of —ah+ay —ap— (2 —2h) oy, p(Xi) +nx; p(X;) —ny p(Y)

’fLXi—O—’an—ny nXi—i—an—ny

Note that,
nx, p(X;) +nx; p(X;) —ny p(Y)

nx, +nx; —ny

p(Z) =
if and only if ny = 0. Since p(Y') = p(X; N X;) > p(X;), we have

nx, p(Xi) + nx, p(Xj) —ny p(Y) _ nx, p(Xs) + nx; p(X;) — ny p(X;)
- nx, +nx;, —ny ’

7Z) <
p( ) - nXi—i-nX].—ny

Furthermore, since p(X;) > p(X;) and ny; > ny, we have
nx, p(Xi) +nx; p(X5) —ny p(X5) _ nx, p(Xi) + (nx; —ny) p(X5)
TLXi+TLXj—TLy nxi-i-nxj—ny

nx, +nx, —ny) p(X;)
nx;, +nx; —ny

p(Z) <




By the argument above, when ny > 0, we have p(Z) = p(X;) if and only if ny = 0
and p(Y) = p(X;) = p(X3).
(ii) We next discuss the case of ny = 0. In this case, we have

7 _ 7 i i
< nx, +nx; —ny +nwy

"

" / 1 / /! /
o —af +af —af — (v — %)

/ 7 / 7 / 1 / " / " /
af — @l o —ap — (o] —af) &l — a2l +al —a— (2] — 2
= ny, +nx; — Ny nx, +nx;
U / U /
Tp —xy oy -y

nx, +nx;
since ny > 0 and zf/ — 1;; >0by Y =X;NX;#0. Thus, we have

o —ali+af —xp nx, p(Xi) +nx; p(X;)

Z) <
p( ) nx; + an nX,i + nX]'
nx, +nx,;) p(X;
() o)
nx; +nx;
since p(Xi) > p(X;).
Thus, when ny = 0, we have p(Y) = Iin;mj = o0 and p(Z) < p(X;). |

By Lemma 4.1, the following corollaries can be easily obtained. We omit proofs.

Collorary 4.1 Let X; = (z,z}] and X; = (27,2] be two distinct intervals in C' of
minimum density pmin. If X; N X; # 0 then both Y = X; N X; and Z = X; U X are
intervals of minimum density pmin-
Collorary 4.2 If X; = (7;,2]] and X; = (27, 2] are two distinct minimal intervals of
minimum density pmin, then X; N X; = (. Furthermore, if X; = (2}, /] lies to the left of
X; = (I;,I;’] then 2! < I; In this case, if z} = x; then 7 = X; UX; = (;E;xﬂ is an
interval of minimum density and there is no valuation interval Cj, = (x),2}] € Cn such
that o) < zj <z = oc; <axp <.

Similarly, if X; = (27,2]] and X; = (z,2]] are two distinct maximal intervals of
minimum density pmin, then X; N X; = 0. Furthermore, if X; = (2, 2] lies to the left of

Xj = (o], 2] then z < .

5 Our Mechanism

We first give a brief outline of our mechanism.

Let Hy = (h},h{], Hy = (R4, h5],..., Hy = (R}, h]] be the maximal intervals of
minimum density pmin in the cake C' = (0,1]. We first cut C' = (0,1] at both endpoints
of each maximal interval H; of minimum density pmin. By Corollary 4.2, two distinct
maximal intervals H;, H; of minimum density are disjoint and we can cut the cake at both
endpoints of each maximal interval of minimum density, independently. By these cuts, we
can reduce the original cake-cutting problem into two types of cake-cutting subproblems
of type (i) and type (ii) as follows (Figure 8):
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0 G =C=(0.1] 1
€, =(0.05.0.35] C5=(0.47.0.92]
— —— (5=(0.5,0.8]
C, =(0.08,0.23] @ — ,=(0.58.0.73]
0 G=C=01] |
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Figure 8: The cake-cutting problem can be reduced into two types of cake-cutting sub-
problems by cutting the cake C' = (0, 1] at both endpoints of each maximal interval of
minimum density: (i) one within each maximal interval of minimum density (players
Ry = {1,4} and players Ry = {2,3,5}]), and (ii) one with all valuations obtained by
deleting all the valuation intervals contained in all maximal intervals of minimum density
(players P = {6}).

(i) the cake-cutting problem within each maximal interval H; = (h}, h!] of minimum
density (which consists of the cake H;, the players N(H;) whose valuation intervals
in H; and valuations €yg,)); and

(ii) the cake-cutting problem with all valuations obtained by deleting all the valuation in-
tervals contained in all the maximal intervals Hy = (hy, Y], Ho = (k4 hY], ..., Hy =
(1, h]] of minimum density.

Note that the cake-cutting problem of type (i) is almost the same as the original
cake-cutting problem, since the cake H; is a single interval, each valuation Cy € Cn(p,)
is also a single interval, and the valuation intervals Cy () is solid by Lemma 3.2 G.e.,
UCRGGN(Hi) Cy = H;).

On the other hand, the cake-cutting problem of type (ii) is different from the original
cake-cutting problem, because the resulting cake may become a set of two or more disjoint
intervals and a resulting valuation may also become a set of two or more disjoint intervals.
However, the cake-cutting problem of type (ii) has a nice property as described below.

Let Xy = (), 2}/] be an interval of the cake C. Then, by cutting the cake at both
endpoints of X, and deleting X,, we have the cake-cutting problem of type (ii) for the
cake C'\ Xy, players N \ N(X;) and valuations

GN(C\Xg):{Ck\Xg | CkeeN\GN(X()}- (17)

Note that Cj. \ X, # 0 for each Cy, € €y \ Cy(x,), since Cy, \ X; = () would imply Cy, C X,
and thus Cy, € Cy(x,). Furthermore, for each point x € C'\ X, there is a valuation interval
Cy € Cn containing = by the solidness of the valuation intervals Cy (i.e., Ug,ce, = C
in Eq.(4)), and the valuation interval Cy is not contained in Cpy(x,) since Cj contains
xz € C'\ X;. Thus, the valuation Cy, \ X; € Cy(C'\ Xy) contains z. This implies

U (@\x) = C\x. (18)
Ci\X€Cn(C\Xy)

Note also that there are three types of valuation intervals Cy = (o, O] € Cn \ Crxy)
according to the valuations Cj \ X.



(a) CrNXy=0,1e, g <P <aforxj <ap < P Inthis type, Cp \ Xy = Ci is a
single interval.

(b) ap <z, < 2 < Pi. In this type, Xy C Cj and Cy \ Xy is a set of two disjoint
intervals, i.e., Cy \ X¢ = (ou, )] + (2, B)-

(€) a <z, < By < 2} (in this case Cy \ Xy is a single interval Cy \ X; = (o, xf]) or
xy < o < 2y < P (in this case Ci, \ Xy is a single interval Cy, \ Xp = (2, f])-

Similarly, there are three types of intervals X = (2/,2"] in C such that X ¢ X,.

(a) XNXy=0,1ie, 2 <2’ <ajorz; <z’ <z” Inthis type, X \ X, = X is a single
interval.

(b) 2/ <z, <2} <2”. Inthis type, X, C X and X \ X/ is a set of two disjoint intervals,
e, X\ Xy = («/, )] + (zf,2"].

(c) o/ < o) < a” < & (in this case X \ Xy is a single interval X \ X, = (2/,2}]) or
zy <o’ </ <a” (in this case X \ X is a single interval X \ X, = (27, 2"]).

For the cake-cutting problem of type (ii) for the cake C'\ Xy, players N \ N(X,) and
valuations Cx(C \ X;) defined by Eq.(17), let X € X, be an interval X = (z/,2"] of the
cake C and let

CN(X\ X)) ={Cr \ Xy € CN(C'\ Xy) | O \ X € X\ Xy}, (19)

nevx, (X \ Xo) = [En (X \ X, (20)
and we define the density pcy x, (X \ X¢) of X \ Xy by

csize(X \ X)
nevx, (X \ Xp)”

Note that, we defined the density pey x, (X \ X¢) even for interval X = (', 2"] € X, of
type (b) (i.e., 2’ < 2} < aj < 2”) such that X\ Xy is a set of two disjoint intervals X\ X, =
(z', 2] + (2, 2"]). In general, Cn (X \ X¢) # Cnix\x,) = {Cr € Cn | Cp, € X\ Xy}, and
nC\Xg(X\XZ) 7é nx\x, = |(3N(X\X€)\. Furthermore, Ck = (ak,ﬁk] and Ck/ = (ak/,ﬁk/] of
type (c) with oy < ag < 2, < B < B < z/ become intervals Cj, \ X; = (ay,z)] and
Ci \ X¢ = (ag,z}) in Cy(C'\ X¢) in Eq.(17). Thus, for an interval X = (2, 2"] with
o <op <oy <)< B <P <afand z, < z” < af, the interval X \ X, = (2/, 2]
contains Cj, \ Xy = (oy, o)) and Cp \ Xy = (ap, 7], i.e.,

povx, (X \ Xo) = (21)

Ch \ Xy, Cpr \X@ S GN(X\XK),

even if 2’ < B < By (i.e., even if X = (2,2”] does not contain Cy nor Cy). Actually,
Cr\ X¢ C X\ Xy if and only if Cy € X U X,. Thus,

Cn(X\ Xp) ={C, \ Xy | Ok € CN \ CN(Xp), C € X U Xy} (22)

and in general, ne x, (X \ Xy) does not equal to nx —nx,.
We will discuss the density pe x, (X \ X¢) of X \ X, using the following definition.

