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Abstract 

Alijani, Farhadi, Ghodsi, Seddighin, and Tajik considered a restricted version of 
the cake-cutting problem and proposed a mechanism based on the expansion process 
with unlocking [1, 6]. They claimed that their mechanism uses a small number of cuts, 
and that it is envy-free and truthful. We first show that it is not actually envy-free 
and truthful. Then, for the same cake-cutting problem, we give a new envy-free and 
truthful mechanism with a small number of cuts, which is not based on their expansion 
process with unlocking. 

1 Introduction 

The problem of dividing a cake among players in a fair manner has been widely studied 

since it was first defined by Steinhaus [7]. Prcocaccia has claimed in his survey paper [5] as 

follows: insight from the study of cake-cutting problem can be applied to the allocation of 

computational resources, and designing cake-cutting algorithms that are computationally 

efficient and immune to manipulation is a challenge for computer scientists. Recently, the 

cake-cutting problem has been studied by computer scientists, not only from the viewpoint 

of computational complexity [3], but also from the game theoretical point of view [2]. 
Alijani, Farhadi, Ghodsi, Seddighin, and Tajik considered the following cake-cutting 

problem from the game theoretical point of view [1, 6]: 

Given a divisible heterogeneous cake C = (0, 1] = {x IO< xさ1}, a set of n strategic 

players N = {1, 2, ... ,n} and the valuation intervals'J = {C1, C2, ... , Cn} with valuation 

interval Ci = (ai, f3i] = { x I O :::; aiく X :::; f3i :::; 1}こCof each player i E N, find a 

mechanism (that is, a polynomial time algorithm) for dividing the cake into pieces and 

allocating pieces of the cake to n players to meet the following conditions (Figure 1): 

(i) the mechanism is envy-free, i.e., each player (weakly) prefers his/her own allocated 

piece to any other player's allocated piece, 

(ii) the mechanism is strategy-proof (truthful), i.e., each player's dominant strategy is 

to reveal his/her own true valuation interval over the cake (i.e., making a lie will not 

lead to a better result), and 

(iii) the number of cuts made on the cake is small. 

They proposed an expansion process with unlocking and gave a mechanism for the 

above cake-cutting problem based on the expansion process with unlocking [1, 6]. They 
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゜ら=(0.02,0.64] 

C4 = (0.05,0.68] 

C1 =C=(0,1] 

C3 = (0.03, 0.65] 

C5 = (0.08,0.87] 

Figure 1: An input example for the cake-cutting problem (n = 5). Player 1 is allocated 

(0, 0.07] U (0.87, 1], player 2 is allocated (0.07, 0.27], player 3 is allocated (0.27, 0.47], player 

4 is allocated (0.47, 0.67] and player 5 is allocated (0.67, 0.87]. 

claimed that their mechanism satisfies the above three conditions, i.e., it is envy-free, 

truthful and the number of cuts made on the cake is at most 2(n -1). 
In this paper, we first show that the mechanism based on the expansion process with 

unlocking proposed by Alijani, Farhadi, Ghodsi, Seddighin, and Tajik in the paper [1, 6] 

uses a small number of cuts, but is not actually envy-free and truthful. 

Then, for the same cake-cutting problem, we give an alternative envy-free and truthful 

mechanism which is not based on the expansion process with unlocking. 

2 Mechanism Proposed by Alijani et al. 

In this section, we explain the mechanism based on the expansion process with unlocking 

proposed by Alijani, Farhadi, Ghodsi, Seddighin, and Tajik by borrowing their description 

in the paper [1, 6]. Since our description is the same as their description, although we 

changed a little such as notation, we would like to express our sincere gratitude to them. 

As mentioned before, in the cake-cutting problem, we are given a divisible heteroge-

neous cake C = (0, 1] = {x I O < xさ1}, a set of n strategic players N = {l, 2, ... , n} and 

the valuation intervals'J = {C1, C2, ... , Cn} with valuation interval Ci = (aぃ叫={x I 

0 :S Clci < X :S f3i :S 1}こCof each player i E N. 
A piece of C is a set of mutually disjoint intervals in C. For an interval I= (a, b]~C, 

the length of I, denoted by len(I), is defined by len(I) = b -a. Thus, for a piece 

A=  {Iぃh... ,IIAI}, the length of A, denoted by len(A), is defined by the total length 
IAI of the intervals in A, i.e., len(A) = I:k=1 len(h). The value of an interval I= (a, b] to 

player i E N, denoted by¼(I), is defined by the length of interval In Ci, i.e., 

¼(I) = len(I n Cふ

Thus, for a piece A=  {Ii, h, ... , IIAI}, the value of A to player i EN, denoted by¼(A), 
is defined by the total value of the intervals in A to player i E N, i.e., 

IAI IAI 

¼(A)= 区 ¼(h) =区len(hn Ci)-
k=l k=l 

A division of the cake C amongnplayers N = {l, 2, ... ,n} is a set D = {A1, A2, ... ,An} 

of pieces, with each piece Ai= {Ii,1,Ii,2, ... ,Ii,IA;I} to player i E N  with the following two 
properties: 

(i) every pair of pieces are mutually disjoint, i.e., for all Ai, Aj (l :S i < j :S n), 

Ai n Aj = 0, and 

(ii) no piece of the cake is left behind, i.e., uiEN Ai = C. 
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The number of cuts in division D = {A1, A2, ... , An} is (~iEN IAI) -1. A division 

D = {A1,A公..., An} is envy-free, if, for every player i E N and every piece Aj E D, 

the inequality¼(Ai) 2: ¼(Aj) holds. In this setting, the envy-free notion for division 

D = {A1, A2, ... , An} with each piece Ai= {Ii,l, Ji,2, ... , Ji,IAil} to player i E N can be 
written as follows: for each player i EN  and each j EN, 

IAil IAil IAjl IA』

¼(Aリ= L¼(Ii,k) = L len(Ii,k n Ci) 2: ¼(Aj) = L¼(Ij,k) = L len(Ij,k n C』.
k=l k=l k=l k=l 

For a set of valuation intervals T こ'J,let DOM(T) be the minimal interval that 

includes all members of T邸 sub-intervals.Thus, for a set T~'J, 

DOM(T) = (min O:j, max叫
C3ET C,ET 

Furthermore, the density of T, denoted by <I>(T), is defined by 

<I>(T) = 
入(T)

ITI' 

where入(T)is the total length of DOM(T) that is covered by at least one interval in T. 

Thus, 入(T):S len(DOM(T)) holds. A set of valuation intervals T~'J is called solid, if 
for every point x E DOM(T), there exists a valuation interval Ci in T such that x E Cか

They assume that every piece of the cake is valuable for at least one player. Thus they 

assume that the valuation intervals'J = { C1, C2, ... , Cn} is solid, i.e., 

LJ Ci= C. 
iEN 

This implies that DOM('J) = C and入('J)= len(DOM('J)) = 1. 

2.1 Expans10n process 

The main tool in their mechanisms in [1, 6] for dividing the cake is a procedure they 

call expansion process. The expansion process expands some associated intervals to the 

players, inside their desired areas (i.e., valuation intervals). They use exp(T) to refer to 

the expansion process on set T~'J of valuation intervals. They initiate the expansion 

process for T by associating a zero-length interval Ji = (ai, bi] at the beginning of its 

corresponding valuation interval Ci = (ai, /3i] E T, i.e., Ii = (ai =伍， bi= ai]. Denote 

by S(T) = {Ii I Ci E T}, the set of these intervals. They expand the intervals in S(T) 

concurrently, all from the endpoint. The expansion is performed in a way that maintains 

two invariants: 

(i) The expansion has the same speed for all the intervals in S(T) so as the lengths of 

the intervals in S(T) remain the same, and 

(ii) each Ii= (ai,bi] E S(T) always remains within Ci= (ai,/3i] ET. 

During the expansion, the right endpoint bi of an interval Ji = (ai, b」ES(T) may 

collide with the starting point aj of another interval Ij = (aゎ朽]E S(T). In this case, 

Ji pushes the starting point of Ij forward during the expansion. The push continues to 
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the end of the process. If Ji pushes Jj, they say Ji is stuck in Jj. Note that by the way 

they initiate the process, the intervals Ji = (ai, bi] E S(T) remain sorted according to the 

corresponding叫s.In the special case of equal ai for two players, the one with smaller /3i 
comes first. 

Definition 2.1 (Definition 1 in [1, 6]) During the expansion, an interval Ji = (ai, bi] in 

S(T) becomes locked, if the endpoint bi of Ii reaches the right endpoint /Ji of Ci= (aゎ叫

Definition 2.2 (Definition 2 in [1, 6]) A chain is a sequence Iu1, I, び2'...I 9 びkof intervals m 

S(T), with the property that, for 1~i < k, Iui is stuck in I, 叫 1.A chain I, び1,fu2, ・ ・ ・, Iuk 
is locked, if Iuk is locked. 

The size of a chain is the number of intervals in that chain. By definition, a single 

interval is a chain of size 1. The expansion ends when an interval in S(T) becomes locked. 

The termination condition ensures that the second invariant is always preserved. 

Definition 2.3 (Definition 3 in [1, 6]) The expansion process for T is perfect, if the 

associated intervals in S(T) cover the entire DOM(T). If the process terminates due to a 

locked interval before entirely covering DOM(T), the process is imperfect. 

Note that if an expansion process on Tends perfectly, then len(Ii) = <I>(T) for every 

associated interval Ji in S(T). 

Observation 2.1 (Observation 1 in [1], Observation 31 in [6]) During the expansion 

process, every interval Ji in S(T) is either being pushed by another interval in S(T), or 

its starting point is still on aか

2.2 Expansion Process with Unlocking 

They introduce a more general form of the expansion process. The basic idea is the fact 

that during the expansion process, there might be some cases that a locked chain becomes 

unlocked by re-permuting some of its intervals, without violating the expansion invariants. 

Defimt10n 2.4 (Definition 4 in [1, 6]) Let e = Icru Icr2, ... ,Jerk be a maximal locked chain. 

A permutation h1, .lゎ，..., hr of the intervals in e is said to be e-unlocking, if the following 

conditions hold. 

(i) All the intervals of the permutation are members of the locked chain, i.e., h; E e for 

all i = 1, 2, ... , r, and the last interval hr of the permutation is the locked interval 

(i.e., ふ＝叫．

(ii) For every j < r, the share hi = (a/ii, blii] associated to player釘istotally within the 

valuation interval C炉 i= (aも+i,/30i+i] of player忙 1(with its right endpoint bli 

of hi = (a/ii, blii] strictly less than the right endpoint /3ら+iof the valuation interval 

cら+i= (aも+i'/30i+1]),i.e., aら ~aも+i and尻 </3炉 1for all j with 1さj::;r-l.

(iii) The share hr = (a心 b0r]associated to playerふiswithin the valuation interval 

cli1 = (ali1, /3叫ofplayerふ(withits right endpoint blir of hr = (alir, bゎ]strictly less 

than the right endpoint /301 of the valuation interval C01 = (a01, /3叫）， i.e.,a,51 ::; aふ

andふ >bふ・
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Figure 2: From a C-unlocking permutation h, le, Id, le in a maximal locked chain e = 

Ia, h, le, Id, le, we can obtain a chain C'= Ia, le, Id, le, h which is no longer locked. From 

another C-unlocking permutation h, le, le, we can also obtain a chain C" = Ia, le, le, Id, h 

which is no longer locked. 

The intuition behind the definition of unlocking permutation is as follows: 

Let h1, h2, ... , Ilir be a e-unlocking permutation, where e = Ia1, Ia2, ... , Iak. Then, 

the order of the intervals in e can be changed by placing h1+1 in the location h1 for 

each j with 1 :s; j < r and placing h1 in the location hr. By the definition of unlocking 

permutation, after such operations, hr = Lびkis no longer locked. Thus, Lびkis not a barrier 

for the expansion process and the expansion can be continued. 

It is worthwhile to mention that there may be multiple locked intervals in a moment. 

In such case, they separately try to unlock each interval. For a set T of valuation intervals, 

they use U-exp(T) to refer to the expansion process with unlocking for T. See Figure 2 

for an example of this process. 

Defimtion 2.5 (Definition 5 in [1, 6]) A maximal locked chain e = Ia1, Ia2, ... Jak is 

strongly locked, if e admits no unlocking permutation. 

Definition 2.6 (Definition 6 in [1, 6]) An expansion process with unlocking U-exp(・) is 

strongly locked, if at least one of its maximal locked chains is strongly locked. 

Definition 2. 7 (Definition 7 in [1, 6]) A permutation graph for a maximal locked chain 

e=r: び1,Ia2, ... , Iak is a directed graph Ge (V, E) defined as follows: For every interval 

Ia; E e, there is a vertex Va; in V. The edges in E are in two types恥 andEr, i.e., 

E = Ez U Er. The edges in Ez and Er are determined as follows: 

(i) For each Ia; and Ia1, the edge (vか Va1)is in Ez, if i > j and aa; :s; aり

(ii) For each Ia; and Lび1, the edge (vか Va1)is in Er, if i < j and尻</3心

An example of permutation graph Ge(V, E) is shown in Figure 3. Note that, if there 

is an edge (vか Vai)in Ez, then Ia, can be moved to the place where Ia1 is, since Iai = 

(a巧 9 尻]~Ca, = (°'a;, f3a;] (i.e., °'a; :s; aaj < b。1:s; aa; < ba; < f3aJ・ S1m1larly, 1f 
there is an edge (Va;, vりinEr, then Ia; can be moved to the place where Iai is, since 

化=(aaJ, 尻]C Ca;= (aび''/3叫 and尻<f3a, (i.e., °'a; さaび，<ba; :s; aa1く尻</3aJ-
A trivial necessary and sufficient condition for a maximal locked chain e to be strongly 

locked is that Ge contains no cycle including vびk"Thus, e = Ii,h,h,[4 in Figure 3(a) is 
a strongly locked chain. 
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C4 = (0.05, 0.68] i 
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C1 =C=(0,1] 

C3 = (0.03, 0.65] 
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I'  , C = (0.08, 0.87] 
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Figure 3: (a) A maximal locked chain e = Ii,I2,h,I4 of chain Ii,I2,h,I4,h. (b) Per-
mutation graph Ge (V, E). 