Definition 5.1 For an arbitrary interval X = (2/,2"”], the interval [2/,2"], denoted by
cl(X), is called the closure of X.
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Z=(x"x;"
Figure 9: Two intervals X = (2/,2"] and X, = (2, 2] in Proof of Lemma 5.1.

Let X = (2,2"] and X, = (z}, z}/] be two intervals in C such that cl(X) Necl(X,) =0
([« 2" N[z}, z)] =0). Then o' < 2" <z or zj <z’ <a”. Thus, XNX, =0, XUX,is
not a single interval, and each Cj, € Cy(xux,) is Cr € X or C, C X (i.e., C \ Xy = Cy,
or Cy \ Xy = ). This implies that if cI(X) N cl(Xy) = 0, then Cn(X \ X¢) = Cn(x) by
Eq.(22) and ney x, (X \ X¢) = nx and thus pe x, (X \ X¢) = p(X) hold.

On the other hand, if cl(X) Ncl(Xy) # 0, then X U X, is a single interval in C, and
pevx, (X \ X¢) = p(X) may not hold and we have the following lemma.

Lemma 5.1 Let X, = (2}, 2}/] be a minimal interval with respect to density in the cake C.
Let X = (2/,2"] ¢ X, be an interval of C such that c1(X) Ncl(X,) # 0. Let Z = X U X,.
Suppose that p(X) > p(Xy) and p(Z) > p(Xy). Then,

csize(Z \ Xy) -
nevx, (Z\ Xe) —

Furthermore, if p(Z) > p(X¢) then peyx,(Z \ X¢) > p(Xy), and if p(Z) = p(X;) then
ponx, (Z\ Xe) = p(Xo).

Proof: Clearly, X \ Xy = X\ (X N Xy) = (X UX,)\ Xy =Z\ Xy and pon x,(Z \ Xy) =
perx, (X \ Xy). We divide the case into two subcases: (i) X, \ X # () and (i) X, \ X = 0.

(i) Xg\ X # 0: Since X \ Xy # 0 (by X = (2/,2"] € Xy) and cl(X) Necl(Xy) # 0
(Z = X U X, is a single interval in C'), we have ¢’ < 2, <z’ < &} or o] <2’ <z} <’
By symmetry we can assume 2’ < z, < z” < 27/ (Figure 9). Note that

povx,(Z\ Xe) = p(Xe). (23)

novx, (X \ Xo) =nevx,(Z\ Xe) =nz —nx, >0

since X, C Z = X U Xy, N(X¢) € N(Z), Cyn(x,) € Cn(z)> nz = [CNn(2)ls nx, = [Cnixp s
nevx, (2 \ Xe) = [CN(Z\ Xo)| = nevx, (X \ Xe), and Cn (X\ X¢) = Cn(Z\ Xy) in Eq.(19)
by X \ Xy = Z\ X;. Furthermore, by X, C Z = X U X, and X N X, C X, we have

csize(Z \ Xy) = csize(Z) — csize(Xy) = csize(X) — csize(X N Xy) =2, —2' >0

and
csize(Z \ Xy al — zy — ' — (zy — )
povx, (Z\ X)) = (Z\Xp) _ ¢ _ T | —
nC\Xz(Z \ Xo) nC\XZ(X \ X¢) ng —nx,
_ nzp(Z) —nx, p(Xy)
ng —nx, '

Thus, if ny = nx,, then, since X, C Z = X U X, and X, = (z}, )] is a minimal interval
with respect to density in C, we have
csize(Z) _ csize(Xy)
p(Z) = > = p(Xo),

ny nx,




ng p(Z) —nx, p(Xy csize(Z \ Xy
povx,(Z\ Xy) = (n)zin; ) _ (0\ ) = 00 > p(Xy).
£

Otherwise (i.e., if ny > ny,), by p(Z) > p(X¢), we have,

nz p(Z) —nx, p(Xy) > (nz —nx,) p(Xy)

Z\Xy) =
pC\Xg( \ Xo) nz — nx, nz — nx,

= p(Xo).

Note that, pon x, (Z\X¢) = p(X) if and only if p(Z) = p(X,). Actually, if p(Z) > p(X,)
(regardless nz = nx, or nz > nx,) then pe\ x,(Z\ X¢) > p(X), and if p(Z) = p(Xy) then
pc\Xf(Z\Xg) = p(Xg) and ny > nx,.

(ii) X, \ X =0 (i.e., X, C X and Z = X): by symmetry, we can assume

x’<:c2<x2’<x" or x':x2<mg<x” or x’<x2<m2’:x",
since X\ X; # (. Note that, if 2’ < 2}, < 2/ < 2" then X\ X, = (2/, 2}]+ (27, 2"] is a direct
sum of two disjoint intervals (2/, )] and (z7,z”]. Otherwise (ie., if 2’ = 2} < 2] < 2" or
o <wy <az)=2a"), X\ X, is a single interval. Thus, in either case, Z \ X, = X \ X,
esize(Z \ Xg) = 2" —a' — (2 —2)) >0, nevx,(Z\ Xy) =nz —nx, >0.

Thus, by an argumet similar to one above, if ny = ny,, then we have p(Z) > p(X,) and

nz Z —nx Xg csize(Z Xg
o 2\ Xi) = "EAD X)X _ iy
14

Otherwise (if ny > nx,), by p(X) = p(Z) > p(X,), we have

nz p(Z) ~ nx, p(X0) _ (nz = nx) p(X0)
nz —nx, - ng —nx,

povx, (Z\ Xo) = = p(Xo).
Note that, pey x,(Z \ X¢) = p(X¢) if and only if p(X) = p(Z) = p(Xy).

By the argument above, we have the following: If p(Z) > p(X;) then pe x,(Z \ X¢) >
p(X¢), and if p(Z) = p(Xy) then peyx,(Z\ X¢) = p(Xo). o

As mentioned before, if cl(X) Ncl(X,) =0 (e, 2’ <2’ <) or zf <2’ <z’ and
7Z = XUXy is not a single interval in C), then deletion of X, gives no effect on the interval
X, and the density of X = Z\ X, remains the same, i.e., por x,(2\ X¢) = por x,(X) = p(X).

Now, if we choose X; as an interval of minimum density ppi, in Lemma 5.1, then
p(X) > p(Xy) for each interval X in C' and we have the following corollary.

Collorary 5.1 Let X, = (2}, z}/] C C be an interval of the cake C' of minimum density
p(X¢) = pmin- Then, by cutting C' at both endpoints of X, and deleting X, we have the
cake-cutting problem of type (ii) for the cake C' = C'\ X, # 0, players N’ = N \ N(X,),
valuations Cy, = Cy(C'\ Xy) = {C}, = Cx \ X¢ | Ck € Cx \ Cyx,)} in Eq.(17) where
Uren' Cr = C' by Eq.(18) and the density p' = pcyx, defined in Eq.(21) satisfies the
following;:

For an interval X = (2/,2"] in C with X ¢ X, and Z = XUXy, the density p'(Z\ X¢) of
Z\ Xy = X\ X satisfies p'(Z\ Xy) = pen x,(Z\X¢) > pmin- Furthermore, if cl(X)Ncl(Xy) =
0 then p'(Z \ X¢) = p(X), and otherwise (i.e., if cl(X) Ncl(Xy) # 0), p(Z) > pmin if and
only if p'(Z \ X¢) > pumin-
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The cake-cutting problem of type (ii) for the cake C' = C'\ X, # 0, players N’ =
N\ N(Xy), valuations Cy, = Cn(C'\ Xy) = {C}, = Cx \ X¢ | Cr € Cy \ Cy(x,} in
Eq.(17) with ey €}, = C" by Eq.(18) and the density p' = pc x, defined in Eq.(21) can
be solved in almost the same way by using an idea proposed by Alijani et al. in paper
[1, 6]: shrink X, = (2}, 2}] and virtually consider =, = 2. In this paper we will also call
it shrinking of X, = (z, ).

By shrinking of X;, the cake C' = C'\ X; becomes a single interval C"(%), players
N'" = N\ N(X;) remains the same, each valuation C} € €}, becomes a single interval
C/(S) of €', and Uken Cs '5) — ¢1(5), Note that, by shrinking of X, the size of an
1nterval (the size of a set of disjoint intervals) remains the same and the density of the
interval (the density of the set of disjoint intervals) also remains the same, since X, is
already deleted and the empty (hollow) piece X/ is of size 0.

Thus, by shrinking of X/, the cake-cutting problem of type (ii) for the cake ¢’ = C\ X,
players N’ = N\ N(X), and valuations €y, with | J,cns C}, = C" and the density p’ can be
reduced to the cake-cutting problem of type (i) for the cake C"%) | players N = N\ N(X,),

and solid valuation intervals (‘3 {C | Cy, € €} with Upenr C’,/C(S) = ') and the
same density p/(%) = p/.

From an allocation AN = {A | i € N'} to players N’ such that, for each i €
N, A ;(S = {Ails) A/(S) } is the allocated piece of the cake C'9) to player
i with A% — A9 4 A’(S) A € ) and that Yy, A = 15

obtain an allocation Ay, = {.A’ | i € N’} to players N’ such that, for each i € N’
Al = {A“,Azz,...7A§ki} is the allocated piece of the cake C' to player i with A, =
A+ A;Q -4 A;ki C Cf, and that ), s A = C” as follows:

First find a player ¢ € N’ such that A;(S) = A;(IS) + A;(ZS) + A;is) c CI{(S) contains
the point zj, = z} obtained by shrinking of X, = (z,z}]. By symmetry, we can assume
that Ai(1 ) = (af ,al ] contains zj = z7/.

17 7

Then set A} = (aj,zy| + (27,af] € Cj if aj < z;, < 2y < af in the original

i
world before shrinking. Otherwise (i.e., aj = xj or zy = aj), if aj, = 2 then set

A} = (27,a] € Cj, and if 2] = af then sotlA’ = (a;,, 2} € Cj.

Finally, set A;J, = Aig ) for all j=23,.. k and set A, = {4}
also A} = A;(S) for all j € N\ {i}.

We will call this inverse shrinking of X,. Thus, we can obtain the desired allocation
Al = {A} | i € N'} to players N’ in the cake-cutting problem of type (ii) for the cake

= C\ X, # 0, players N' = N\ N(X,), valuations Cy, with |,y C}. = C" as follows:

First obtain the reduced cake-cutting problem of type (i) for the cake C” (), players
N’ = N\ N(X;), and valuation intervals G/ZE;?) = {C,/C(S) | C, € €} with ey C]/C(S) =
C'5) by shrinking of X,.

Then obtain an allocation AN, {A | i € N'} to players N’ in the reduced
cake-cutting problem of type (i) above.

Finally, obtain the allocation A’y, = {A} | i € N'} to players N’ in the cake-cutting
problem of type (ii) from the allocation A]Eﬁ = {A'(S | i € N'} to players N’ in the
reduced cake-cutting problem of type (i) by inverse shrinking of X,.

Thus, we have the following corollary.

. ,Agkl}. Set

117 1,27'



Collorary 5.2 Let X, = (2, )] C C be an interval of the cake C' of minimum density
p(X¢) = pmin. Then, by cutting C at both endpoints of X, and deleting X, we can reduce
the original cake-cutting problem into two types of cake-cutting subproblems:

(i) the cake-cutting problem of type (i) for the cake X, = (2},z)] C C of mini-
mum density pmin which consists of the players N(X,) and solid valuation intervals
Cnix,) =1{Ck € Cn | Cr C Xy} with Uckeemxl> Cr = Xy;

(i1) the cake-cutting problem of type (ii) for the cake C' = C'\ X, # 0, players N’ =
ZV\]V()(@)7 valuations G’ e GN(C\XZ) = {C]/g = Ck \Xg | Ck € GN \ GN(XZ)}
in Eq.(17) with ey €, = C' by Eq.(18) and the density p' = peyx, defined in
Eq.(21).

Furthermore, the cake-cutting problem of type (i) can be solved in the same way as
the original cake-cutting problem.

The cake-cutting problem of type (ii) can be solved by shrinking and inverse shrinking
of X, and the minimum density p/ . of intervals of this cake-cutting problem of type (ii)
satisfies pl ., > pmin. Furthermore, if X, is a maximal interval of minimum density in C
and there is no other maximal interval of minimum density in C, then pl_.. > pmin.

By Corollary 5.2, using an interval X, = (z}, 2] C C of the cake C' of minimum density
p(Xy¢) = pmin, Wwe can solve the original cake-cutting problem by reducing into two types
of cake-cutting subproblems.

The proposition in Corollary 5.2 can be extended to hold for two or more disjoint
intervals of minimum density and we have the following lemma using the argument above
repeatedly. Note that, two distinct maximal intervals of minimum density pmin in the cake
C' are disjoint by Corollary 4.2.

Lemma 5.2 For the cake-cutting problem for the cake C' = (0,1], a set of n players

N = {1,2,...,n}, solid valuation intervals Cy with valuation interval C; = (ay, §;] of
each player i € N and UCieeN C; = C, let p(C) > pmin and let all the maximal intervals
of minimum density pmin be H1 = (B, h!], Ho = (h4, Y], ..., H, = (h;,h7]]. Then by

cutting the cake at both endpoints of Hy = (hj, h}] (¢ = 1,2,...,L) we can reduce the
original cake-cutting problem into two types of cake-cutting subproblems:

(i) the cake-cutting problem within each maximal interval H, = (hj, hy] (¢ =1,2,...,L)
of minimum density which consists of the players N (H,) and solid valuation intervals

Cyimy ={Cv€Cx | Cr C Hy} with | J Cw=Hy

CkeeN(He)

(i) the cake-cutting problem for the cake D = C \ Y&, H, with players P = N\
S>1, N(H,) and valuations

L L
DP:{Di:Ci\ZHZ|CiGGN\ZGN(HZ)} with U D; =D.
=1 =1 DieDp

Furthermore, the minimum density of intervals in each cake-cutting problem of type (i)
is equal to pmin. On the other hand, the minimum density of intervals in the cake-cutting
problem of type (ii) is greater than pmin.
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Similarly, two distinct minimal intervals of minimum density pui, in the cake C' are
disjoint by Corollary 4.2 and we have the following lemma.

Lemma 5.3 For the cake-cutting problem for the cake C' = (0,1], a set of n players

N = {1,2,...,n}, solid valuation intervals Cy with valuation interval C; = (ay, §;] of
each player ¢ € N and Ucie(?N C; = C, let p(C) = pmin and let all the minimal intervals
of minimum density pmin be X1 = (2,27, Xo = (ah, 28], ..., Xk = (2%, 2%]. Then

by cutting the cake at both endpoints of each X} = (x},z}] we can reduce the original

cake-cutting problem into two types of cake-cutting subproblems:

(i) the cake-cutting problem within each minimal interval X, = (z},z}] (k=1,2,...,K)
of minimum density which consists of the players N(X}) and solid valuation intervals

Cnixy ={Ci€Cn| CiC Xy} with | ) Ci=Xy

Ci€Cn(xy)

(ii) the cake-cutting problem for the cake D = C'\ Zle X} with players P = N\
Zle N(X}) and valuations

K K
DP:{Di:Ci\ZXk|Ci€eN\Z€N(Xk)} with U D;,=D.
k=1 k=1 D;,eDp

Furthermore, the minimum density of intervals in each cake-cutting problem of type
(i) is equal t0 pmin. The minimum density of intervals in the cake-cutting problem of type
(ii) is also equal to pmin-

We denote, by Procedure CutCake(P, D,Dp), a method for solving the cake-cutting
problem for the cake D which is a single interval, players P and solid valuation intervals
Dp (where each valuation D; € Dp for i € P is a single interval in D) and |J;cp D; = D.
The original cake-cutting problem for the cake C, players N and solid valuation intervals
Cn with UcieeN C; = C can be solved by setting P = N, D = C' and Dp = Cy, and
calling Procedure CutCake(N, C, Cy). Thus, we can write our mechanism as follows.

Mechanism 5.1 Our cake-cutting mechanism.
Input: A cake C' = (0,1], a set of n players N = {1,2,...,n}, and solid
valuation intervals €y with valuation interval C; = (ay, §;] of each
player i € N and Ug,ce, Ci = C.
Output: Allocation Ay = {A;,As, ..., An} to players N.
Algorithm {
for eachi € N do D; =Cj;
P=N;D=C;Dp={D;|ic P}
CutCake(P, D, Dp);
}

As mentioned before, the cake-cutting problem of type (i) within each maximal interval
Hy = (h),h}] (¢ =1,2,...,L) of minimum density can be solved similarly. However, we
use a slightly different method for solving the cake-cutting problem of type (i) with the
cake H = Hy, players R = N(Hy) = {i € N | C; C Hy} and solid valuation intervals



Dr = GN(HZ) = {C; € Cy | i € N(Hy)} with Uc,enpCi = Hy, since H is a maximal
interval of minimum density. We call it Procedure CutMaxInterval(R, H, Dg).

Based on shrinking and inverse shrinking in Lemma 5.2, we can solve the cake-cutting
problem of type (ii) for the cake D = C'\ ZeL=1 Hy, players P = N \ ZeL=1 N(H;) and
valuations Dp = {D; = C; \ 25:1 Hy | C; € Cy \ 25:1 GN(HL;)} with Ug,en,C; = D
in the same way as the original cake-cutting problem, since all the maximal intervals
H, = (b}, hY], Hy = (b, hy],..., Hp = (b}, R]] of minimum density pmin in the cake C
are mutually disjoint by Corollary 4.2. We call this Procedure CutCakeType(ii)(P, D, Dp).

We first give a detailed description of CutCake(P, D, Dp) for the cake D, players P
and solid valuation intervals Dp with valuation interval D; of each player i € P and

Uiep Di = D.

Procedure 5.1 CutCake(P,D,Dp) {

Find all the maximal intervals of minimum density pmi, in the cake-cutting
problem with cake D, players P and solid valuation intervals D p;

Let Hy = (Ry, hY], Hy = (R4, Ry, ..., Hp = (k). k] be all the maximal intervals
of minimum density pmin;
// Hi, Ho, ..., Hy are mutually disjoint by Corollary 4.2

for {=1to L do
cut the cake at both endpoints hj, h) of Hy;
Rz:{iEP‘DigHg,DiEDP}; DRZZ{DZ‘E'DP|Z'ER@};
CutMaxInterval(Ry, Hy, Dg,);

P'=P; D' = D;

for {=1to Ldo P =P\ Ry D =D"\ Hy

/| P'=P\Y [ Reand D' = D\ Y0, He

if P'+( then
Djp, = ()
for each D; € Dp with i € P’ do D= D;\ Y, Hy; Dy = D + {D}};
// CutCakeType(ii)(P’, D', D'y/)
Perform shrinking of all Hy, Hs, ..., Hy;
Let D), DZ(S) € @g), and DEDS,) be obtained from

D', D} € D', and D, by shrinking of all Hy, Ha, ..., Hy, respectively;

CutCake(P', D), D));
Perform inverse shrinking of all Hy, Ho, ..., Hy;

Note that, if P’ # () after the deletion of Hy, Ho, ..., Hy, and CutCake(P’, D), Dg))

is recursively called, then the minimum density p/ . in CutCake(F’, D), @ggs,)) is strictly
larger than the minimum density ppi, in CutCake(P, D, Dp) by Lemma 5.2.