2.3 Description of th 
. . 

e1r mechanism 

Their mechanism for finding a proper allocation is based on the expansion process with 

unlocking. Generally speaking, they iteratively run U-exp(・) on the remaining players' 

shares. This process allocates the entire cake or stops in a strongly locked situation. They 

prove some desirable properties for this situation and leverage these properties to allocate 

a piece of the cake to the players in the strongly locked chain. Next, they remove the 

satisfied players and shrink the allocated piece (as defined in Definition 2.8 below) and 

solve the problem recursively for the remaining players and the remaining part of the cake. 

Lemma 2.1 (Lemma 4 in [1, 6]) Assume U-exp(・) stops in a strongly locked situation. 

Let e = Iu1,Iび2,---,Iびkbe a maximal strongly locked chain and let Ge (V, E) be the 
permutation graph of the chain e. Let£be the minimum index such that there is a 

directed path from Vuk to vび£usingonly edges in E1. Then there is a directed path from 

Vuk to every vertex Vug, with£'>£using only edges in Ez. 

(In a strongly locked chain e = Ii, h, Is ,f4 in Figure 3, Vuk = V4 and 0"£= 2.) 

Definition 2.8 (Definition 9 in [1, 6]) Let C be a cake and J = (Is, Ie] C C be an interval. 

By the term shrinking of I, they mean removing I from C and gluing the pieces to the 
left and right of I together. More formally, every valuation interval (aぃ凡]turns into 

(f(a』,f (/3i)] by shrinking of I, where 

f(x)~{ ;, /; こり<;I,) 
X - Ie + 18 (x > Ie), 

(1) 

Definition 2.9 (defined in Lemma 5 in [1, 6]) Let T be a set of valuation intervals. Then 

T is called irreducible if <I>(T') > <I>(T) holds for every T'C T. 
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Lemma 2.2 (Lemma 5 in [1, 6]) Let T be an irreducible set of valuation intervals. Then 

DOM(T) can be divided into at most 2ITI -1 intervals each of which is associated to a 

valuation interval in T such that: 

(i) The total length of the intervals associated to any valuation interval in T is exactly 

<I>(T). 

(ii) The intervals associated to any valuation interval in T are totally within that valu-

ation interval. 

They proved this lemma by induction on ITI using the following lemmas. 

Lemma 2.3 (Lemma 6 in [1, 6]) Let e = Ic,1, Iび2,・.. , Iびkbe a maximal strongly locked 
chain after running U-exp(T) and let C be the minimum index such that there is a directed 

path from vびkto v"£in the permutation graph Ge for e using only edges in E1. Then, 

C > l holds. 

Lemma 2.4 (Lemma 7 in [1, 6]) Let 

x=/3びk―(k-£+ l)<I>(T), (2) 

where£is the minimum index such that there is a directed path from Vuk to Vu£. Then, 

a。ぃ <x<a。£holds.

By this lemma, they break DOM(T) into two pieces both of which, they claim, preserve 

the properties defined in Lemma 2.2. More specifically, they claim, the piece of cake 

(x, 恥]can be allocated to players a£ 四 +1,...'吹 using2(k -£+ 1) -2 cuts. For this, 

they consider the valuation intervals T'= { C匂 c~Hl'...'c~k} such that: 

c~i = (max{ x, aびJ,/3叫

for all i with£::; i ::; k. N叩山atD゚ Mぼり=(x, んk]and h皿⑱

!l>(T') 
g外― X b外― x

＝＝  
k-£+1 k-£+1・ 

Regarding Equation (2), !l>(T') = !l>(T). 

(3) 

Lemma 2.5 (Lemma 8 in [1, 6]) T'is irreducible, i.e., for all T" c T', <l>(T") > <l>(T') 
hold. 

Lemma 2.5 above states that the set of intervals in T'admits the properties described 

in Lemma 2.2. Furthermore, regarding Lemma 2.3, T'is a subset of T. By induction 

hypothesis, they know that one can cut DOM(T') into at most 2(k -£+ 1) -2 disjoint 

intervals and allocate them to players ere, CT£+1, ... , erk such that both the properties in 

Lemma 2.2 are satisfied. Denote by Nr, the players with valuation intervals in T. Re-

garding Equation (2), Lemma 2.6 assures that the conditions in Lemma 2.2 hold for the 

remaining cake and the remaining players. 

Lemma 2.6 (Lemma 9 in [1, 6]) Let T" be the intervals related to the players in N, 四＝
Nr¥ {び｛四+1,... 心}after shrinking of DOM(T'). Then T" is irreducible and <l>(T") = 
<l>(T). 
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Based on Lemma 2.2, they introduce EFGISM as follows: among all subsets of'J, 

they find a subset T of minimum density (and the set with minimum size, if there were 

multiple options). Let N(T) be the set of players whose valuation intervals are in T, i.e., 

N(T) = {i E N I Ci E T}. In Lemma 2.7 below, they show that T (and consequently 

N(T)) can be found in polynomial time. 

Lemma 2. 7 (Lemma 10 in [1, 6]) Let T be a subset of'J of minimum density (and the set 

with minimum size, if there were multiple options). Then T can be found in polynomial 

time. 

The mechanism EFGISM proposed in [1, 6] first finds such T. Since T has the minimum 

possible density, T is irreducible. Hence, EFGISM allocates to every player in N(T), a 

piece from DOM(T) with the properties defined in Lemma 2.2. Afterwards, EFGISM 

removes the players in N(T) from N and shrinks DOM(T) from C. Next, by recursively 

calling EFGISM, it allocates the remaining pieces of the cake to the remaining players. 

Theorem 2.2 (Theorem 4 in [1], Theorem 3 in [6]) EFGISM is envy-free, truthful, and 

uses at most 2(n -1) cuts. 

2.4 Counter Example of Lemma 2.6 

Consider the input example in Figure 1 (also in Figure 3(a)) of the cake-cutting problem. 

Thus, the valuation intervals'J= {C1,C2,C3,C4,C5} are 

C1 = (0, 1], C2 = (0.02, 0.64], C3 = (0.03, 0.65], C4 = (0.05, 0.68], C5 = (0.08, 0.87]. 

It is easy to see that the valuation intervals'J = {C1,C2,C3,C4,C5} is irreducible by 

Definition 2.9 (defined in Lemma 5 in [1, 6]), since <I>(T') > <I>('J) = 0.2 holds for every 

T'c'J. For this set'J of valuation intervals, if the expansion process with unlocking 

for'J (i.e., U-exp('J)) is applied, then a maximal locked chain e = Ii,I2,h,I4 of chain 

Ii, h, h,l4, h in Figure 3(a) is obtained, where 

Ii = (0, 0.17], I2 = (0.17, 0.34], h = (0.34, 0.51], l4 = (0.51, 0.68], h = (0.68, 0.85]. 

It is easy to see that e = Ii, h, h, [4 is a maximal strongly locked chain, since the permu-

tation graph Ge(V,E) in Figure 3(b) contains no cycle including v4. 

Thus, by Lemma 2.3 (Lemma 6 in [1, 6]), the minimum index£such that there is a 

directed path from v4 to vp in Ge(V, E) using only edges in E1 becomes£= 2 > 1. By Eq. 

(2) in Lemma 2.4 (Lemma 7 in [1, 6]) and <I>('J) = 0.2, 

X = /34 -(4 -£+ l)<f>('J) = 0.68 -3 X 0.2 = 0.08, 

and ap-1 = a1 = 0 < x = 0.08 < ap = a2 = 0.17 holds. 

Then, we have Nr, = {2,3,4}, T'= {C~,q,CD with 

C~= (max{x,a2}, んl= (0.08, o.64], 

c~= (max{x,a3}, んl= (0.08, o.65], 

c~= (max{ x, a4}, 山l= (0.08, o.68] 

and DOM(T') = /34 -x = 0.68 -0.08 = 0.6 and 

/34 -X 0.6 
<I>(T') = =ー=0.2 = <I>('J). 

4-£+1 3 
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Thus, by Lemma 2.5 (Lemma 8 in [1, 6]), T'= {C~,q,CD is irreducible. 
Thus, we apply the mechanism based on the expansion process with unlocking in [1, 6] 

for the valuation intervals T'= { q, q, CD and obtain 

A2 = (0.08, 0.28], A3 = (0.28, 0.48], A4 = (0.48, 0.68]. 

Then, in the mechanism based on the expansion process with unlocking in [1, 6], they 

apply shrinking of DOM(T') = (0.08.0.68] and removing of Nr, = {2, 3, 4} and obtain the 
remaining players N, 四={1, 5} and the valuation intervals 

T" = {Cf= (0, 0.08] U (0.68, 1], C<= (0.68, 0.87]} 

where we consider 0.08 = 0.68 since shrinking of DOM(T') = (0.08.0.68] is done 

(in the form of Definition 2.8, the remaining cake is C" = (0, 0.4], and the 

valuation intervals Cf = (0, 0.4], C<= (0.08,0.27].) 

Note that 

1 -0.68 + 0.08 -0 0.4 -0 
<I>(T") = = 0.2 = <I>('J) (<I>(T") = = 0.2 = <I>('J)). 

2 2 

However, the valuation intervals 

T" = {Cf= (0, 0.08] U (0.68, 1], C<= (0.68, 0.87]} 

(T" = { Cf = (0, 0.4], C<= (0.08, 0.27]} in Definition 2.8) is not irreducible, since C<=
(0.68, 0.87] c T" (C<= (0.08, 0.27] CT" in Definition 2.8) is of density 

<I>(C<) = 0.87 -0.68 = 0.19 < 0.2 = <I>(T") = <I>('J) 

(<I>(Ci) = 0.27 -0.08 = 0.19 < 0.2 = <I>(T") = <I>('J) in Definition 2.8). 
This implies that Lemma 2.6 (Lemma 9 in [1, 6]) does not hold. Thus, we cannot apply 

the mechanism based on the expansion process with unlocking in [1, 6] for the valuation 

intervals T" = { Cf = (0, 0.08] U (0.68, 1], C<= (0.68, 0.87]} (T" = {Cf = (0, 0.4], C<=
(0.08, 0.27]} in Definition 2.8) recursively, since T" is not irreducible. 

If we insist on applying the mechanism based on the expansion process with unlocking 

in [1, 6] for the valuation intervals T" which is not irreducible, then we obtain a strongly 

locked chain If= (0, 0.08]U(0.68, 0.735], I<= (0. 735, 0.87] (in the form of Definition 2.8, it 

is the strongly locked chain If= (0,0.135], I<= (0.135, 0.27] in the remaining cake C" = 

(0, 0.4] with Ii'= (0, 0.135] c Cf = (0, 0.4] and I<= (0.135, 0.27] C Cg = (0.08, 0.27]). 
If we use <I>(T") = 0.2, then x =島ー (5-5 + l)<I>(T") = 0.87 -(0.68 -0.08) -0.2 = 

0.07 (x = /35 -(5 -5 + l)<I>(T") = 0.27 -0.2 = 0.07 in Definition 2.8) since shrinking 

of DOM(T') = (0.08.0.68] is done and we consider 0.68 = 0.08. Thus, we have A5 = 

(0.07, 0.08] U (0.68, 0.87] (A5 = (0.07, 0.27] in Definition 2.8) and A1 = (0, 0.07] U (0.87, 1] 
(A1 = (0, 0.07] U (0.27, 0.4] in Definition 2.8). 

In this division D = {A1, A2, A3, A4, A叶ofthe cake C = (0, 1] with each piece Ai 
allocated to player i = 1, 2, 3, 4, 5 is not envy-free since, player 5 would envy the piece 
A2 = (0.08, 0.28] allocated to player 2, since the value of A2 for player 5 is the length of 

(0.08, 0.28] nC5 = (0.08, 0.28] and is 0.2 = 0.28-0.08, while the value of A5 = (0.07, 0.08]しl

(0.68, 0.87] allocated to player 5 is the length of ((0.07, 0.08]U(0.68, 0.87])nC5 = (0.68, 0.87] 
and is 0.19 = 0.87 -0.68 < 0.2. Note that (0.07, 0.08] is not contained in C5 = (0.08, 0.87]. 
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Since T" contains valuation intervals { C<} with minimum density <I>({ ci}) = 0.19, 

if we apply the mechanism based on the expansion process with unlocking in [1, 6] for 

the valuation intervals { C<} then we obtain A5 = (0.68, 0.87]. Finally, if we apply the 

mechanism based on the expansion process with unlocking in [1, 6] for the valuation 

intervals {Cf} then we obtain A1 = (0, 0.08] U (0.87, 1]. 

In this division D = {A1,A2,A3,A4,A5} of the cake C = (0,1] with each piece A 

allocated to player i = 1, 2, 3, 4, 5 is not envy-free. Actually, player 5 would envy the piece 

A2 = (0.08, 0.28] allocated to player 2, since (0.08, 0.28] n C5 = (0.08, 0.28] = A2 and its 

value for player 5 is 0.2 = 0.28 -0.08, while the value of A5 = (0.68, 0.87] allocated to 

player 5 is the length of (0.68, 0.87] n C5 = (0.68, 0.87] and is 0.19 = 0.87 -0.68 < 0.2. 