Next, we give a detailed description of Procedure CutMaxInterval(R, H,Dg) for the
cake H of maximal interval of minimum density ppin, players R and solid valuation in-
tervals Dp, based on Lemma 5.3 and Procedure CutMinInterval(S, X, Dg) which is a
method for solving the cake-cutting problem of type (i) where the cake is a minimal
interval X of minimum density pmin in maximal interval H = H, of minimum density
Pmin, DPlayers S = R(X) = {i € R | D; € D, D; C X} and solid valuation intervals
Dg = DR(X) ={D; € Dr|i€ S} with Up,ensDi = X.
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Procedure 5.2 CutMaxInterval(R, H, Dg) {

Let X1 = (2}, 2], Xo = (ah,25],..., Xk = (¢, %] be all the minimal intervals
of density pmin in H;
/] X1,Xa,..., Xk are mutually disjoint by Corollary 4.2

for k=1to K do
cut the cake at both endpoints @}, ] of Xj;
Sk:{i€R|Ding,DiE@R}; DSk:{Di€®R|i€Sk}§
CutMinInterval(Sy, Xi, Dg, );

R =R; H =H;

for k=1to Kdo R =R\Sy; H =H'\ X;

/)R =R\YK, 5, and B' = H\Y[, X,

if R +#( then
D =0;
for each D; € Dp with i € R' do D} = D;\ i, Xg; Dy = Dy + {D}};
Perform shrinking of all Xy, Xo, ..., Xk;
Let H®), DZ(S) € Dg’,), and Dg) be obtained from

H', D} € DY, and D', by shrinking of all Xy, X5, ..., Xk, respectively;

CutMaxInterval(R', H(S), 'Dg));
Perform inverse shrinking of all X7, Xo,..., Xx;

}

Note that if R’ # 0 after deletion of X1, Xo, ..., Xx and CutMaxInterval(R’, H(S), 'Dg,))

is recursively called, then the minimum density o, in CutMaxInterval(R’, H), Dg)) is
the same as the minimum density pmin in CutMaxInterval(R, H, Dg) by Lemma 5.3.

Note also that, the cake-cutting problem of type (i) within each minimal interval
X = (2}, )] of minimum density pmin (which consists of the players S = R(X}) and
solid valuation intervals Dg, = {D; € Dp | 1 € Si} with Up,ens, Di = X},) is solved by
CutMinInterval(Sy, Xj, Ds, ), as mentioned above.

In order to give a detailed description of Procedure CutMinInterval(S, X, Dg) for the
cake-cutting problem of type (i) where the cake is a minimal interval X of minimum density
Pmin In maximal interval H = H; of minimum density pmin, players S = R(X) = {i € R |
D; € Dg, D; € X} and solid valuation intervals Dg = Dp(xy = {D; € Dg | i € S} with
Up,ensDi = X, we need some more definitions and notations.

Definition 5.2 Let X = (2/,2”] be a minimal interval of minimum density pmin. A
minimal interval Y = (y/,4”] with respect to density which is properly contained in X
(ie., Y C X) is called a separable interval of X, if csize(Y') is less than (ny + 1) pmin,
where ny is the number of players whose valuation intervals are entirely contained in Y
(Figure 10).

If there is no separable interval of X = (2/,2"], then X is called nonseparable.

Note that there are at most n? separable intervals in X, since a separable interval is a
minimal interval with respect to density and there are at most n? minimal intervals with
respect to density as mentioned before.

We first consider the case when a minimal interval X of minimum density pmin is
nonseparable. This has a nice property.



Lemma 5.4 Let X = (2/,2”] be a nonseparable minimal interval of minimum density
Pmin- For simplicity, we assume X = (0,1] = C, N(X) = N = {1,2,...,n}, Cy.x) = Cn.
Let Ij = ((j — 1) pmin, Jpmin] for each j € N, and let Iy = {11, Iz,..., In} O ,en i = X).
Let G = (Cn,In, E) be a bipartite graph with vertex set Cy 4+ Iy and edge set E where
(Ci,I;) € E if and only if I; C C;. Then G has a perfect matching M = {(Cj, I;;)) | i €
N} CFE (m:N — N is a permutation on N).

Lemma 5.4 can be proved by Hall’s Theorem [4]: for all positive integers k < n and for
all k subsets {Cj,, Ci,,...,Cs,.} C Cu, if the union Cj, U Cy, U --- U Cj, contains at least
k intervals in Iy = {I1,1s,...,I,} (that is, C;, UC;, U --- U C}, contains ¢ > k intervals
I, Ly, ..., 1j,), then the bipartite graph G = (Cy, Iy, E) has a perfect matching.

Let M = {(Ci,Ir) | i € N} be a perfect matching of the bipartite graph G =
(Cn,In, E) defined in Lemma 5.4. Then we can allocate A; = I; C C; of the cake
X = (0,1] to player i € N with ), A; = X. Since a perfect matching can be obtained
in polynomial time of n, we call this Procedure Allocatelnterval(N (X), X, Cx(x)) and will
use it in Procedure CutMinInterval(N(X), X, Cy(x))-

Next we consider the remaining case. Let X = (z/,2”] be a minimal interval of
minimum density pmin With a separable interval. Let Y be the set of all separable intervals
in X and let

* /
Vs e Y (24)
That is, y* is the largest left endpoint of the separable intervals in X. Let Y,« be the set
of all separable intervals in X whose left endpoints are y* (Figure 10), i.e.,

Yy ={Y =@,y 1€Y1y =y} (25)
For each interval Y = (v/, y”] of X, let
YY) = csize(Y) — ny pmin- (26)

Let Y = (¢, ¥"] be a separable interval of the minimal interval X of minimum density
Pmin- Then Y is a minimal interval with respect to density and

Ny pmin < csize(Y) < (ny + 1) pmin (27)

and we have
0< ’Y(Y) < Pmin- (28)

Actually, p(Y) = %}G}Y) > pmin and y(Y) = csize(Y) —ny pmin > 0 for each Y C X since
X is a minimal interval of minimum density pmin. Furthermore, csize(Y) < (ny + 1) pmin
for a separable interval Y of the minimal interval X of minimum density pmin.

Let v* be the minimum +(Y') among the separable intervals Y = (y*, v/] with the
largest left endpoint y*, i.e.,

* = mi Y). 29
7= 7(Y) (29)

Clearly, by Egs. (28), (29),
0 <" < Pmin- (30)

Let Z,~ be the set of right endpoints of the separable intervals whose left endpoints are
y*, e,
Zp ={y" 1Y = (", y'] € Yy }. (31)
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Figure 10: Players N = {1,2,...,10} and their valuation intervals C; = (0,1], Cy =
(0.01,0.24], C5 = (0.02,0.25], Cy = (0.05,0.34], C5 = (0.28,0.52], Cs = (0.29,0.59], C7 =
(0.3,0.65], Cs = (0.32,0.77], Cy = (0.45,0.85], C1o = (0.7,1]. In this case, X = (0,1] is a
minimal interval of minimum density pmin = 0.1, and there are several separable intervals
of X = (0, 1] such as (0.01,0.25], (0.01,0.59], (0.01, 1], (0.28,0.65], (0.28,0.77], (0.28, 0.85].
The largest left endpoint y* of the separable intervals in X is 0.28 and the set of separable
intervals with the largest left endpoint y* = 0.28 is {(0.28,0.65], (0.28,0.77], (0.28,0.85]}.

Let %Z: be the set of separable intervals Y = (y*, ¢"] in Y- with v(Y) =~*, i.e.,

Y ={Y = (", ¥ € Yy

YY) ="} (32)

Let ZJ* be the set of right endpoints of the separable intervals in ‘jz* and J be the

cardinality of Z;:, ie.,

Zy =" |Y =y €Y}, T=17]. (33)
Let i
Z) = {225, ...z}, A<z <<z (34)
For each j =1,2,...,J, let
Yy = (y" 7] (35)
For simplicity, we also consider
=Y+ Yo=(" . (36)

In Figure 10, pmin = 0.1, y* = 0.28, Y,~ = {(0.28,0.65], (0.28,0.77], (0.28,0.85]},
Zy = {0.65,0.77,0.85}, v((0.28,0.65]) = 0.65 — 0.28 — 0.3 = 0.07, ~((0.28,0.77]) =
0.77 — 0.28 — 0.4 = 0.09, ~((0.28,0.85]) = 0.85 — 0.28 — 0.5 = 0.07 and ~* = 0.07. Thus,
‘é;* = {(0.28,0.65], (0.28,0.85]}, Z;* = {0.65,0.85}, J =2, 2§ =0.65 < z5 =0.85.

Then we have the following lemma and corollary.

Lemma 5.5 Let X = (2/,2”] be a minimal interval of minimum density ppi, in the cake
C. Let Y = (y*, 2] C X be an interval such that there exists C; = (a;, Bi] € Cy(x) with

y* < a; and z = B;. Then v(Y) =~* for z € Z;J: and y(Y) > ~* for z ¢ Z;:7 ie.,

_ *(y “/:
1Y) { _ 3 EZZ?; (37)



Proof: By the definition of v(Y) of Y = (y*, z] C X in Eq.(26),
V(Y) = CSiZG(Y) — Ny Pmin = 2 — y* — Ny Pmin-

It is clear that if 2 € Z;’* then (Y) = v* by the definitions of EZ: and ZJ* Therefore,

we can assume z & Z7. below.

We first consider the case when Y = (y*, 2] is not a separable interval. In this case,
if Y = (y*, 2] is a minimal interval with respect to density then csize(Y) > (ny + 1) pmin
and by Eq. (30),

YY) = csize(Y) — ny pmin = Pmin > 7

Otherwise (i.e., if Y = (y*, 2] is not a minimal interval with respect to density), let

y = min Q;.
Cj=(0yj,Bj]€ECN (x):CCY =(y* 2]

Let C; = (aj, fj] € Cn(x) satisfy a; = ' and B; < 2. Then y* < y' < «; since the
valuation interval C; = (o, Bi] € Cn(x) satisfies a; > y* and 2z = §; (and C; C Y = (y* 2])
and Y = (y*, 2] is not a minimal interval with respect to density. Let Y/ = (¢, 2] C Y =
(y*, z]. Then, both valuation intervals C; = (ay, 8], Cj = (ay, Bj] € Cn(x) With y' = o
and z = (3; are contained in Y’ = (y/,z]. Thus, Y’ = (¢/,2] is a minimal interval with
respect to density and ny: = ny. Note that, Y’ is not a separable interval since y* is the
largest left endpoint of the separable intervals of X. Thus, csize(Y”') > (nyr + 1) pmin,

CSiZG(Y) > CSiZe(Y’) > (nY’ + 1) Pmin = (nY + 1) Pmin and
A/(Y) = CSiZE(Y) — Ny Pmin > Pmin > 'Y*y

since csize(Y) =z — y* > z — ¢/ = csize(Y”).

We next consider the case when Y = (y*, 2] is a separable interval. Thus, ny pmin <
csize(Y) < (ny + 1)pmin. By the definition of Z;: ={y"|Y = (y*, ¢ € HZ:} and Eq.
(29), we have

y(Y) = csize(Y) — ny pmin > 7*

.
since 2 € 7. |

Collorary 5.3 Let X = (2/,2"”] be a minimal interval of minimum density pmi, in the
cake C. Let Y = (y*, z] C X be an interval such that there is a valuation interval
C; = (o, 8] € GN(X) with «; > y* and 2z = §;. If 2 &€ Z;* and z > z; for some
Y;=(y", 2;] (4 =0,1,...,J), then

z— zJ* > pmin(ny — ny;). (38)

Proof: Since z — 27 = csize(Y) — csize(Y), we have

*

2=z = csize(Y') — csize(Y;) = pminny +7(Y) — (pminnyj +1(Y5))
= (y(Y) = 9(¥}) + pmin(ny — ny;)
> pmin(nY - nYJ)
by Lemma 5.5 and v(Y;) =~+* < ~(Y). O

The following lemma can be obtained using almost the same argument and almost the
same notation used in Proof of Lemma 3.1.
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Lemma 5.6 Let X = (2/,2”] be a minimal interval of minimum density ppi, in the cake

C. Let Y; = (y*,2f] (j = 1,2,...,J) be a minimal interval of X with respect to density

defined in Eq.(35). Then the valuation intervals €y y;) is solid (i.e., UCiGGN(y) C; =Y;).
J

Let X = (2/,2"] be a minimal interval of minimum density pmin in the cake C' and let
§=N(X)and Dg={D; =C; | C; € Cy,C; € X} = Cn(x). Foreach j =1,2,...,J, let

Z; = (zj_1, #}]s Dsz,) ={Di € Ds | D; CY;,D; £ Y1}, (39)
8(zj) = {i€S|Di€Dszy}, nz, =15(Z;) (40)

Note that Dg(z,) = {D; € Ds | D; C Y;} \{D; € Dg | D; C Y;_1}. Furthermore, for each
J=1,2,...,J, let
Dis(z,y) ={Di = Di\Yj-1| Di € Dg(z,)}. (41)

We consider the cake-cutting problem for the cake Zj, players S(Z;), solid valuation
intervals Dfs‘(zj) for each j = 1,2,...,J. Note that, D, = D; \ Y;_; € D’S(Zj) is always
contained in Z; = (2]_;, #}], although valuation interval D; = (d;,d;] € Dg(z,) may not
*

be in Z; = (2}_y, 2}] (i.e., d} < zj_; may happen). Of course, y* < dj and 25 | < dj <z}
hold. Note also that, for each j =1,2,...,J, the valuation intervals Dg(zj) is solid, i.e.,

U D=2z (42)
D;e@’s(zﬂ
This can be obtained as follows: By Lemma 5.6, for each Y; = (y*, ZJ*] (j=1,2,...,J),
Dy is solid (i.e., UDieﬂN(yj) D; =Yj), and thus, for each point z € Z; = (2]_y, zj] =
Y; \ Y;_1, there is a valuation interval D; € D N(v;) containing z. The interval D; is not
in Dy (y,_,), since z ¢ Yj_1. Thus, z is in D} = D; \ Yj_1 € D'S(Zj). This implies that the
valuation intervals Dy 7, is solid and Eq.(42) holds.

Note that there is no valuation interval of Dg = Cy(x) contained in Yy = (y*, ) C X
(ny, = 0), since if there were a valuation interval D; € Dg contained in Yj, then D,
would be a minimal interval with respect to density and np, > 1 and p(D;) < csize(Yp) =
25 —y* = 7" < Pmin, a contradiction that X is a minimal interval of minimum density
Pmin- Thus, we have the following lemma.

Lemma 5.7 Each interval Z; = (,2']’»‘717 z]*] (j = 1,2,...,J) is a minimal interval with
minimum density pl ;. = pmin for the cake-cutting problem for the cake Zj;, players
S(Zj) = {i € S| D; € Dg(z,)}, valuation intervals DIS(ZJ) in Eq.(39) and the density
p'. Furthermore, the valuation intervals @'S( ) is solid and Eq.(42) holds.

Proof: As described above, the valuation intervals @’S(Zj) is solid and Eq.(42) holds for
each j =1,2,...,J.

Thus, we show below that each Z; = (2;71, zﬁ (j =1,2,...,J) is a minimal interval
with minimum density pmin. It is clear that p/(Z;) = %e(zj) = Pmin, Since
Zj

Y} (y*a Z]*]» ijl = (y*,z;,l], Zj = YJ \Y}*l’
csize(Y;) = pminny; +77  csize(Yjo1) = pminnty; , +97, 0y =ny; —ny
)

csize(Z;) = csize(Y)) — csize(Yj—1) = pmin(ny; — 1y;_,) = pminnz,-



Let Z = (%', 2"] be a proper subinterval of Z; (i.e., Z C Z;) such that 2" is z_; or 2" is a
left endpoint of some valuation interval and that 2" is a right endpoint of some valuation
interval in fog(ZJ).

If 2" # 25 4 then p'(Z) = p(Z) > pmin, since Z C X (Z # X) and X is a minimal
interval with minimum density pmin. Thus, we assume 2’ = 25 | < 2" < 2} (Z =
(2j_1,2"]). Now consider the intervals Y/ = (y*, 2] and Y;_1 = (v*, zj_,]. Let n); =
|6N(YJ/) \ Cn(y;—1)|- Then nly = nyr = ny;_, by Yj_1 C Y]. By Corollary 5.3, we have

. " * /
csize(Z) = 2" — 2;_y > pmin(ny]/ — Ny, ;) = Pmin Ny

and p'(Z) = %g(z) > Pmin-
Thus, Z; = (2]_;, z}] is a minimal interval with minimum density p} ;, = pmin. |
We also consider the remaining cake-cutting problem of type (ii) after deletion of the
interval (=5, z%]. Note that (2§, 23] = Z1+ Zo+ -+ Z;. Let

S((20, 23]) = S(Z1) + 5(Z2) + -+ + 5(Z). (43)

Thus, S((z], 23]) is the set of players whose valuation intervals are contained in Y} =
(y*, 2%]. Let

S" = S\ S((z, 27), (44)
X' = X\(z, 23, (45)
s = {D;| D;=D;\ (2, 2], Di € Ds,D;  Yy}. (46)

Then, we reduce the remaining cake-cutting problem for the cake X', players S’ and
valuations D, by shrinking of (2, z5] to the cake-cutting problem for the cake X' (9,
players S’ and solid valuation intervals ngg), where X’(S), D;(S) € ng(,s) and ng(;g) are
obtained from X', D} € D', and D', by shrinking of (zj, 23], respectively.

Then the following lemmas holds.

Lemma 5.8 Let X’®) be the interval obtained from X’ = X \ (z§,2%] in Eq.(45) by
shrinking of (2§, 25]. Then X' (5) is a minimal interval with minimum density Phroin = Pmin
in the cake-cutting problem for the cake X'(5) players S’ in Eq.(44), solid valuation
intervals ?g/s) (UD£<S)E®§5) DZ(S) = X'9) obtained from DY, in (46) and the density p'.
Proof: We will show that X’(®) is a minimal interval with minimum density pmin.