3 Notation in Our Mechnism 

In this section, we give notation which will be used in the rest of this paper. It is almost 
the same as in the paper by Alijani, Farhadi, Ghodsi, Seddighin, and Tajik [1, 6]. 

We are given a divisible heterogeneous cake C = (0, 1] = {x IO< x :<::; 1}, a set of n 

strategic players N = {1,2, ... ,n} with valuation interval Ci= (ai, 叫 ={xlO:<::::ai<

X :<::; /3i さ 1}~C of each player i E N. We denote by eN the set of valuation intervals of 

all the players N, i.e., 邸={Ci Ii EN}. 

The valuation intervals邸 iscalled solid, if for every point x E C, there is a valuation 

interval Ci E eN containing x. We assume that the valuation intervals邸 issolid in this 

paper, i.e., 

LJ Ci= C. (4) 
C氏戎!N

A piece of the cake C is a set of mutually disjoint intervals in C. Thus, ふ＝
{ Aii, Ai2, ... , Aik,} is a piece of C if and only if each Ai1 (j = 1, 2, ... , ki) is an interval 

of C and any two distinct Aj and A勺， (1S j < j'S ki) are disjoint (i.e., Aij n Aj, = 0). 
For a piece Ai = { Ai1, Ai2, ... , 心}of C for each i E N, let A; = AりLJAi2 LJ'''LJ Aik; , A 

union Ai of mutual disjoint sets Ai1 , Ai2, ... , Aiki is called a direct sum of Ai1, A如...,A尻

and is denoted by Ai =心＋心＋・・ ・+A叫

Letふ ={A紅， Ai2,... , Aik,} be a piece of the cake C for each i E N and let Ai = 

Ai1 +知 ＋・・・+A;k;. Then AN = {ふ，A2,... , ふ}is called an allocation of the cake 
C to n players N if any two distinct Ai and Aj (1 S i < j S n) are disjoint and 
区iENAi = Ai+ A2 +・・・+An = C. For each i E N, Ai = {Ai1, Ai2, ... , Aik) (also, 

Ai = Ai1 + Aゅ ＋ ・・• + Aik;) is called an allocated piece of the cake C to player i in 

ふ＝｛ふ，ふ，．．．，ふ}(Figure 4). 
For an interval X = (x', x"] of C, the size of X, denoted by csize(X), is defined by 

x" -x'. For a direct sum X = X戸 X叶・・ ・+ Xk, i.e., a union of mutual disjoint intervals 

ふ (j= 1, 2, ... , k) of C, the size of X, denoted by csize(X), is defined by the total sum 

of csize(Xj) (Figure 4). Thus, csize(X) = csize(X1) + csize(X2) +・ ・ ・+ csize(Xk)-

Let X = {X1,X公..., X k} be a piece of C and let X = X 1 +ふ＋・・・十Xk,For each 

i E N and valuation interval Ci of player i, the utility of X for player i, denoted by utiぽ），
is the total sum of csize(Xj n Ci) for all Xj E X, i.e., 

uti(X) = csize(X1 n Ci)+ csize(ふ nc』+・ • ・+ csize(Xk n Ci)- (5) 

We sometimes use uti(X) in place of u噂） • Thus, uti(X) = csize(X1 n C』+csize(X2 n 
C』+・ • ・+ csize(Xk n C』.
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C6 =C=(0,1) 

c, C、l

他↓ 

C2 
C3 

Cs 

令
,-

A,;, 

A--------- -
4, ―A4 As,- As 

A1 'A1,  プ A3, l 

Figure 4: An allocated piece to player 5 is {A51,A52} (n = 6). csize(A5) = csize(A51) + 
csize(A52) + csize(A53) for A5 = A51 + A52 + A的・

Let AN= {ふ，A2,... , ふ}be an allocation of the cake C to n players N and let 

ふ ={ A1, Ai2, ... , Aki} be an allocated piece of C to player i E N. If 

叫 (Ai):::: uti(ふ） for all j EN¥ {i}, (6) 

then the allocated piece Ai is called envy―free for player i. If, for every player i E N, the 

allocated piece Ai is envy-free for player i, then the allocation心＝｛ふん，...,An} of 

the cake C ton players N is called envy-free. 
Let M be a mechanism for the cake-cutting problem. For an arbitrary input eN = 

{C1, C2, ... , Cn} to the mechanism狐 letAN= {ふ，A2,... ,An} be an allocation of 

the cake C to n players N obtained by M with Ai = { A1, A加...,Ak;} for each i EN. 

If the allocationふ＝｛ふ，凸，．．．ふ}for every input eN = {Ci, C2, ... , Cn} to the 
mechanism Mis envy-free, then the mechanism Mis called envy-free. 

Now, for each player i E N, assume that only player i makes a lie and gives a false 

valuation interval CI. Thus, let 

釣(i)= {Ci, C2, ... , Ci-1, Ci, Ci+l, ... , Cn} 

A'.v(i) = {A~,A;, ... , 瓜-1,瓜，Aい，．．．，瓜｝

(7) 

be an input to the mechanism M and let an allocation of the cake C to n players N 
obtained by M be 

(8) 

with A'-= 
J 

{A'A' h'j2', . ... A;k,} for each j E N. The utilities of Ai皿 dA: for player i are 

k, 糾

叫（ふ）＝又size(AiJn Ci), uti凶）＝又size(A~n Ci 
J 

) (9) 
j=l j=l 

k' 
(note that uti(Aり＃区止1csize(A;i n Cり） • If uti(ふ）ミ叫(Aり， thenplayer i does not 
want to tell a lie and player i will report the true valuation interval Ci to the mechanism M 

(this implies that to report the true valuation interval Ci is a dominant strategy of player 

i). For each player i E N, if this holds, then no player wants to tell a lie and all players 

want to report true valuation intervals to the mechanism M. In this case, the mechanism 

M is called truthful (allocation AN = {ふ，A2,... , An} of C to n players N obtained by 
M is also called truthful). 
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y ， Y=(y',y"] ．．
 

．
 

y
 C1 

C2 C3 C4 Cs 

x'X=(x'ぶ] x" 
c6 

p(X)= x"-x' p(Y)= y"-y' 

3 4 

Figure 5: Example of 6 valuation intervals C1, C2, ... , C6 (solid line). An interval X = (x', x"] is 
of size x"-x'and three valuation intervals C3, C4, Cs are contained in X (thus, N(X) = {3,4, 5}). 
Thus, the density of the interval Xis p(X) = Lぞ—. The interval (x', y"] is not a minimal interval 
with respect to density, since no valuation interval within (x', y"] contains y" as endpoint. However, 

the density of (x', y"] is defined by p((x', y"]) = y" ;;-x'. 

For an interval X = (x', x"] of C, let N(X) be the set of players in N whose valuation 

intervals are entirely contained in X and let eN(X) be the set of valuation intervals in岱

which are entirely contained in X. Let nx be the cardinality of N(X) (eN(x)) . Thus, 

N(X) = {i EN  I Ciこx,ciE eN}, 

eN(xJ = {Ci E eN Ii E N(X)}, 

nx = IN(X)I = 1eN(xJI-

(10) 

(11) 

(12) 

As we defined the solidness of the valuation intervals eN in the cake C in Eq.(4), we 

define the solidness of the valuation intervals eN(X)・For an interval X = (x',x"] of C, 

the valuation intervals eN(X) is called solid, if for every point x EX, there is a valuation 

interval Ci E eN(X) containing x, i.e., 

LJ C; =X. 

CiEeN(X) 

(13) 

Definition 3.1 For an interval X = (x',x"] of C, the density of the interval X, denoted 

by p(X), is defined by 
csize(X) x" -x' 

p(X) = = . 
1eN(xJI nx 

(14) 

Definition 3.2 For an interval X = (x', x"] of C, if there are valuation intervals Ci = 

(ai, /3i] and Cj = (aかもlin eN(X) = {Ck E eN I k E N(X)} such that x'= Cl!i and 

x"=均， thenX = (x', x"] is called a minimal interval with respect to density. 

Figure 5 shows densities of some intervals. Note that, if X ヂ0(i.e., csize(X)ヂ0)

and nx = 0 then p(X) = oo. Note also that, there are at most炉 minimalintervals 

X = (x', x"] with respect to density, since x'is a left endpoint of a valuation interval, x" 

is a right endpoint of a valuation interval and there are n valuation intervals. 

Let X be the set of all nonempty intervals in C. Let Pmin be the minimum density 

among the densities of all nonempty intervals in C, i.e., 

Pmin = min p(X). 
XEX 

Letぶ inbe the set of all intervals in C of minimum density, i.e., 

Xmin ={XE XI p(X) = Pmin}-

(15) 

(16) 
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o <:;;=C=(0,1] 

C4 = (0.05,0.35] C5 = (0.47,0.92] 

C3 = (0.5,0.8] 

C1 =(0.08,0.23] ら=(0.58,0.73] 

Figure 6: Example of the valuation intervals C1, C2, ... , C5. The minimum density is 

Pmin = 0.15 and the intervals of minimum density are Ci, C2, C3, C4, C5. Among them, 

C1 and C2 are the minimal intervals of minimum density and C4 and C5 are the maximal 

intervals of minimum density and interval C5 is of density p(C, 司=i = 0.1666… 

Definition 3.3 An interval X E Xrnin is called an interval of minimum density. An inter-

val X of rninirnurn density is called a minimal interval of minimum density if X contains no 

other interval of rninirnurn density properly. Similarly, an interval X of rninirnurn density 

is called a maximal interval of minimum density if no other interval of rninirnurn density 

contains X properly (Figure 6). 

Lemma 3.1 Let X = (x', x"] be a minimal interval with respect to density in the cake 

C. Suppose that p(Y)ミp(X)holds for each nonempty interval Y = (y', y"] properly 

contained in X (i.e., 0ヂYC X). Then eN(X) is solid (i.e., LJ CiEeN(X) Ci= X). 

Proof: We show that eN(X) is solid, i.e., for each point x in X = (x', x"] (x'< x ::::; x"), 

there is a valuation interval Ci = (aぃ店lE eN(X) containing X. 

Suppose contrarily that no valuation interval in eN(X) contains x. Thus, each valuation 

interval Ci = (aぃ凡lE eN(X) satisfies瓜<x or x ::::; °'i・ Since X = (x',x"] is a 
mininal interval with respect to density, there are valuation intervals Cj = (aj, 的]and 

Ck= (ak, 叫 ineN(X) withの=x'< x and f3k = x" 2 x. Thus, we have巧く功 <x
and x::::; 位＜厖 Lety be the largest right endpoint among valuation intervals in eN(X) 
whose right endpoints are smaller than x. Similarly, let z be the smallest left endpoint 

among valuation intervals in eN(X) whose left endpoints are larger than or equal to x. 

Thus E = x-y > 0 and 5 = z-x 2 0. Let Y = (x',y] and Z = (z,x"]. Then 

切=(aj, 約]~Y c X, ny > 0, ck = (ak, 森lこZ c X, nz > 0, and Y n Z = 0. 
Thus, each valuation interval Ci = (aぃ比lE eN(X) satisfies凡::::;y < x or x::::; zさ°'ii.e., 

each valuation interval Ci = (ai, /3i] E eN(X) is either in eN(Y) or in eN(Z)・Therefore, 

恥 X)= eN(Y) + eN(Z) and nx =巧+nz. Since csize(Y) = p(Y)ny, p(Y) 2". p(X), 
csize(Z) = p(Z)nz, and p(Z) 2". p(X), we have 

p(X) 
csize(X) x" -x'x" -z + z -x + x -y + y -x' 

＝＝  
nx nx nz +呵

csize(Z) + r5 + E + csize(Y) p(Z)nz + p(Y)ny + r5 + E 

nz + ny = nz + ny 

＞ 
p(Z)nz + p(Y)ny p(X)nz + p(X)ny 

~= p(X), 
nz +ny nz +ny 

a contradiction. Thus, we have Uc,EeN(x) Ci= X, i.e., eN(X) is solid. ロ

For皿 intervalX = (x', x"] of minimum density, we have the following lemma using 

Lemma 3.1. It is almost clear, so we omit a proof. 
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Lemma 3.2 Let X = (x',x"] be an interval of minimum density Pmin・Then it is a 

minimal interval with respect to density and the valuation intervals eN(X) is solid. 

4 Structures of Intervals of Minimum Density 

In this paper, we will give a mechanism in later section, for a given input of a cake C = 

(0, 1], a set of n players N = {1, 2, ... , n }, and solid valuation intervals邸={Ci Ii EN} 

with valuation interval Ci = (ai, /3i] of each player i E N and Uc;EeNCi = C, which 

finds an allocation AN = { A 1, A2, ... , An} to players N with Ai = { Aii, Ai2, ... , Aik ｝ 
凶＝心＋丸+・ • ・+ Aik;) for each player i E N satisfying the following. 

(a) The mechanism is envy-free. 

(b) The mechanism is truthful. 

(c) AiこCifor each i EN. 

(d)区iENAi= C. 

In this section, we discuss structures of intervals of minimum density which play a 

central role in our mechanism. 

Lemma 4.1 Let Xj = (x.1,x『]be a minimal interval in the cake C with respect to density. 