We can obtain p/(X'®)) = puin by the argument in Lemma 5.7. Actually, since
Yy = (y*, 23], 2 — 25 = ny; pmin, csize(X) = puinnx, and ny.s) = nx — ny;, we have

esize( X)) csize(X) — (27 — 23) = NX Pmin — MY, Pmin

(nx — ny;)Pmin = Nxn(s) Pmin  and

csize(X'(9)
J(XS)) = csize(X"Y) Oenin-
nx1(s)
Let Z = (2', 2]  (y*, 2% be an interval in X such that Z'(%), obtained from Z’ = Z'\
(25, 23] € X' by shrinking of (23, z%], is a proper subinterval in X"%) (i.e., Z'(9) ¢ X'(9).
Thus, 2’ < y* or 2" > 2. To prove that X’ (%) is a minimal interval with minimum density
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Phoin = Pmin we will show that p'(Z’ (9)) > pin by dividing into two subcases: Case (i) the
case of 2/ < y* and Case (ii) the case of y* < 2’ and 2" > z%.
As noted before, there is no valuation interval of Dg = Cnix)y = {Cietn|C; C X}

contained in Yy = (y*, 2{]. Similarly, there is no valuation interval of D%, (and of Dls(ﬁg))
contained in Yy = (y*, 23], since each D; € Dg with D} = D; \ (z5,2%] € DY, is not
contained Y; = (y*, 2] by Eq.(46) and D; \ Y # 0.

Case (i) 2/ < y*: We only discuss the case of 2/ < y* < 2§ < 2 < z% (the other cases,
e, 2 <2/ <yrord <yt <2 <zford <yt <z <2y <2’ can be discussed
similarly). After shrinking of (z§, 23], Z' = Z\ (2§, 23] becomes Z'5) = (2', 23] = Z' and
we can consider z” = z% by almost the same argument in Lemma 5.1. Thus,

Y= (25l CZ= (22}, csize(Z)=25—2, pmnny, =27 — 2.

Nys) =ng —ny,, csize(Z'5)) =z~ 2

and we have -
csize(Z’ 2 =2
p/(Z/(S)) _ ( ) _ =0 > Pmin
N 71(s) Nzi(s)

by Z2') = (2', 2] < X'%) and

*_

o(Z) = csize(Z) _ 25+ 25— 2 _ Pminny; + 25— 7

nz Ngi(s) + Ny, Nzi(s) + Ny, = Pin
since Z = (2, 2%] C X and X is a minimal interval of minimum density pmin-

Case (ii) y* < 2/ and 2” > z}: We only discuss the case of zj < 2/ < 2} < 2 (the
other cases, L.e., y* < 2/ < zf < 25 <2’ or 2 <2/ < Z”, can be discussed similarly). By
Corollary 5.3 for j = J, Yy = (y*, 25 and Y = (y*, 2], we have Z'(5) = 7' = Z\ (23, 2] =
(Z.>;7 Z”] C Y\ (267 Z;] = (y*7 ZE)k] + (Z;, Z"]v

csize(Z'%)) = 2 — 2y = csize(Y) — csize(Yy) > pmin(ny — ny,)

and n sy < ny —ny, (note that D; = (o, 5;] with y* < o5 < 25 and 25 < §; < 2" is in
Y = (y*, "], but not in Y; = (y*, 23], and thus, D} = D; \ (25, 23] = (as, 23] + (25, B3] is
not contained in Z'5) = 7' = 7\ (2§, 25] = (23, 2"]). Thus,

csize(Z'(5) csize(Z'(5)
iy - S(Z) | i@
N zi(s) ny —ny;

Thus, we have shown that X /(5) is a minimal interval of minimum density pl i, = Pmin-

1(5) ) _
S’ -

Finally, we will show that the valuation intervals D¢’ is solid, i.e., | D) /() D; s
i s/

X'9). Note that Up9) cpy) DY) = X9 if and only if UD’ED’S D! = X'. It is clear
i s/ z ’

K]
that UD/(S)ED/(S) DQ(S) C X' and UD‘GQ’ D C X'
i = i s’/

Let z € X' = X \ (2§, 25]. Note that the cake X is a minimal interval of minimum
density pmin in maximal interval H = Hy of minimum density pmin, the players are S =
N(X) ={i € N(H) | C; € X} and valuation intervals Dg = Cn(x) = {Ci € Cy(a) |
i € S} is solid, i.e., UC¢€®S C; = X by Lemma 3.2. Thus, there is a valuation interval
C; € Dg that contains x.



If o € X'\ (v*, 25] = X \ (y%, 23], then Cj is not contained in (y*, 23] since C; contains
x, and thus, both D) = C; \ (25,27 € Dy, and D;(S) € @g,s) contain x. This implies

X\ (55 € | D and XN\ < | DY
DieDy, DY®en®

Therefore, we can assume z € (y*, 2] C X' = X \ (2§, 25]. The valuation interval C;
above containing x, however, may happen to be entirely contained in Y; = (y*,23]. In
this case, C; is in some DS(Z].) ={D; € Ds | D; CY;,D; € Yj_1} in Eq.(39) and player ¢
is in S(Z;) = {i € S| D; € Dg(z,)}, which implies i ¢ " = S\ S((5, 27]). Of course, if
C; is not contained in Yy = (y*, 23], then both D} = C; \ (2§, 23] and D;(S) contain .

We will show that, for x € (y*, z§], there is always such a valuation interval C; contain-
ing x, but is not contained in Y; = (y*, z5]. This will imply that both D} = C; \ (2§, 2] €
D'y, and D;(S) c Dg;g) contain z. We divide the case of 2" > 2% into two subcases: Case
(i) " = 2% and Case (ii) 2" > 2%.

Case (i) " = 2%: In this case, X = (2, z%] and each valuation interval C; = (s, 3] €
Cn(x) satisfies B; < z}. Note that Y; = (y*, 23] C X = (2/,2}] and 2’ < y*, since Y}
is a separable interval in X. Let ymax be the largest right endpoint among the valuation
intervals C; = (a4, Bi] € Cn(x) such that a; < y*, ie.,

= max 2 47
Ymax Ci=(ai,Bi]€CN(x): i<y~ b (47)
Let C; = (a4, Bi] be a valuation interval in Cy(x) with ; < y* and ; = Ymax. Thus,
C; = (a4, B3] is not in Y = (y*, 23]
If Ymax > 24, then both C; = (a4, ;] and D} = C; \ (2§, 2%] = (v, 25] € DYy, contain
S
x € (y*, ZS], and we have UD;(S)ED;E,S) D;( ) — X'(9) and UDQED’S, D; - X'

Thus, we can assume Ymax < 23. Let
N((ljaymax]) ={ie NX)|C; e CN(X)7Ci - (x/aymax]}a
(

eN((z’,ymax]) ={Ci € eN(X) KES N((m',ymax])}, &/ Ymax] = |N( IlaymaX])‘-
Then
CN ) = CN(@ ) F CN (25D
since each Cj = (ay, 8;] € Cy(x) satisfies either a; < y* (i.e., Cj = (@}, 85] € Cn (' yumax]))
or aij = y* (L., Cj = (o, Bj] € Cn((y~23))) by the definition of ymax in Eq.(47). Thus, we

have n, + Ny 2n) = nx and

1ymax]
: / /
CSIZQ((Z‘ ’ymax]) = Ymax — T > (2! ymax] Pmin;
* / * * * ’
(2 ymax]Pmin -~ = TXPmin — n(y*,;}]pnlin =2z —T — (ZJ - Zo) =Zy — T,

since (', Ymax] € X and X is a minimal interval of minimum density pmin. Thus, we have
Ymax > %), a contradiction.

Case (ii) " > z%: In this case, we will show there is a valuation interval C; = («, 3] €
Cn(x) such that a; < y* and 25 < ;.

Suppose contrarily that there is no valuation interval C; = (i, 8i] € Cy(x) such that
a; < y* and 25 < B;. Thus, for each valuation interval C; = (a;, 3] € Cn(x), either
(a; <y* and §; < 2%) or (y* < o; and 2§ < ;) holds. Let

Cn(a,=5) ={Ci € Cnxy | Ci © (2, 23]}, Cwvyr ) = {Ci € Enixy | Ci € (v, 2"]}
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Note that (', 23], Y7 = (y*. 23] = (2,25 N (y*,2"] and (y*,2"] are all minimal inter-
vals with respect to density, and Cyy,) = GN((z/J” N Cn( ) C Cn((y*ar))- We have
(o z5] T Ny 2] = N(y* 25] = NX since there is no valuation interval C; = (a;, ] € Cn(x)
such that ; < y* and 2z < ;. We also have z — 2’ > N(z/,2%] Pmin Since X is a minimal
interval of minimum density pmin. Furthermore, z” — 25 > (n(y*yz//] - n(y*,zj;])pmin by
Corollary 5.3. Thus, we have

csize(X) = o' —a' = (25 —2') + (2" - 25)
> n(xl,z:",]pmin + (n(y*w//] — n(y*,z"}])/}min
= (n(x’,z}] + N> ] — n(y*,zﬁ)pmin = NX Pmin = CSiZ(%(,X)7

a contradiction.
Thus, when 2 > z%, there is a valuation interval C; = (a;, 3;] € Cn(x) such that
a; < y*and 2§ < §; and C; = (v, §;] contains = and not contained in (y*, z%] and we have

U p¥=x®ana |J Di= X
a
DY en® DjeDy,

Based on Lemmas 5.4, 5.7 and 5.8, we can write Procedure CutMinInterval(S, X, Dg)
as follows.

Procedure 5.3 CutMinInterval(S, X, Dg) {

if X = (2/,2"] is nonseparable then AllocateInterval(S, X, Dg);
// this finds an allocation of X to players S by Lemma 5.4
else // there is a separable interval in X
Find y*, 7*, Y., and Z/. defined by Egs. (24), (29), (32), and (33),
respectively;
Let Z). = {2},25,..., 25} and assume
=yttt <z <z <o <z2h <zjpi=2
for j=1to J do
Zj = (21, 7j;
cut the cake at both endpoints z7_;, 27 of Z; = (2;71, z]*],
let Dg(z,) and ®%(Zj) be defined in Egs. (39) and (41);
S(Zj) = {Z es | D, e @S(Zj)};
. ) )
, CutMlnIntferl(S(Zjl), Zj, DS(Z*]-));
§'=8\S((25,23]); X'= X\ (25,2]];
if S'# () then
for cach D; € Dg withi € S’ do Dj = D;\ (25, 23]; Dy =Dy +{D;}:
Perform shrinking of (2§, z3];
Let X'(5), Dg(s) € Dg?g) and Dls(ig) be obtained from
X', D € DY, and DY, by shrinking of (2§, z%], respectively;
CutMinInterval(S’, D'(5), Dgfq));
Perform inverse shrinking of (2§, z3];

}

Based on Lemmas 5.2, 5.4 and 5.8, we can show that Mechanism 5.1 correctly finds,
in O(n?’) time, an envy-free allocation Ay = {A1,As,..., A} of the cake C to a set of n



players N with A; = {A4;, Ai,, ..., A;, } such that A; = A; + A, +---+ A, C C; for
each player ¢ € N and the number of cuts made is at most 2n — 2. Actually, enVLy—freeness
and truthfulness of Mechanism 5.1 can be obtained by induction on the number of calls
on Procedure CutCake(P, D,Dp) by Lemma 5.2. Truthfulness of Mechanism 5.1 can be
also shown in a similar way as in papers [2], [6]. We can show that the number of cuts is
at most 2(n — 1) in a similar way as in paper [6].

We will give a little more details below. For simplicity, we use Ay = (4; : ¢ € N) and
A; in place of Ay = {A1,Aa,..., Ay} and A;, respectively. Then the following lemmas
can be obtained.

Lemma 5.9 For a cake X which is a minimal interval of minimum density pmin, play-
ers S, and solid valuation intervals Dg = {D; | i € S} with |J,.¢ D; = X, Procedure
CutMinlnterval(S, X, Dg) satisfies the following (a) — (c).

€S

(a) CutMinInterval(S, X, Dg) returns an envy-free allocation (4; : i € S) of X to players
S such that A; C D; € Dg, csize(A;) = pmin for each i € S and ), ¢ A; = X.

(b) CutMinInterval(S, X, Dg) runs in O(s?) time where s = |S)|.

(¢) The number of cuts made over X by CutMinlnterval(S, X, Dg) is at most 2s — 2.

If X is nonseparable, then, by Lemma 5.4, Allocatelnterval(S, X, Dg) finds an alloca-
tion (4; : ¢ € S) of X to players S such that A; C D; € Dg, csize(A;) = pmin for each
i€ Sand ) gA; = X. The number of cuts made by AllocateInterval(S, X, Dg) is s — 1.
A perfect matching of a bipartite graph in Lemma 5.4 with 2s vertices can be obtained in
O(s?®) time. Thus, Lemma 5.9 holds.

If X is separable, Lemma 5.9 can be shown by induction on the number of recursive
calls of CutMinInterval(-, -, -) in CutMinInterval(S, X, Dg) in total.

Assume that the lemma holds if CutMinInterval(S, X, Dg) contains at most & > 0
recursive calls. Consider when CutMinlnterval(S, X, Dg) contains k + 1 recursive calls.
Thus, X has a separable interval and CutMinInterval(S, X, Dg) contains J recursive calls
CutMinInterval(S(Z;), Z;, Dg( Zj)) for the cake Z; which is a minimal interval of minimum

density pmin by Lemma 5.7 and a recursive call CutMinInterval(S’, X' (S),Dg,‘g)) for the
cake X'(%) which is a minimal interval of minimum density ppi, by Lemma 5.8 if S’ # 0.
By the induction hypothesis, CutMinInterval(S(Z;), Z;, gig(zj)) finds an allocation (A; :
i € S(Z;)) of Z; to players S(Z;) such that A; C D} € D’S(Zj) (thus, 4; C D; € Dg),
csize(Ai) = pmin for each i € S(Z;) and 3 ;cg)Ai = Zj for each j = 1,2,...,J.

Furthermore, CutMinInterval(sS’, X'(5), @g,s)) finds an allocation (A} :i € S) of X' to
players S’ such that A} C D;(S) € D;S,S), csize(A}) = pmin for each i € " and Y, o A} =
X'5). By inverse shrinking of (zj, 23], we have the allocation (4; : i € S) of X' =
X\ (2§, 25] to players S’ such that 4; C D} € DY, (thus, A; C D; € Dg), csize(A;) = pmin
for each i € §" and )", o Aj = X'.

Thus, we can obtain that CutMinInterval(S, X, Dg) returns an allocation (A4; : i € S) of
X to players S such that A; € D; € Dg, csize(A;) = puin for eachi € Sand )7, ¢ 4; = X.
Since A; C D, csize(A;) = pmin and ut;(A4;) = csize(4; N D;) = csize(4;) = pmin =
csize(A;) > csize(4; N D;) = ut;(A;) for each i,j € S, the allocation (4; : i € §) is
envy-free. Thus, (a) is obtained.
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Similalry, (b) and (c) of the lemma can be shown by induction on the number of
recursive calls of CutMinInterval(-,-,-) in CutMinInterval(S, X, Dg) in total. Note that,
all the separable intervals can be found in (s2) time.

The following two lemmas can be obtained similarly.

Lemma 5.10 For a cake H which is a maximal interval of minimum density pmin, players
R, and solid valuation intervals Dp = {D; | i € R} with (J,c.p D; = H, Procedure
CutMaxInterval(R, H, Dg) satisfies the following (a) — (c).

(a) CutMaxInterval(R, H, Dg) returns an envy-free allocation (4; : ¢ € R) of H to
players R with A; C D; € Dp, csize(A;) = pmin for each i € R and ZieR A, =H.

(b) CutMaxInterval(R, H, Dg) runs in O(r%) time where r = |R|.

(c) The number of cuts made over H in CutMaxInterval(R, H,Dg) is at most 2r — 2.

Lemma 5.11 For a cake D, players P, and solid valuation intervals Dp = {D; | i € P}
with (J;cp Di = D, Procedure CutCake(P, D, Dp) satisfies the following (a) — (c).

(a) CutCake(P, D, Dp) returns an envy-free allocation (A; : i € P) of D to players P
such that A; C D; € Dp, csize(A;) > puin for each i € P and ), p A; = D.

(b) CutCake(P, D, Dp) runs in O(p®) time where p = |P|.
(¢) The number of cuts made over D in CutCake(P, D,Dp) is at most 2p — 2.

By Lemma 5.11, the Mechanism 5.1 (Procedure CutCake(NV,C,Cy) is envy-free and
runs in O(n?) time, and the number of cuts made by Mechanism 5.1 is at most 2(n — 1).

Note that, in CutCake(P, D, Dp), if D is a maximal interval of minimum density pmin,
then CutMaxInterval(P, D, Dp) is called and, by Lemma 5.10, CutMaxInterval(P, D, Dp)
finds an envy-free allocation (4; : i € P) of D to players P such that A; C D; € Dp,
csize(A;) = pmin for each i € P and ), .p A; = D. On the other hand, if D is not a
maximal interval of minimum density pmin, then P’ = () after the deletion of all maximal

intervals of minimum density puin, and CutCake(P’, D), DEJS,)) is recursively called, and

the minimum density p/ . in CutCake(P’ ,D(S),Q)g)) satisfies p/ .. > pmin. Thus, by
induction on the number of recursive calls of CutCake(-,-,-) in CutCake(P, D,Dp), we
can show that CutCake(P, D, Dp) returns an envy-free allocation (4; : ¢ € P) of D to
players P such that A; C D; € Dp, csize(A;) > pmin for each i € P and ), p A; = D.

As mentioned before, truthfulness of Mechanism 5.1 can be shown in a similar way as
in papers [2], [6]. Thus, we have the following theorem.

Theorem 5.1 Mechanism 5.1 is envy-free and truthful, and the number of cuts made by
Mechanism 5.1 on the cake is at most 2(n — 1). Mechanism 5.1 runs in O(n?) time.
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6 Appendix: Proof of Theorem 5.1

Although the truthfulness of Mechanism 5.1 can be obtained in a similar way as in papers
(2], [6] as metioned before, we give a proof for completeness.

Lemma 6.1 Mechanism 5.1 (mechanism M) is truthful.