Let Xi = (xしx;']be another minimal interval in C with respect to density such that 

Xi n Xj -/c 0. If p(Xi) 2: p(Xj) and p(Xi n Xj) 2: p(Xj), then p(Xi U Xj)~p(Xか

Proof: If Xi ¥ Xi = 0, then Xi U Xi = Xj and p(Xi U Xj) = p(Xj)~p(Xi) holds. 
Similarly, if Xj ¥ふ=0, then Xi u Xj = Xi and p(Xi u Xj) = p(X』 ~p(Xi) holds. 

Thus, we assume Xi¥ Xj cJ 0 and Xj ¥ Xi cJ 0 below. By symmetry we can assume 

吋<x'-< x;'< x" since Xi n Xj -10, Xi¥ Xj -I 0, and Xj ¥Xi-I 0 (Figure 7). Let 

Y = Xi nXj = (y',y"], Z = Xi U Xj = (z',z"]. 

Thus, y'= x'- y11 = x11''II II . . 
J'i'  

Z =X・ p Z = X-J 
. By Defimt10n 3.1, 

N(Xi) = {k EN  I ckこxi,ckE邸}, CN(ふ） = {Ck E CN I k EN(ふ）｝，

N(ふ） = { k E N I ck <:;; xj, ck E邸}, CN(ふ） = {Ck E CN I k EN(ふ）｝，

N(Y) = {k EN  I ck<:;; Y,ck E cN}, cN(Yl = {ck E cN I k E N(Y)}, 

N(Z) = {k E N I ckこz,ckE岱}, CN(Z) = {Ck E CN I k E N(Z)}, 

CN(Y) = CN(ふ） ncN<ふ）・

Note that, Z = Xi Uふ=(z', z"] is a minimal interval with respect to density, but 

Y = Xi n Xj = (y', y"] may not be a minimal interval with respect to density, since 

ふ＝（叶，叶']and Xj = (xj, 叶]are two distinct minimal intervals in C with respect to 

density and a valuation interval Ck= (ak, /3叶EC UC N(X;) N(ふ） withy'=xi=位 (orwith 
y" =砕＝媒） may not be contained in Y if煤>y" (or ifぼく y').Furthermore, since 

a valuation interval Ck= (ak, /3月ECN(ふ） with叶=°'k<吋 isnot contained in CN(ふ）

(and is not in CN(Y)) and a valuation interval Ck= (ak, /3月ECN(ふ） with xj = f3k ” > xi 
is not contained in CN(ふ） (and is not CN(Y)), we have CN(Y) C CN(ふ） C CN(Z) and 
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x;' 
X,=(x,'ふ＂］

C1 = (a1,/J1l 

X, " 
＇ 

x J X 
J 

---------------Y== (も',x,"] 

" 
X」 ~(x」'ゥ＂］

Z=(x/,;、:/]

Figure 7: Two intervalsふ=(xしx?]and Xj = (xj, x『]in Proof of Lemma 4.1. A 

valuation interval Ck= (ak, (3刈isnot in Xi nor Xj, but in Z = Xi U Xj, 

eN(Y) C eN(ふ） c eN(Z)・Thus, nz = IN(Z)I > nx; = IN(X』I> ny = IN(Y)I 2: 0 and 
nz = IN(Z)I > nxi = IN(X1)1 > ny = IN(Y)I 2: 0. Let 

ew = eN(zJ ¥ (eN(ふ） ueN(ふ））， nw= lewl-

Note that a valuation interval Ck= (ak, 叫 I € 邸 withx-< ak 
' 

< x'-and叫＇＜森< x" is 
J J 

e me us10n-exc us10n prmciple, in ew = eN(Z) ¥ (eN(X,) U eN(ふ）） (Figure 7). Thus, by th . 1 . 1 ・

we have 

nz = nx; + nx; -ny + nw 

and the density p(Z) of interval Z = Xi U X1 is 

p(Z) = 
cs1ze(Z) 吋ー x; =外ー xj+砕一叶一（砕―衿）

＝ 
nz nx; + nxi -ny + nw nx; + nxi -ny + nw 

(i) We first discuss the case of ny > 0. Since nw 2'. 0 and by the definition of density 

of an interval in Definition 3.1, we have 

nx; p(ふ）＝外ー叶， nxi p(ふ）＝吟ー xj, ny p(Y) =砕一 xj,and 

p(Z) 

::; 

Note that, 

吋(-弓＋砕一x;-(叶,_吋）

nx; +nx1 —巧 +nw

呼一衿＋砕ーx;-(砕ー弓）

nx, +nx1 -ny 

nx,p(X』+nxj p(Xj) -ny p(Y) 

nx, +nx1―ny 

p(Z) = 
nx;P(ふ） +nx3 p(ふ）ー nyp(Y) 

nx, +nx3―ny 

if and only if nw = 0. Since p(Y) = p(Xi n Xj) 2 p(Xj), we have 

p(Z) :S 
nx,p(X』+nxi p(ふ）ー nyp(Y) nx; p(Xi) + nxi p(Xj) -ny p(ふ）．

nx, + nx3 -ny :S nx; + nx3 -ny 

Furthermore, since p(ふ） 2 p(Xj) and nx > ny, we have 
J 

p(Z) 
nxi p(Xi) + nxj p(ふ）ー nyp(Xj) 

さ
nx; +nxj―ny 

＜ 
(nx; +nx1 —巧） p(ふ）

= p(Xi)-
nx, +nxj―ny 

nx;P(ふ） + (nx1―巧） p(ふ）

nx; +nx1 -ny 
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By the argument above, when巧>0, we have p(Z) = p(Xi) if and only if nw = 0 

and p(Y) = p(Xj) = p(X』.
(ii) We next discuss the case of ny = 0. In this case, we have 

p(Z) 
吋(-x1+x7-x~-(砕―ぢ）

nx; +nxi―巧 +nw

＜ 
吋(-x1 + x? -x~- (x~'- 吋）

nx; +nxi -ny 

吋ー吟＋砕ーx:-(砕―吋）

nx; +nx1 

略ーxJ+呼一 x~
＜ 

nx; +nx1 

since nw~0 and x? -x1 > 0 by Y = Xi n Xj =/ 0. Thus, we have 

p(Z) < 
呼一xj+叶I-X~ nx, p(Xi) + nxi p(ふ）

nxi + nxi nxi + nxi 

＜ 
(nxi + nxJ p(Xi) 

= p(ふ）
nx, +nx1 

since p(Xi)~p(Xj)-
X, -X, 

Thus, when ny = 0, we have p(Y) = -2.. —.1. = oo and p(Z) < p(Xi)-
ny  

By Lemma 4.1, the following corollaries can be easily obtained. We omit proofs. 

ロ

Collorary 4.1 Let Xi = (叶，x?]and Xj = (叶が1be two distinct intervals in C of 
. J, J l 

mm1mum density Pmin・If Xi n XJ =J 0 then both Y = Xi n XJ and Z = Xi U XJ are 
intervals of minimum density Pmin・ 

Collorary 4.2 Ifふ＝（叫砕]and Xj (~'J] = x . x . are two d1stmct mmimal intervals of 

minimum density Pmin, then Xi n XJ = 0. Furthermore, if Xi= (咋砕]lies to the left of 

ふ＝（吟，呼]then x;'さ吟 Inthis case, if砕=x'-then Z = Xi U Xj = x'x" is an （い］］
interval of minimum density and there is no valuation interval Ck = (x~, x%] E応rsuch 

that x~:=; x~< 呼＝サ< x% :=; x'J. 
Similarly, ifふ=(x~, 叶]and Xj = (ぷ砂]are two distinct maximal intervals of 

J'J 
minimum density Pmin, then Xi n Xj = 0. Furthermore, ifふ＝（叶，x?]lies to the left of 

Xj = (叫，吋]then x;'< x1. 

5 Our Mechanism 

We first give a brief outline of our mechanism. 

Let H1 = (h~, h『],H2 = (hら，h名],... , HL = (h、~,h、1] be the maximal intervals of 

minimum density Pmin in the cake C = (0, l]. We first cut C = (0, 1] at both endpoints 

of each maximal interval Hi of minimum density. p圧'.n・ByCorollary 4.2, two distinct 
maximal intervals Hi, Hj of minimum density are d1sJomt and we can cut the cake at both 

endpoints of each maximal interval of minimum density, independently. By these cuts, we 

can reduce the original cake-cutting problem into two types of cake-cutting subproblems 

of type (i) and type (ii) as follows (Figure 8): 
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O~=C=(O,I] 

C4 = (0.05,0.35] C5 = (0.47,0.92] 

C3 = (0.5,0.8] 

C1 =(0.08,0.23] 
』

C2 = (0.58.0.73] 

O: 
q=c;=(0,1] 

'' i i i i 
'' '  C4 = (0.05,0.35] ; 1 1 'C5 = (0.47,0.92] 

C3 = (0.5, 0.8] 

C1 =(0.08,0.23] ― C2 = (0.58,0.73] 

Figure 8: The cake-cutting problem can be reduced into two types of cake-cutting sub-

problems by cutting the cake C = (0, 1] at both endpoints of each maximal interval of 

minimum density: (i) one within each maximal interval of minimum density (players 

R1 = {1, 4} and players R2 = {2, 3, 5}]), and (ii) one with all valuations obtained by 

deleting all the valuation intervals contained in all maximal intervals of minimum density 

(players P = {6}). 

(i) the cake-cutting problem within each maximal interval Hi = (h;, hr] of minimum 
density (which consists of the cake Hi, the players N(Hi) whose valuation intervals 

in Hi and valuations eN(Hi)); and 

(ii) the cake-cutting problem with all valuations obtained by deleting all the valuation in-

tervals contained in all the maximal intervals H1 = (h~, hn H2 = (h;, hi], ... , HL = 
(h'h"] Ll L of minimum density. 

Note that the cake-cutting problem of type (i) is almost the same as the original 

cake-cutting problem, since the cake Hi is a single interval, each valuation Ck E eN(Hi) 

is also a single interval, and the valuation intervals eN(H,) is solid by Lemma 3.2 (i.e., 

UckEeN(Hi) ck = Hi), 
On the other hand, the cake-cutting problem of type (ii) is different from the original 

cake-cutting problem, because the resulting cake may become a set of two or more disjoint 

intervals and a resulting valuation may also become a set of two or more disjoint intervals. 

However, the cake-cutting problem of type (ii) has a nice property as described below. 

Letふ=(x~, 哨]be an interval of the cake C. Then, by cutting the cake at both 

endpoints ofふ anddeleting Xg, we have the cake-cutting problem of type (ii) for the 

cake C ¥ Xg, players N ¥ N(X) £and valuat10ns 

応 (C¥ふ） = { ck ¥ Xt I ck E岱¥eN(ふ）}. (17) 

Note that CいXg=J (/J for each ck E eN ¥ eN(Xi}'since CいXg= (/J would imply Ck~Xg 
and thus Ck E eN(Xi)・Furthermore, for each pomt x E C¥Xg, there is a valuation interval 

Ck E eN containing x by the solidness of the valuation intervals邸 (i.e.,LJ CiEeN = C  
in Eq.(4)), and the valuation interval Ck is not contained in eN(ふ） since Ck contains 

XE  C ¥ Xg. Thus, the valuation ck¥ Xg E似 (C¥ Xt) contains x. This implies 

LJ (CいXe) = C¥Xg. (18) 

仇 ¥XeEeN(C¥Xe)

Note also that there are three types of valuation intervals Ck = (ak, /3月€ 似 ¥eN(ふ）

according to the valuations Ck ¥ Xか



71

(a) Ck n Xe = 0, i.e., 位 ＜ 〇k:S功orx1 :S akく厖 Inthis type, Ck ¥ Xe = Ck is a 
single interval. 

(b)位<x~< 哨＜雌 In this type, Xe C Ck and Ck ¥ふ isa set of two disjoint 

intervals, i.e., ck¥ Xe= (ak古l+ (x1, f3吐

(c)位<x~< 麻三叶 (in this case ck ¥ふ isa single interval Ck ¥ Xe = (aしxmor 

叫:Sltk <叶＇＜厖 (inthis case Ck ¥ふ isa single interval Ck¥ Xe= (x1, 媒])• 

Similarly, there are three types of intervals X = (x', x"] in C such that X 芦Xe.

(a) X nふ=0, i.e., x'< x" :S功orx1 :S x'< x". In this type, X ¥ Xt = X is a single 
interval. 

(b) x'<叫<x1 < x". In this type, Xe C X and X¥ふ isa set of two disjoint intervals, 

i.e., X ¥ふ=(x'叫]+ (x1, x"]. 

(c) x'く叫<x" :S x1 (in this case X ¥ Xt is a single interval X ¥ふ=(x', 叫])or 

x~:S x'< x1 < x" (in this case X ¥ふ isa single interval X ¥ Xt = (x1, x"]). 