Proof: Let Cn = {C1,Cs,...,C,} be an arbitrary input to the mechanism M and
An = (4; : j € N) be an allocation of the cake C' to n players N obtained by M with
Aj for each j € N. Let € (i) = {C1,Co,...,Ci—1,C},Cit1,...,Cr} be an input to the
mechanism M in which only player i gives a false valuation interval C} and let an allocation
of the cake C' to n players N obtained by M be A\ (i) = (A} : j € N) with A for each
j € N. Note that, by Lemma 5.11, we have

Thus, the value ut;(A4;) of A; for player ¢ and the value ut;(A%) of A’ for player ¢ are
ut;(A;) = csize(A; N C;) = csize(A;), ut;i(A}) = csize(A; N C;) < csize(A]).

We will show that ut;(A4;) > ut;(A}).

Let Hy = (R}, RY], Hy = (hbh,hy),..., Hp = (h},h]] be all the maximal intervals of
minimum density pmin of solid valuation intervals Cx = {C1,Cy, ..., Cy,} with density p.
Let H{, Hj,..., H}, be all the maximal intervals of minimum density p/; of solid valu-

ation intervals € (7) = {C1,Ca,...,Ci—1,C}, Ciy1,. .., Cy} with density p’ (the argument
below can be extended to the case when € (i) is not solid valuation intervals). Thus,
p(Hy) = pmin for each ¢ = 1,2,... L, and p/(H}) = pl,, for each ¢/ =1,2,...,L". We
divide into three cases: (i) pl i, < Pmin, (i) Phyin > Pmin, (1) Pl = Pmin-

(i) Pliin < Pmin- In this case, we can show that C is contained in some Hj. By
symmetry, we can assume ' =1 and C} C Hj.

Suppose contrarily that C! ¢ H{. Then we have the following.

If C; ¢ Hj then p/(Hj) = p(H}) since C} € Hy, and pl .. = p/(H}) = p(H{) > pmin-
Otherwise (i.e., if C; C H}), the number n’N(H{) of valuation intervals of € in Hj is
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equal to the number of ny(g;) of valuation intervals of Cy in H} minus 1 (i.e., ”?\/( H) =
nnyy — 1), since C; is in Hy, but Cj is not in Hj and py;, = p'(Hi) > p(H{) > pmin-
Thus, in either case, a contradiction that pl . < pmin.

Thus, we have C] C Hj. Since the allocation Ay (i) = (A} : j € N) obtained by mecha-
nism M satisfies A} C C] C H{ we have py; ,ngr = csize(H]) and ut;(4;) = csize(A;NC;) <
csize(Ag) = p;nin < Pmin < utl(Al)

(ii) plin > Pmin- In this case, we can show that C; is contained in some Hy by an
argument similar to one in the case (i). By symmetry, we can assume £ = 1 and C; C H;.

Since p/(X;) > pl, for each interval X; with C} C X;, we have csize(A}) > pl . .
Similarly, for each j € N(H;) with valuation interval C; C H; and for each interval X;
with Cj C X, we have p'(X;) > p;, and csize(A}) > pl ;.. Since pl ;) > pmin, A} C Cj
for all j € N(Hy)\ {i}, and A] C C! (A, N C; C Cj, but A} C C; may not hold), we have
esize(Hr) > 37 e n(my) csize(A; N Cj) and

ut; (A}) csize(A; N C;)

csize(H1) — Z csize(A; N Cj) = csize(Hy) — Z csize(A;)
JEN(H)\{i} JEN(H)\{i}

< csize(H1) = pain(na, — 1)

= MNN(H;)Pmin — pinin(nHl —1) = pmin — (nN(Hl) - 1)(/);nin ~ Pmin)

< Pmin = uti(4;).

IN

(iii) plin = Pmin. By symmetry we can assume that this case can be divided into four
subcases as follows:

(a) C; € Hy and C} C Hy,

(b) C; C Hy and C} ¢ H), for all ¢/ =1,2,..., L,
(c)C; € Hpforall ¢ =1,2,....L and C, C Hj,
(d)C; g Hpforall ¢ =1,2,...,Land C/ € H), for all ' =1,2,..., L.

In subcase (a), ut;(4;) = csize(A;) = pmin and csize(4]) = pl., = pmin and thus, we
have ut;(A}) = csize(A; N C;) < csize(A]) = pl i, = Pmin = ut;(4i).

In subcase (c), ut;(A4;) = csize(A4;) > pmin and csize(AL) = pl .. = pmin and thus, we
have ut;(A}) = csize(A; N C;) < csize(A]) = pliy = Pmin < ub;(4;).

In subcase (b), by the same argument for the case (ii), we can show ut; (A}) = csize(A;N
C;) < csize(A}) < ut;(4;) as follows.

Since p/(X;) > pl;, for each interval X; with C] C X;, we have csize(A]) > pl.. .
Similarly, for each j € N(H;) with valuation interval C; C H; and for each interval X;
with Cj C Xj, we have p/(X;) > p;, and csize(A}) > pl;,. Since ply, = pmin and
Al C Cjforall j € N(H1) \ {i}, A} € Cj (A]NC; C C;, but A; C C; may not hold), we
have csize(H1) > 3 ey, csize(A]; N Cj) and

ut;(A) = csize(A; N Cy)

< csize(H;) — Z csize(A; N Cj) = csize(Hy) — Z csize(A%)
JEN(H)\{i} JEN(H1)\{i}
< csize(H1) = Plyin(ney, — 1) = Dy () Pmin — Prin (i — 1) = prmin = uti(A;).

In subcase (d), since C; € H, (¢ =1,2,...,L) and C. ¢ H, (¢ =1,2,...,L),
we have p(X;) > pmin for each X; with C; C X; and p/(X]) > pl;, for each X with
C! C X|[. We show ut;(A;) < ut;(A;) by induction on the number of calls of Procedure
CutCake(P, D, Dp).



Suppose that C! C Hy for some £ =1,2,..., L. We can assume C! C Hy by symmetry.
Then, the number n'N( 1) of valuation intervals of € in H; is equal to the number of
ny(m,) of valuation intervals of Cx in Hy plus 1 (i.e., n’N(Hl) = ny(m,) + 1), since Cj is in
Hy, but C; is not in Hy. This implies that p ;. < p/(H1) < p(H1) = pmin, a contradiction
that p;nin = Pmin-

Thus, we have that no H, (¢ = 1,2,...,L) contains C}. This implies that p'(H,) =
p(Hy) = pmin = pl;, and Hy is an interval of minimum density in valuation intervals €.

Similarly, we can show that no H), (¢’ =1,2,...,L’) contains C;, and each H}, is an
interval of minimum density in valuation intervals Cy.

Thus, we can claim that each Hy is a maximal interval of minimum density in valuation
intervals €} and that each Hj is a maximal interval of minimum density in valuation
intervals Cp.

Suppose contrarily that some H; were properly contained in a maximal interval Hy, of
minimum density in valuation intervals €. Then Hy, would not be a maximal interval of
minimum density in valuation intervals Cy, since Hy, is an interval of minimum density in
valuation intervals Cp. This is a contradiction that H, is a maximal interval of minimum
density in valuation intervals Cy. Similarly, we can show that each Hj is a maximal
interval of minimum density in valuation intervals Cy. Thus, we have L' = L and, by
symmetry, we can assume Hy = H) for each £ =1,2,...,L.

When Procedure CutCake(C, N, Cy) is called, the cake-cutting problem of type (ii)
for the cake D = C'\ Zle Hy, players P = N\ Z[L:l N(H;) and valuations Dp =
{Dr = Cy \ Zle Hy | C, € Cn \ Z(Ld Cn(m,)} is obtained. Similarly, when Procedure
CutCake(C, N, €Y) is called, the cake-cutting problem of type (ii) for the cake D = C'\
S, Hy, players P = N\ Y1, N(Hy) and valuations D, = {D}, = C), \ Y1, Hy | C, €
ev\ >k, G?V(H[)} is obtained.

Note that Dy = Dj for all k € P\ {i} and that D; = C;\ S Hy and D) =
Cg\zszl Hy. Furthermore, note that, the allocated piece A; to player i in the cake-cutting
problem of type (ii) for the cake D = C'\ ZeL=1 Hy, players P = N\ Zle N(Hy) and
valuations Dp = { Dy, = Cx\Sb_ | Hy | C), € Cx\XF, G;V(Hz)} is the same as the allocated
piece A; to player i in the original cake-cutting problem. Similarly, the allocated piece A}
to player 7 in the cake-cutting problem of type (ii) for the cake D = C'\ Ele Hy, players
_P = N\ZeLzl N(Hy) and Valua.tions Dp = {Dk: C]/C\Z.f‘:l Hy|Cp e G‘IN\Ze%:l ?v(H_é)}
is the same as the allocated piece to player i in the original cake-cutting problem with
valuation intervals € (i) = {C1,C,...,Ci—1,C}, Cit1,...,Ch}.

By induction hypothesis, ut;(A4;) > ut;(A}) holds, where ut;(A;) = csize(4; N C;) =
csize(A;) is the value of the allocated piece A; to player i in the cake-cutting problem of
type (i) for the cake D = C'\ Y-, Hy, players P = N \ Y., N(H,) and valuations
Dp = {Dy, = Cp \ Xy He | Ck € Cn \ 07, Crvry b and ut;(A) = csize(A; N Cj) is
the value of the allocated piece A} to player ¢ in the cake-cutting problem of type (ii) for
the cake D = C'\ Y.f, Hy, players P = N\ Y.r | N(Hy) and valuations D, = {D}, =
Cllc \ 25:1 Hy | Cllc €Cy\ 25:1 ?V(He)}'

Thus, we have completed Proof of Theorem 5.1. |
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