For the cake-cutting problem of type (ii) for the cake C ¥ Xe, players N ¥ N(Xe) and 
valuations eN(C¥Xe) defined by Eq.(17), let X 呈ふ bean interval X = (x', x"] of the 

cake C and let 

応 (X¥ Xt) = {CいXtE邸 (C¥Xt)ICい Xt~X ¥ XR}, (19) 

叱 ¥Xe(X¥ふ）＝心(X¥ふ）I, (20) 

and we define the density Pc¥Xe (X ¥ Xt) of X ¥ふ by

Pc¥xt(X ¥ X,) = 
csize(X ¥ X,) 

応 ¥xt(X¥ Xり
(21) 

Note that, we defined the density Pc¥xt(X¥Xe) even for interval X = (x',x"] i Xe of 
type (b) (i.e., x'<叶＜叶<x") such that X¥ふ isa set of two disjoint intervals X ¥ Xe = 

(x', 弓l+ (x],x"]). In general, eN(X ¥ Xe) =J eN(X¥Xt) = {Ck E eN I ck c::: X ¥Xe}, and 

加 ¥Xt(X¥Xe)=Jnx¥Xt = 1eN(X\Xt)I• Furthermore, Ck= (ak嘉]and Ck,= (a炉，厖lof 
type (C) with°'k~ °'k'<叶＜媒</3炉 ~x] become intervals Ck¥ふ=(ak叫]and 
仰＼ふ=(a炉叫lin邸 (C¥ふ） in Eq.(17). Thus, for an interval X = (x',x"] with 

X1~ °'k~ °'k'<叫＜卑</3炉 ~x] and叫<x"~ 叫{,the interval X ¥ Xe = (x'弓］
contains Ck ¥ふ（= a知町]and Ck,¥ふ =(aぃ叫],i.e., 

CいXe,Ck'¥XeE邸 (X¥Xか

even if x"く媒<f3k'(i.e., even if X = (x', x"] does not contain Ck nor C砂 Actually,

Ck ¥Xe C::: X¥ふ ifand only if Ck C::: XU  Xe. Thus, 

岱 (X¥ふ） ={CいXeI ck E eN ¥応(Xe),ckc:::xuふ} (22) 

and in general, nc¥xt(X ¥ふ） does not equal to nx -nxr 
We will discuss the density Pc¥xt(X ¥ふ） of X ¥ Xe using the following definition. 

Definition 5.1 For an arbitrary interval X = (x', x"], the interval [x', x"], denoted by 
cl(X), is called the closure of X. 
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x' X=(x',xりぶ

x、' x t ＇ ＇ 

ふ＝（打，X1'l

Z = (x'.. tt "] 

Figure 9: Two intervals X = (x', x"] andふ =(xい，xJ]in Proof of Lemma 5.1. 

Let X = (x', x"] and X£= (功叫!]be two intervals in C such that cl(X) n cl(ふ） =0 

([x', x"] n [x~, x7] = 0). Then x'< x"く叶 or哨<x'< x". Thus, X nふ=0, XU  X£is 

not a single interval, and each ck E eN(XUXg) is ck~X or ck~Xe (i.e., ck¥ふ=Ck 
or Ck¥ X£= 0). This implies that if cl(X) n cl(ふ） = 0, then邸 (X¥ Xg) = eN(X) by 

Eq.(22) and叱 ¥Xg(X¥ふ） = nx and thus PC¥Xg(X ¥ふ） = p(X) hold. 
On the other hand, if cl(X) n cl(X£)ヂ0,then XU  Xg is a single interval in C, and 

Pc¥Xg (X ¥ Xg) = p(X) may not hold and we have the following lemma. 

Lemma 5.1 Let Xg = (xg, x'j] be a minimal interval with respect to density in the cake C. 

Let X = (x', x"]ダふ bean interval of C such that cl(X) n cl(ふ） =J 0. Let Z = X U Xか

Suppose that p(X) :::=: p(Xg) and p(Z) :::=: p(Xg). Then, 

csize(Z ¥ふ）
Pc¥xg(Z ¥Xe)= ::::: p(ふ）．

nc¥xt(Z ¥ Xり
(23) 

Furthermore, if p(Z) > p(Xe) then Pc¥x£(Z ¥ Xp) > p(Xp), and if p(Z) = p(Xp) then 

Pc¥x£(Z ¥ Xg) = p(Xか

Proof: Clearly, X ¥ Xp = X ¥ (X n Xe)= (XU Xp) ¥ Xp = Z ¥ Xp and Pc¥x£(Z ¥ Xp) = 

Pc¥x£(X ¥ふ）• We divide the case into two subcases: (i) XハX# 0 and (ii) XハX=0.
(i)ふ¥X # 0: Since X ¥ Xp # 0 (by X = (x', x"]~Xp) and cl(X) n cl(Xe) # 0 

(Z =XU Xp is a single interval in C), we have x'< xc'.S x" < x7 or x7 < x''.S x7 < x". 
By symmetry we can assume x'< Xe :S x" < x7 (Figure 9). Note that 

加¥x£(X¥ふ）＝加¥x£(Z¥ふ） = nz -nx£2 0 

since Xp C Z =XU Xp, N(Xp)~N(Z), eN(ふ） ~eN(Z), nz = 1eN(Z)I, nx£= 1eN(ふ）I, 
nc¥x£(Z ¥ Xp) = 1eN(Z¥Xt)I = nc¥x£(X ¥ Xp), and eN(X¥Xp) = eN(Z¥Xp) in Eq.(19) 
by X ¥ Xp = Z ¥ Xp. Furthermore, by Xe CZ= XU  Xp and X n Xe C X, we have 

csize(Z ¥ふ） = csize(Z) -csize(ふ） = csize(X) -csize(X nふ） =Xt — x'> 0 

and 

csize(Z ¥ふ） 叶ーx' 哨ーx'-(xJ―功）
＝ ＝  

応 ¥Xe(Z¥ふ）加¥Xe(X¥ Xt) nz -nxe 
Pc¥xe(Z ¥ Xt) 

nz p(Z) -nxe p(ふ）

砂— nxe

Thus, if nz = nxe, then, since Xt c Z = X U Xt and Xt = (叫，哨]is a minimal interval 
with respect to density in C, we have 

p(Z) = 
csize(Z) csize(Xc) 

> = p(Xc), 
nz nx e 
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Pc¥xc(Z ¥ふ）＝
nz p(Z) -nxcP(ふ） csize(Z ¥ふ）

nz-nx 
=。=00 > p(ふ）．

Otherwise (i.e., if nz > nxふbyp(Z)~p(ふ）， we have, 

PC¥Xc (Z ¥ Xe) =~ 
nz p(Z) -nxc p(ふ） (nz -nxc) p(ふ）

= p(Xe)-
nz -nxc nz -nxc 

Note that, Pc¥xc(Z¥XR) = p(XR) ifandonlyifp(Z) = p(X£). Actually, ifp(Z) > p(XR) 
(regardless nz = nxc or nz > nxc) then Pc¥xc(Z¥ふ） > p(ふ）， andif p(Z) = p(Xe) then 

Pc¥xc(Z ¥ふ） = p(ふ） and nz > nxe• 
(ii)ふ¥X = 0 (i.e., XR C X 皿 dZ = X): by symmetry, we can assume 

x'< x~< xl < x" or x'= x~< 翡< x" or x'<叫＜哨 =x",

since X¥Xt =/ r/J. Note that, if x'< x~< x7 < x" then X¥Xt = (x'叫]+(哨，x"]is a direct 
sum of two disjoint intervals (x'叫]and (x7,x"]. Otherwise (i.e., if x'= x~< 叶< x" or 

x'<功<x7 = x"), X ¥ふ isa single interval. Thus, in either case, Z ¥ Xt = X ¥ Xか

csize(Z ¥ Xt) = x" -x'-(哨ー叫） > 0, nc¥x£(Z ¥ Xt) = nz -nx£2 0. 

Thus, by an argumet similar to one above, if nz = nx£, then we have p(Z) > p(Xt) and 

Pc¥x£(Z ¥ Xり＝
nz p(Z) -nx£p(Xt) csize(Z ¥ Xt) 

nz-nx 
=。=00 > p(ふ）．

Otherwise (if nz > nxふbyp(X) = p(Z) 2 p(ふ）， wehave 

Pc¥x£(Z ¥ふ） = 2 
nz p(Z) -nx£p(Xt) (nz -nx£) p(ふ）

= p(ふ）．
nz-nx nz -nx£ 

Note that, Pc¥xe(Z ¥ Xg) = p(ふ） if and only if p(X) = p(Z) = p(Xか
By the argument above, we have the following: If p(Z) > p(Xp) then PC¥X; (Z ¥ふ）＞

p(Xc), and if p(Z) = p(Xt) then Pc¥xe(Z ¥ Xt) = p(Xg). ロ

As mentioned before if cl(X) n cl(ふ） =0(' 1.e., X < X ＜ X or X < X '< x" and 

Z = XU Xg is not a single interval in C), then deletion ofふ givesno effect on the interval 

X, and the density of X = Z¥ふ remainsthe same, i.e., Pc¥xe(Z¥Xg) = Pc¥xe(X) = p(X). 
Now, if we choose Xt as an interval of minimum density Pmin in Lemma 5.1, then 

p(X) 2: p(ふ） for each interval X in C and we have the following corollary. 

Collorary 5.1 Let Xg = (x~, x7] C C be an interval of the cake C of minimum density 

p(ふ） = Pmin・Then, by cutting Cat both endpoints of Xp and deleting Xg, we have the 

cake-cutting problem of type (ii) for the cake C'= C ¥ Xt =J 0, players N'= N ¥ N(Xt), 

valuations e¼, = eN(C ¥ふ） = { q = ck ¥ xi I ck E似¥eN(ふ）} in Eq.(17) where 
u屁 N'C£=C'by Eq.(18) and the density p'= Pc¥Xe defined in Eq.(21) satisfies the 
following: 

For an interval X = (x', x"] in C with X CZふ andZ = XUXg, the density p'(Z¥ふ） of 

Z¥Xg = X¥Xg satisfies p'(Z¥ふ） = Pc¥xe(Z¥Xg) 2 Pmin・Furthermore, ifcl(X)ncl(Xg) = 
0 then p'(Z ¥ Xg) = p(X), and otherwise (i.e., if cl(X) n cl(ふ） =J 0), p(Z) > Pmin if and 
only if p'(Z ¥ Xg) > Pmin・ 
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The cake-cutting problem of type (ii) for the cake C'= C ¥ Xe -/= (/J, players N'= 

N¥N(ふ）， valuations喜＝岱(C¥Xc)= {0£=ck¥ふ Ick E邸¥eN(ふ）} in 
Eq.(17) with LJkEN'C£= C'by Eq.(18) and the density p'= PC¥Xt defined in Eq.(21) can 
be solved in almost the same way by using an idea proposed by Alijani et al. in paper 

[1, 6]: shrink Xe = (x~, x7] and virtually consider x~= 哨. In this paper we will also call 

it shrinking ofふ =(x~,x7]. 
By shrinking of Xe, the cake C'= C ¥ Xe becomes a single interval C'(S), players 

N'= N¥N(ふ） remains the same, each valuation C£E以 becomesa single interval 

c~(S) of ct(S)'and ukEN'c~(S) = ct(S). Note that, by shrinking of Xe, the size of an 

interval (the size of a set of disjoint intervals) remains the same and the density of the 

interval (the density of the set of disjoint intervals) also remains the same, since Xe is 

already deleted and the empty (hollow) piece Xe is of size 0. 

Thus, by shrinking of Xe, the cake-cutting problem of type (ii) for the cake C'= C¥Xc, 

players N'= N¥N(Xc), and valuations e~, with ukEN'C£= C'and the density p'can be 
reduced to the cake-cutting problem of type (i) for the cake C'(S), players N'= N ¥ N (ふ），

and solid valuation intervals e翌={C~(S) I q E唸}with ukEN'c~(S) = C'(S) and the 

same density p t(S) =p. 
t(S) 

From an allocation A = 
t(S) 

N' 凶 Ii E N'} to players N'such that, for each i E 

N', Ai 
t(S) t(S) t(S) = {A. A 

t(S) . 
,1 , i2 , ... , Aik; } 1s the allocated piece of the cake C'(S) to player 

i with A 
t(S) t(S) t(S) 
i = A. +A  

t(S) t(S) t(S) 
＋・ ·•+A. CC. i2 ik, - i , and that LiEN'Ai = C'(S), we 

obtain an allocation A知={A~I i E N'} to players N'such that, for each i E N', 

崖={A~l,A匂..., A'} is the allocated piece of the cake C'to player i with A~= 

礼＋礼＋・・・+ A~ki~i C:, and that LiEN'A~= C'as follows: 
t(S) 

First find a player i E N'such that A. = A 
t(S) t(S) t(S) t(S) . 
．十A + .. ・+ A. C C. i1 i2'k;  - i contams 

the point x~= x1 obtained by shrinking ofふ=(x~, x7]. By symmetry, we can assume 

that A'・(8) (t II = a. a. ] contains x = x . i1 i1'i1 
Then set A'= (aい功l+ (xか!,a~'1J~q if 叱 <x~<x" 11・ i1 < a- m the ongmal 

world before shrinking. Otherwise (i.e. a. , n = x or x = a. ,J, if吐＝叶 thenset 

A;1 = (xI, aい ~CI, and if叫＇＝叫 '1then set A;1 = (aい名l~Cf.

Finally, set A'= A. 
t(S) 

iJ'i  
for all j = 2, 3, ... , ki and set A; = {A;1,Aは，．．．，仇}.Set 

also A.i = Af) for all j EN'¥ {i}. 
We will call this inverse shrinking of Xe. Thus, we can obtain the desired allocation 

A~,= {平 Ii E N'} to players N'in the cake-cutting problem of type (ii) for the cake 

C'= C ¥ Xe -/= (/J, players N'= N ¥ N(Xc), valuations玲 withukEN'C£= C'as follows: 

First obtain the reduced cake-cutting problem of type (i) for the cake C'(S), players 

N'= N ¥ N(Xc) 1 . . 
t(S) 

, and va uat10n mtervals鯰={ c~(S) I q E e~,} with ukEN'c~(S) = 

c1(8) by shrinking of Xe. 

Then obtain an allocation A 
t(S) t(S) 
N'= { Ai I i E N'} to players N'in the reduced 

cake-cutting problem of type (i) above. 

Finally, obtain the allocation A~, = { A; I i E N'} to players N'in the cake-cutting 

problem of type (ii) from the allocation A翌={ Af) I i E N'} to players N'in the 

reduced cake-cutting problem of type (i) by inverse shrinking of Xe. 

Thus, we have the following corollary. 
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Collorary 5.2 Let Xe = (x~, x]] c C be an interval of the cake C of minimum density 

p(ふ） = Pmin・Then, by cutting Cat both endpoints of Xp and deleting Xp, we can reduce 

the original cake-cutting problem into two types of cake-cutting subproblems: 

(i) the cake-cutting problem of type (i) for the cake Xp = (x~, x]] C C of mini-

mum density Prnin which consists of the players N(ふ） and solid valuation intervals 

eN(ふ） = {Ck E eN I ck~Xe} with UckEeN(Xe) ck= Xが

(ii) the cake-cutting problem of type (ii) for the cake C'= C ¥ Xp =/ 0, players N'= 

N ¥ N(Xp), valuations e如=eN(c ¥ Xe) = {0£=ck¥ Xp I ck E eN ¥ eN(ふ）｝
in Eq.(17) with LJkEN'C£= C'by Eq.(18) and the density p'= PC¥Xe defined in 
Eq.(21). 

Furthermore, the cake-cutting problem of type (i) can be solved in the same way as 

the original cake-cutting problem. 

The cake-cutting problem of type (ii) can be solved by shrinking and inverse shrinking 

of Xe and the minimum density P:Uin of intervals of this cake-cutting problem of type (ii) 

satisfies p贔in~Prnin·Furthermore, ifふ isa maximal interval of minimum density in C 

and there is no other maximal interval of minimum density in C, then p価in>Prnin・ 

By Corollary 5.2, using an intervalふ=(x佐，哨]C C of the cake C of minimum density 

p(Xp) = Prnin, we can solve the original cake-cutting problem by reducing into two types 

of cake-cutting subproblems. 

The proposition in Corollary 5.2 can be extended to hold for two or more disjoint 

intervals of minimum density and we have the following lemma using the argument above 

repeatedly. Note that, two distinct maximal intervals of minimum density Pmin in the cake 

C are disjoint by Corollary 4.2. 

Lemma 5.2 For the cake-cutting problem for the cake C = (0, 1], a set of n players 

N = {1, 2, ... , n }, solid valuation intervals邸 withvaluation interval Ci = (ai, 針lof 
each player i E N and LJ C CiEeN' ・= C, let p(C) > Prnin and let all the maximal intervals 

of minimum density Pmin be H1 = (hi, hf], H2 = (h~, hり],... , HL = (h'z:,, hf]. Then by 
cutting the cake at both endpoints of Hp = (h~, hり(£=1, 2, ... , L) we can reduce the 

original cake-cutting problem into two types of cake-cutting subproblems: 

(i) the cake-cutting problem within each maximal interval He= (h~, h]] (£= 1, 2, ... , L) 

of minimum density which consists of the players N(Hp) and solid valuation intervals 

eN(Ht) = {ck E eN I ckこHp}with U Ck=lfが
C店 eN(He)

(ii) the cake-cutting problem for the cake D = C ¥区にHewith players P = N ¥ 

区にN(Hc)and valuat10ns 

L L 

'.Dp= {Di=C八I:HcI Ci E似¥L eN(He)} with u Di= D. 
£=1 £=1 DiE1Jp 

Furthermore, the minimum density of intervals in each cake-cutting problem of type (i) 

is equal to Pmin・On the other hand, the minimum density of intervals in the cake-cutting 

problem of type (ii) is greater than Pmin・ 
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Similarly, two distinct minimal intervals of minimum density Prnin in the cake C are 

disjoint by Corollary 4.2 and we have the following lemma. 

Lemma 5.3 For the cake-cutting problem for the cake C = (0, 1], a set of n players 

N = {l, 2, ... , n }, solid valuation intervals岱 withvaluation interval Ci = (aぃ針lof 
each player i E N and Uc喜 NCi = C, let p(C) = Pmin and let all the minimal intervals 

of minimum density Prnin be X1 = (x~, x『l,X2= (x;,x夕],... , XK = (咋，x災].Then 

by cutting the cake at both endpoints of each Xk = (x~, x%] we can reduce the original 
cake-cutting problem into two types of cake-cutting subproblems: 

(i) the cake-cutting problem within each minimal intervalふ=(xに，x%](k = l, 2, ... , K) 

of minimum density which consists of the players N(ふ） and solid valuation intervals 

eN(ふ） = { ci E e N I ci <;;; ふ}with LJ Ci =Xk; 

CiEeN(Xk) 

(ii) the cake-cutting problem for the cake D = C ¥ Lf=lふ withplayers P = N ¥ 

四~1 N(X) k and valuat10ns 

叫 ={Di=Ci心xkI ci E応 ¥teN(ふ）} with LJ Di = D. 
k=l k=l Dぽ 1Jp

Furthermore, the minimum density of intervals in each cake-cutting problem of type 

(i) is equal to Pmin• The minimum density of intervals in the cake-cutting problem of type 
(ii) is also equal to Pmin・ 

We denote, by Procedure CutCake(P, D, 叫）， amethod for solving the cake-cutting 

problem for the cake D which is a single interval, players P and solid valuation intervals 

叫 (whereeach valuation Di E叫 fori E pis a single interval in D) and uiEP Di = D. 

The original cake-cutting problem for the cake C, players N and solid valuation intervals 

邸 withUc怠 NCi = C can be solved by setting P = N, D = C and叫＝応， and

calling Procedure CutCake(N, C, 邸）• Thus, we can write our mechanism as follows. 

Mechanism 5.1 Our cake-cutting mechanism. 

Input: A cake C = (0, 1], a set of n players N = {1, 2, ... , n }, and solid 

valuation intervals邸 withvaluation interval Ci= (ai, /3i] of each 

player i E N and Uc;EeN Ci = C. 

Output: Allocation心＝｛ふん，．．．，ふ}to players N. 

Algorithm { 

｝ 

for each i EN  do Di= C石

P=N; D=C; 叫={Di Ii E P}; 

CutCake(P, D,'D p); 

As mentioned before, the cake-cutting problem of type (i) within each maximal interval 

Ht = (h~, h1] (£= 1, 2, ... , L) of minimum density can be solved similarly. However, we 

use a slightly different method for solving the cake-cutting problem of type (i) with the 

and solid va uat10n mtervals cake H = Ht, players R = N(Ht) = {i E N I Ci~ 比} 1 . 
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・= since H is a maximal 加=eN(Hg) = {Ci E eN I i E N(H,)} with UciE'.Dnc, H,, 
interval of minimum density. We call it Procedure CutMaxlnterval(R, H,'.D砂

Based on shrinking and inverse shrinking in Lemma 5.2, we can solve the cake-cutting 

problem of type (ii) for the cake D = C ¥ L如H,,players P = N ¥ L如N(H,)and 

valuations'.D p = { Di = Ci ¥区L 
£=1 H, I Ci E応¥L7=1 eN(山）} with UciE'.Dぶ =D

in the same way as the original cake-cutting problem, since all the maximal intervals 

H1 = (hi, h1], H2 = (h~, hり],... , HL = (h~, h1] of minimum density Pmin in the cake C 
are mutually disjoint by Corollary 4.2. We call this Procedure CutCakeType(ii)(P, D,'.Dp). 

We first give a detailed description of CutCake(P, D,'.D p) for the cake D, players P 

and solid valuation intervals'.D p with valuation interval Di of each player i E P and 

uiEPni = n. 

Procedure 5.1 CutCake(P,D,'.Dp) { 

Find all the maximal intervals of minimum density Pmin in the cake-cutting 

problem with cake D, players P and solid valuation intervals'.D p; 

Let H1 = (hi, h1], H2 = (h~, h~], ... , HL = (h~, h1] be all the maximal intervals 
of mm1mum density Pmin; 

I I H1, H2, ... , HL are mutually disjoint by Corollary 4.2 

for£= 1 to L do 

cut the cake at both endpoints h~, h] of H,; 
凡={ i E p I Di c;;; H,, Di E'.D p };'.D Rg = { Di E'.D p I i E R叶；
CutMaxlnterval(Rt, Ht,'.D砧

P'=P; D'=D; 

for£= 1 to L do P'= P'¥ R,; D'= D'¥ He; 

II P'=P¥LにReand D'= D ¥ LにHt
if P'=/ 0 then 

｝ 

叩=0; 
for each Di E'.Dp with i E P'do D~= Dハ区幻Hが '.D'p,='.D'p, 十 {Da;

I I CutCakeType(ii) (P', D','.Dや）
Perform shrinking of all H1, H2, ... , HL; 
Let D(S) D(S) (S) (S) E'.D P'' and'.D P' be obtained from 

D', D; E'.D'p,, and'.D'p, by shrinking of all H1, H2, ... , HL, respectively; 

CutCake(P', D(S),'.D戸）；
Perform inverse shrinking of all H 1 , H 2, ... , Hじ

Note that, if P'-/c 0 after the deletion of H1, H2, ... , HL and CutCake(P', n(s)四戸）

is recursively called, then the minimum density p価inin CutCake(P', n(S)四戸） is strictly 

larger than the minimum density Pmin in CutCake(P,D,'Dp) by Lemma 5.2. 

Next, we give a detailed description of Procedure CutMaxlnterval(R, H,'D幻forthe 

cake H of maximal interval of minimum density Pmin, players R and solid valuation in-

tervals'DR, based on Lemma 5.3 and Procedure CutMinlnterval(S,X,'Ds) which is a 

method for solving the cake-cutting problem of type (i) where the cake is a minimal 

interval X of minimum density Pmin in maximal interval H = He of minimum density 

Pmin, players S = R(X) = {i E R I Di E 叩， Di~X} and solid valuation intervals 

応＝功i(x)= {Di E割iI i E S} with UD;E'Ds几 =X.
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Procedure 5.2 CutMaxinterval(R, H,'.D幻｛

Let X1 = (xi, x1], ふ=(x~, x~], ... , XK = (x~, x災]be all the minimal intervals 

of density Pmin in H; 

I I Xi, X2, ... , XK are mutually disjoint by Corollary 4.2 

for k = 1 to K do 

cut the cake at both endpoints x~, x% of Xk; 
sk = {i ER I Di~xk,Di E叫｝；露={ Di E'.DR I i E s叶；
CutMininterval(Sk, Xゎ恥）；

R'=R; H'=H; 

for k = 1 to K do R'= R'¥ Sk; H'= H'¥ Xk; 

II R'=R¥I: にSk and H'=H¥L贔Xk
if R'# 0 then 

叩=0; 
for each Di E叫 withi E R'do D; = Dハ冗贔Xk;'.D知＝叩 +{D;};
Perform shrinking of all X1, X2, ... , X応

｝ 

Let H(S), Df) E'.D誓， and'.D伯beobtained from 

H', D; E'.D~,, and'.D~, by shrinking of all X 1, X公..., X K, respectively; 

CutMaxlnterval(R'H(8) (S). 
'''.DR,), 

Perform inverse shrinking of all X 1, X 2, ... , X記

Note that if R'ヂ0after deletion of X1, X2, ... , XK and CutMaxinterval(R', H(8),'.D炉）
(S) (S) is recursively called, then the minimum density P~in in CutMaxlnterval(R', H ,'.DR') is 

the same as the minimum density Prnin in CutMaxinterval(R, H,'.D幻byLemma 5.3. 

Note also that, the cake-cutting problem of type (i) within each minimal interval 

ふ=(xい，x%]of minimum density Pmin (which consists of the players Sk = R(ふ） and 

solid valuation intervals'.D sk = { Di E'.DR I i E品}with UD,E'.Dsk Di = Xいissolved by 
CutMinlnterval(Sk, Xふ露）， asmentioned above. 

In order to give a detailed description of Procedure CutMinlnterval(S, X,'.Ds) for the 

cake-cutting problem of type (i) where the cake is a minimal interval X of minimum density 

Pmin in maximal interval H = He of minimum density Pmin, players S = R(X) = { i E R I 

Di E 叫， Di~X} and solid valuation intervals'.D s ='.D R(X) = { Di E'.DR I i E S} with 

Uv心 8Di= X, we need some more definitions and notations. 

Defimtion 5.2 Let X = (x',x"] be a minimal interval of minimum density Pmin・A 

minimal interval Y = (y', y"] with respect to density which is properly contained in X 

(i.e., Y C X) is called a separable interval of X, if csize(Y) is less than (ny + 1) Pmin, 

where ny is the number of players whose valuation intervals are entirely contained in Y 

(Figure 10). 

If there is no separable interval of X = (x', x"], then X is called nonseparable. 

Note that there are at most n2 separable intervals in X, since a separable interval is a 

minimal interval with respect to density and there are at most炉 minimalintervals with 

respect to density as mentioned before. 

We first consider the case when a minimal interval X of minimum density Pmin is 

nonseparable. This has a nice property. 
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Lemma 5.4 Let X = (x', x"] be a nonseparable minimal interval of minimum density 

Pmin・For simplicity, we assume X = (0, 1] = C, N(X) = N = {1, 2, ... , n}, eN(X) = eN. 

Let Ij = ((j -l)Pmin,JPmin] for each j EN, and let恥={Ji, h・・・,In} (LiEN Ii= X). 
Let G = (以恥E)be a bipartite graph with vertex set応＋恥 andedge set E where 

(C凸） E E if and only if IjこCi.Then G has a perfect matching M = {(Ci,I1r(i)) Ii E 
N} <:;; E (1r: N→ N is a permutation on N). 

Lemma 5.4 can be proved by Hall's Theorem [4]: for all positive integers k::; n and for 

all k subsets { C釘， Ci2,... ,C抹}<:;; eN, if the union Ci1 LJ Ci2 LJ• • • LJ cik contains at least 

k intervals inハ={Ii, h, ... Jn} (that is, Ci1 u CゅU・ ・ ・U Cik contains£2'. k intervals 

Ij1, Ih, ... , Ii£), then the bipartite graph G = (以恥，E)has a perfect matching. 

Let M = {(Ci,I1r(i)) I i E N} be a perfect matching of the bipartite graph G = 

（岱，'.IN,E) defined in Lemma 5.4. Then we can allocate Ai = I1r(i) <:;; Ci of the cake 

X = (0, 1] to player i E N with区iENAi = X. Since a perfect matching can be obtained 

in polynomial time of n, we call this Procedure Allocatelnterval(N(X), X, eN(x)) and will 

use it in Procedure CutMinlnterval(N(X), X, eN(x))-

Next we consider the remaining case. Let X = (x', x"] be a minimal interval of 

minimum density Pmin with a separable interval. Letリbethe set of all separable intervals 

in X and let 
* I y =  max y. 

Y=(y',y"]判
(24) 

That is, y* is the largest left endpoint of the separable intervals in X. Let加 bethe set 

of all separable intervals in X whose left endpoints are y* (Figure 10), i.e., 

加={Y = (y''y"] E 1J I y'=が｝．

For each interval Y = (y', y"] of X, let 

1(Y) = csize(Y) -ny Pmin・ 

(25) 

(26) 

Let Y = (y', y"] be a separable interval of the minimal interval X of minimum density 

Pmin・Then Y is a minimal interval with respect to density and 

ny Pmin < csize(Y) < (ny + 1) Pmin (27) 

and we have 

〇<"f(Y) < Pmin・ (28) 

Actually, p(Y) = 
csize(Y) 

ny  
> Pmin and ,(Y) = csize(Y) -ny Pmin > 0 for each Y C X since 

X is a minimal interval of minimum density Pmin・Furthermore, csize(Y) < (ny + 1) Pmin 
for a separable interval Y of the minimal interval X of minimum density Pmin・ 

Let ,* be the minimum ,(Y) among the separable intervals Y = (y*, y"] with the 

largest left endpoint y*, i.e., 

Clearly, by Eqs. (28), (29), 

デ=min (Y). 
YEむ・

r 

0 <'Y* < Pmin・ 

(29) 

(30) 

Let Zy• be the set of right endpoints of the separable intervals whose left endpoints are 

y , i.e., 

Zy• = {y" I y = (y*'y"] E加｝． (31) 
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Figure 10: Players N = {1, 2, ... , 10} and their valuation intervals C1 = (0, 1], C2 = 

(0.01, 0.24], C3 = (0.02, 0.25], C4 = (0.05, 0.34], Cs = (0.28, 0.52], C5 = (0.29, 0.59], C1 = 
(0.3, 0.65], Cs = (0.32, 0.77], Cg = (0.45, 0.85], Cw = (0.7, 1]. In this case, X = (0, 1] is a 
minimal interval of minimum density Prnin = 0.1, and there are several separable intervals 

of X = (0, 1] such as (0.01, 0.25], (0.01, 0.59], (0.01, 1], (0.28, 0.65], (0.28, 0.77], (0.28, 0.85]. 
The largest left endpoint y* of the separable intervals in X is 0.28 and the set of separable 

intervals with the largest left endpoint y* = 0.28 is { (0.28, 0.65], (0.28, 0. 77], (0.28, 0.85]}. 

Letリ;:be the set of separable intervals Y = (y*, y"] in加 with1(Y) =化 i.e.,

開:= {Y = (y*, y"] E加 I1(Y) = 1*}. (32) 

Let Z' y* be the set of right endpoints of the separable intervals in リ'• and J be the 
* y 

cardinality of Z'・ 
y*' i.e. 

z~ て={y" I y = (y*'y"] E閻:}, J = 1z;:1. 

Let 

z;: = {z{,z;, ... ,zj}, z; < z; <•··< zj. 

For each j = 1, 2, ... , J, let 

½= (y*, 弓].
For simplicity, we also consider 

zi =が +'Y*, Yo = (y*, zi]• 

(33) 

(34) 

(35) 

(36) 

In Figure 10, Pmin = 0.1, y* = 0.28, む={ (0.28, 0.65], (0.28, 0. 77], (0.28, 0.85]}, 

Zy• = {0.65,0.77,0.85}, 1((0.28,0.65]) = 0.65 -0.28 -0.3 = 0.07, 1((0.28,0.77]) = 
0.77 -0.28 -0.4 = 0.09, 1((0.28, 0.85]) = 0.85 -0.28 -0.5 = 0.07 andデ=0.07. Thus, 

妬={(0.28, 0.65], (0.28, 0.85]}, Zて={0.65, 0.85}, J = 2, zi = 0.65 < Z2 = 0.85. y 

Then we have the following lemma and corollary. 

Lemma 5.5 Let X = (x', x"] be a minimal interval of minimum density Pmin in the cake 

C. Let Y = (y*, z] C X be an interval such that there exists Ci = (ai, 店lE eN(X) with 

y* :s; °'i and z = f3i-Then'Y(Y) =デ forz E Z~ てand'Y(Y)>デ forz (/_ ZJて， i.e.,

'Y(Y) { ='Y* (z E z;:) 
>'Y* (z (/_ z; ・）． (37) 
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Proof: By the definition of ,(Y) of Y = (y*, z] c X in Eq. (26), 

,(Y) = csize(Y) -nypmin = Z - Y -nypmin• 

It is clear that if z E Z'. then ,(Y) = ,* by the definitions of肌 andZ • . Therefore, • y y y 
we can assume z (/_ Z' y • below. 

We first consider the case when Y = (y*, z] is not a separable interval. In this case, 
if Y = (y*, z] is a minimal interval with respect to density then csize(Y)~(ny + l) Pmin 
and by Eq. (30), 

,(Y) = csize(Y) -nypmin~Pmin > 1・ 

Otherwise (i.e., if Y = (y*, z] is not a minimal interval with respect to density), let 

y = min aj. 
Cj=(ajあ]EeN(x):CjCY=(y*z] 

Let Cj = (aj,(3』E eN(X) satisfy巧=y'and /3j ::; z. Then y* < y'::; ai since the 
valuation interval Ci= (ai, /3i] E eN(X) satisfies ai~y* and z =店 (andCi CY= (y* z]) 
and Y = (y*, z] is not a minimal interval with respect to density. Let Y'= (y', z] c Y = 

(y*, z]. Then, both valuation intervals Ci= (aぃ瓜],cj = (aj, (3』E eN(X) with y'= aj 
and z =瓜 arecontained in Y'= (y', z]. Thus, Y'= (y', z] is a minimal interval with 

respect to density and叩＝呵 Notethat, Y'is not a separable interval since y* is the 

largest left endpoint of the separable intervals of X. Thus, csize(Y')~(ny, + 1) Pmin, 

csize(Y) > csize(Y')~(ny, 十 1)Pmin = (ny + 1) Pmin, and 
1(Y) = csize(Y) -ny Pmin~Pmin > ,*, 

since csize(Y) = z -y* > z -y'= csize(Y'). 

We next consider the case when Y = (y*, z] is a separable interval. Thus, ny Pminく

csize(Y) < (ny + l)Pmin・By the definition of ZJ. = {y" I Y = (y*, y"] E的:}and Eq. 
(29), we have 

,(Y) = csize(Y) -nypmin > r 
＊ 

since z (/_ Z' y*. 口

Collorary 5.3 Let X = (x', x"] be a minimal interval of minimum density Pmin in the 

cake C. Let Y = (y*, z] C X be an interval such that there is a valuation interval 

Ci = (ai,/3i] E eN(X) with ai~y* and z = /3i- If z (/. z;: and z > zJ for some 
½= (y*, 弓](j = 0, 1, ... , J), then 

z —弓> Pmin(ny -ny:;). 

Proof: Since z -zJ = csize(Y) -csize(Yj), we have 

z -zJ = csize(Y) -csize(Yj) = Pmin巧+,(Y) -(PminnYj + ,(Yj)) 
= (,(Y) -1(Yj)) + Pmin(ny -n1;) 

> Pmin(ny -ny1) 

by Lemma 5.5 and ,(巧） = ,* < ,(Y). 

(38) 

ロ

The following lemma can be obtained using almost the same argument and almost the 

same notation used in Proof of Lemma 3.1. 
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Lemma 5.6 Let X = (x', x"] be a minimal interval of minimum density Pmin in the cake 

C. Let Yj = (y*, 弓](j = 1, 2, ... , J) be a minimal interval of X with respect to density 
defined in Eq.(35). Then the valuation intervals eN(Y1) is solid (i.e. LJ , C;EeN(Yj) Ci=巧）．

Let X = (x', x"] be a minimal interval of minimum density Pmin in the cake C and let 

S = N(X) and'.Ds ={Di= Ci I Ci E邸，CiこX}= eN(X)・For each j = 1, 2, ... , J, let 

Zj = (z;_1, 弓],'.Ds(ZJ)= {Di E'.Ds I Di<;;; 巧，Dii lj-1}, (39) 

S(Zj) = {i ES I Di E'.Ds(z1)}, n'zJ = IS(Zj)I- (40) 

Note that'.Ds(zJ) = {Di E'.Ds I DiこYj}¥ {Di E'.Ds I Di<;;; lJ-d-Furthermore, for each 
j = 1, 2, ... , J, let 

嗚図） = {D~=Di\ YJ-1 I Di E'Dscz1J}- (41) 

We consider the cake-cutting problem for the cake Zj, players S(Zj), solid valuation 

intervals'D~ ⑰) for each j = 1, 2, ... , J. Note that, D~= Di ¥乃1E訊⑰） is always 

contained in Zj = (zj_1, 弓], although valuation interval Di = (d~, d?] E'D氾） may not 

be in Zj = (zj_1, 弓](i.e., d; < zj_1 may happen). Of course, y* ::; d; and zい<d? ::; zj 

hold. Note also that, for each j = 1, 2, ... , J, the valuation intervals'D' S(Zj) is solid, i.e., 

LJ D~= Zj. (42) 

D'E'D' 
'S(劣）

This can be obtained as follows: By Lemma 5.6, for each巧=(y*, 弓l(j = 1, 2, ... , J), 

'.DN(Yj) is solid (i.e., LJ応叫Yj)Di = Yj), and thus, for each point z E Z1 = (zJ_1, 号］＝

Yj \½-I, there is a valuation interval Di E'.DN(Y_,) containing z. The interval Di is not 

in'.DN(Yj-i), since z (/. Yj-1-Thus, z is in D~=Di\ Yj-1 E'.D~(z1). This implies that the 

valuation intervals'.D~ ⑰) is solid and Eq.(42) holds. 

Note that there is no valuation interval of'.Ds = eN(X) contained in Yo = (y*, z0] C X 
（叩=0), since if there were a valuation interval Di E'.Ds contained in Yo, then Di 

would be a minimal interval with respect to density and n1入;:::1 and p(Di) :::; csize(Yo) = 

Zo -y* = ,* < Pmin, a contradiction that X is a minimal interval of minimum density 

Pmin・Thus, we have the following lemma. 

Lemma 5. 7 Each interval Zj = (zJ_1, zJ] (j = 1, 2, ... , J) is a minimal interval with 
.. 

mm1mum density p I min = Pmin for the cake-cutting problem for the cake Zj, players 

S(ろ） = {i← s I Di E'D喜）｝， valuat10n mtervals'D' S(Zj) in Eq.(39) and the density 
I p. Furthermore, the valuation intervals'D' S(Zj) is solid and Eq.(42) holds. 

Proof: As described above, the valuation intervals'D' S(Zj) is solid and Eq.(42) holds for 

each j = 1, 2, ... , J. 

Thus, we show below that each Zj = (zJ_1, 弓](j = 1, 2, ... , J) is a minimal interval 
.. 

with mm1mum dens1t 
cs1ze(Z・) 

y Pmin・It is clear that p1 (ろ） = I J = Pmin, since 

½ 
csize(Yj) 

csize(Zj) 

nz 
J 

(y*'弓], 汀 1= (y*, Zい], Zj =½\½ —1, 

Pmin呵＋化 csize(Yj— 1) = Pminni-;_1 + 1*, 屹=ni-; —ny1 —l l 

csize(Yj) 一 csize(Yj— 1) = Pmin(nyj -nyj_1) = Pmin屹•
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Let Z = (z', z"] be a proper subinterval of Zj (i.e., Z C Zj) such that z'is zJ_1 or z'is a 

left endpoint of some valuation interval and that z" is a right endpoint of some valuation 

interval in'.D' S(Zj)' 
If z'=f z* then p'(Z) = p(Z) > Pmin, since Z C X (Z =f X) and X・ J-1 1s a mm1mal 

interval with mm1mum dens1t y Pmin. Thus, we assume z = z. J-1 < z < z* (Z = 
(z* z"]). Now consider the intervals Y'= (y*, z"] and Y. = (y*, z* ] 1 1_1, 1 1_1 1_1 . Let nz = 
1eN(Y') ¥ eN(Y;-1) I-Then n'z = ny, -nY;-1 b 汀 1C Y'. By Corollary 5.3, we have y 

csize(Z) = Z -Zj-1 > Pmin(nyt -nY;-1) = Pmin nz 

and p'(Z) = 
cs1ze(Z) 

nz > Pmin・ 
・= z . z. 1s a mm1ma mterval with m1mmum densit Thus, Z1 (* *] . . . 1 . 1-1, J Y Pmin = Pmin・ 口

We also consider the remaining cake-cutting problem of type (ii) after deletion of the 

interval (z0, zj]. Note that (z0, zj] = Z1 + Z2 +・ ・ ・+ ZJ. Let 

S((zふzj])= S(Z1) + S(Z2) +・ ・ ・+ S(ZJ). (43) 

Thus, S((z0, zj]) is the set of players whose valuation intervals are contained in Yj = 

(y*, zj]. Let 

S' 

X' 

'.D~, 

S ¥ S((zふzj]),

X ¥ (z0, zj], 

{D~I 仄= D; ¥ (zふ巧],D; E'.Ds, D; <Jc的｝．

(44) 

(45) 

(46) 

Then, we reduce the remaining cake-cutting problem for the cake X', players S'and 

valuations'D8, by shrinking of (z0, zj] to the cake-cutting problem for the cake X'(8l, 

players S'and solid valuation intervals'D; 炉， whereX'(8), n?l E'D; 炉and'D;炉are

obtained from X', D~E'D8, and'D伶byshrinking of (z0, zj], respectively. 

Then the following lemmas holds. 

Lemma 5.8 Let X'(S) be the interval obtained from X'= X ¥ (zふzj]in Eq.(45) by 
1s a mm1ma mterval with m1mmum densit shrinking of (zふzj].Then X'(S). . . 1. Y Pmin = Pmin 

in the cake-cutting problem for the cake X'(8l, players S'in Eq.(44), solid valuation 

intervals'D; 炉(UD/S) E'.D1~) D炉=X'(8l) obtained from'D8, in (46) and the density p'. 

Proof: We will show that x1(S)・ ・ ・1・ 1s a mm1ma mterval with mmmmm density Pmm・ 

We can obtain p'(X'(8)) = Pmin by the argument in Lemma 5.7. Actually, since 

YJ = (y*, 弓],弓一碍 =n切 Pmin,csize(X) = Pminnx, and nx,(s) = nx -nyJ, we have 

csize(X'(S)) = csize(X) -(zjー苓） = nxPmin -n研 min

= (nx -nyJ)Pmin = nx,(s)Pmin and 

p'(X'(S)) = 
cs1ze(X1(8)) 

=Pmin・ 
nx,(s) 

Let Z = (z', z"]名(y*,zj] be an interval in X such that zi(S), obtained from Z'= Z ¥ 
(z0, zj] C X'by shrinking of (z0, zj], is a proper subinterval in X'(S) (i.e., zi(S) c X'(8l). 
Thus, z'< y* or z" > zj. To prove that X'(S)・ ・ ・ 1  1s a mm1mal interva with mm1mum density 
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P:Uin = Pmin we will show that p'(z'(8l) > Pmin by dividing into two subcases: Case (i) the 
case of z'< y* and Case (ii) the case of y*さz'andz" > z}. 

As noted before, there is no valuation interval of応=eNcxi = {Ci E応rI Ci<;;;; X} 

contained in Yo = (y*, 碍].Similarly, th . 1 . . 
t(S) 

ere 1s no va uat10n mterval of'.D8, (and of'.D 8,) 

contained in Yo = (y*,z0], since each Di E'.Ds with D~=Di\ (z0,z}] E'.D8, is not 

contained YJ = (y*,z}] by Eq.(46) and Di¥ YJ cJ 0. 
Case (i) z'< y*: We only discuss the case of z'< y* < Zo < z"~ 弓 (theother cases, 

1.e. z < z"~y* or z'< y* < z"~z0 or z'< y* < z0 < z} < z", can be discussed 

similarly). After shrinking of (zふz}],Z'= Z ¥ (zふz}]becomes zt(S) = (z', z計=Z'and 

we can consider z" = z} by almost the same argument in Lemma 5.1. Thus, 

YJ = (y*, 弓]CZ= (z', 弓], csize(Z) * =z J―Z, Pminn乃=ZJ―Z。.

nz,csJ = nz -nyJ, csize(z'(8l) =苓― z',

and we have 

p'(zt(S)) = 
cs1ze(z1(8l) Zo -z' 

= > Pmin 
nz,csJ nz,csJ 

by zt(S) = (z'詞]C X'(S) and 

csize(Z) z* 
p(Z) = = J―Z。+z。ーz Pmi研 YJ+z。ーZ

= > Prnin 
nz nz,csJ十 n兄乃1(8)十 n巧

since Z = (z', zj] C X and Xis a minimal interval of minimum density Prnin・ 

Case (ii) y* s z'and z" > zj: We only discuss the case of Zo s z'< zj < z" (the 

other cases, i.e., y*さZ1< Zo < zj < z11 or zjさz'<z", can be discussed similarly). By 

Corollary 5.3 for j = J, YJ = (y*, zj] and Y = (y*, z"], we have zi(S) = Z'= Z¥(zふzj]= 

(zj, z"] Cy¥ (zo, zj] = (y*, zol + (zj, z"], 

csize(zt(S)) = z" -zj = csize(Y) -csize(YJ) > Prnin (府—兄）

and nz,(s) さ巧—叩 (note that Di= (a占]with y*さ Cl!i< Zo and zj < !Ji s z" is in 
Y = (y*, z"], but not in YJ = (y*, zj], and thus, D~= 1入¥(zふzj]= (aぃ苓l+ (zj, 凡lis 
not contained in zi(S) = Z'= Z ¥ (zふ弓]= (zj, z"]). Thus, 

p'(zt(S)) = 
cs1ze(z1(8))~csize(z'(8)) 

> Prnin• 
乃1(8) 巧— n巧

Thus, we have shown that X'(8) is a minimal interval of minimum density p贔in=Prnin・ 

Finally, we will show that the valuation intervals'.D炉issolid, i.e., UD1(S)E'Dl(S) n;(s) = 
S' 

X'(8). Note that U t(S) 
D'(S)E'D'(S) Di = x'(S) if and only if u D'= X'. It 1s clear 

S' 
D作'D~,

that LJ瓜(S)四誓） n;(s)~X'(S) and LJ互E'D~, D~ ~X'. 

Let x E X'= X ¥ (z0, zj]. Note that the cake X is a minimal interval of minimum 

density Prnin in maximal interval H = Hg of minimum density Prnin, the players are S = 

N(X) = {i E N(H) I CiこX}and valuation intervals'.Ds = eN(X) = {Ci E eN(H) I 
i E S} is solid, i.e., UciE'Ds Ci = X by Lemma 3.2. Thus, there is a valuation interval 

Ci E'.D s that contains x. 
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If x E X'¥ (y*, z0] = X ¥ (y*, zj], then Ci is not contained in (y*, zj] since Ci contains 

x, and thus, both D~=Ci\ (z0, zj] E'.D~, and n?l E'.D炉containx. This implies 

X'¥ (y*, 苓l<;;;; u n; and x'(S) ¥ (y*'zol こ LJ n;csJ_ 

D'E'.D' 'st 
t(S) 

D. E'D t(S) 'S'  

Therefore, we can assume x E (y*, 喝]C X'= X¥ (zふzj].The valuation interval Ci 

above containing x, however, may happen to be entirely contained in YJ = (y*,zj]. In 

this case, Ci is in some'.D塁） = { Di E'.D s I DiこYj,Dig; 汀 1}in Eq.(39) and player i 

is in S(Zj) = {i ES I Di E'.Ds(z1)}, which implies i (/_ S'= S ¥ S((zふ弓]). Of course, if 

Ci is not contained in YJ = (y*, zj], then both D'= Ci ¥ (z0,zj] and D-
1(8) 

contam x. 

We will show that, for x E (y*, 碍],there is always such a valuation interval Ci contain-

ing x, but is not contained in YJ = (y*, zj]. This will imply that both D~= Ci¥ (zふ弓]E

'.D'and D-
1(S) 

S' z  E'.D炉containx. We divide the case of x" 2 zj into two subcases: Case 

(i) x" = zj and Case (ii) x" > zj. 
Case (i) x" = zj: In this case, X = (x', zj] and each valuation interval Ci= (aぃ瓜]E

eN(X) satisfies /3i :S zj. Note that YJ = (y*,zj] c X = (x'z*] , J and x < y , since YJ 

is a separable interval in X. Let Ymax be the largest right endpoint among the valuation 

intervals Ci = (aぃ店lE eN(X) such that Cl!i < y*, i.e., 

珈 ax= max /3i・
C,=(a; ふ]EeN(X)'a,<y•

(47) 

Let Ci = (a昌]be a valuation interval in eN(X) with ai < y* and出=Ymax・Thus, 

Ci= (ai, 叫 isnot in YJ = (y*, 弓].
If Ymax 2苓， thenboth Ci = (ai, /3i] and D~= Ci ¥ (zo'zj] = (ai, zol E'.D'.s,, contain 

x E (y*, z*] and we have LJ D'(s) ,(s) Di = 
1(S) 

o , E'D xi(S) and UD'E'D'D~= X'. 
i S1• S1 

Thus, we can assume Ymaxく嗜 Let

N((x', YmaxD = {i E N(X) I Ci E eN(X), Ciこ(x',Ymax]}, 

eN((x',Ymax]) = {Ci E eN(X) Ii E N((x',Ymax])}, n(x',Ymax] = IN((x',YmaxDI-

Then 

eN(X) = eN((x',Ymax]) + eN((y*,zj]), 
since each Cj = (aj, f3』EeN(X) satisfies either aj < y* (i.e., Cj = (aj, f3』EeN((x',Ymaxll) 

or aj 2 y* (i.e., Cj = (aj, f3』EeN((y*, 弓]))by the definition of Ymax in Eq.(47). Thus, we 

haven似，Ymax]十 n(y*,弓l= nx and 

csize((x , Ymax]) ＝珈ax-X> n似，Ymax]Pmin,

叩，Ymax]Pmin = nxPmin -n(y*, 弓]Pmin= zj -x'-(zj―埒） = Zo -X1, 

since (x', Ymax] C X and X・1・  1s a minima mterval of minimum density Pmin・Thus, we have 

＞ Ymax Z。,a contrad1ct10n. 

Case (ii) x" > zj: In this case, we will show there is a valuation interval Ci= (aゎ叫 E

恥 x)such that ai < y* and zj < /3i-
Suppose contrarily that there is no valuation interval Ci = (aゎ出lE eN(X) such that 

伍く y*and zj < /3i- Thus, for each valuation interval Ci = (aぃ店lE eN(X), either 

(ai < y* and /3i~zj) or (y*さaiand zj <凡） holds. Let 

eN((が，zj])= {Ci E eN(X) I Ci s;; (x', 弓]}, eN((y*,x"]) = {Ci E eN(X) I Ci s;; (y*, x"]}. 
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Note that (x', zj], YJ = (y*, zj] = (x', zj] n (y*, x"] and (y*, x"] are all minimal inter-
vals with respect to density, and eN(YJ) = eN((が，zj])n eN((y*,x"]) C eN((y*,x"])・We have 

nげ，zj]+ n(y* ,x"]―n(y*, 弓l= nx since there is no valuation interval Ci= (aゎ店lE eN(x) 
such that ai < y* and zj <店.We also have z* -x'> n 

．． 
J (x',zj]Pmin since X is a mm1mal 

interval of minimum density Pmin• Furthermore, x" -zj > (n(y*,x"]―n(y*名])Pminby 
Corollary 5.3. Thus, we have 

csize(X) x" -x'= (zj -x') + (x" -zj) 

> n(x冗 ]Pmin+ (n(y*,x"] -n(y*, 弓])Pmin

(n(が，zj]+ n(y*,x"]―n(y*,z*])Pmin = nxPmin = csize(X), 
J 

a contradiction. 

Thus, when x" > zj, there is a valuation interval Ci = (ai, /3i] E eN(X) such that 

ai < y* and zj < /3i and Ci= (ai, /3」containsx and not contained in (y*, zj] and we have 

Sl/ 
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n'.<sJ = x'<sJ 
i 

and LJ D~= X'. 
D'E'.D' 

i S' 
ロ

Based on Lemmas 5.4, 5.7 and 5.8, we can write Procedure CutMinlnterval(S, X,'.Ds) 
as follows. 

Procedure 5.3 CutMinlnterval(S, X,'.Ds) { 

if X = (x',x"] is nonseparable then Allocatelnterval(S,X,'.Ds); 

/ / this finds an allocation of X to players S by Lemma 5.4 
else / / there is a separable interval in X 

Find y*, "(*, 1a;:, and ZJ. defined by Eqs. (24), (29), (32), and (33), 
respectively; 

Let存 ={ zi, z2, ... , zj} and assume 

苓=y*+'Y*< zi < z2 <・ ・ ・< zj::::; ZJ+l =x"; 
for j = 1 to J do 

Zj = (zj_1, 弓];
cut the cake at both endpoints z* z* of Z (* 

J-1'J J 
・= z. z*]・ J-ll J' 

let'.D塁） and'.DS(Zj) be defined in Eqs. (39) and (41); 

S(ろ） = {i ES I Di E'.Ds(ぃ｝；
CutMininterval(S (Zj), Z・'.D')・J> S(Zj)' 

S'= S ¥ S((zふ弓]); X'= X ¥ (z0, zj]; 
if S'=/ 0 then 

'.D'.s,, = 0; 
for each Di E'.Ds with i ES'do D~= D八(Zo'zjl;'.D'.s,, ='.D'.s,, 十 {D:};
Perform shrinking of (zふzj];

Let X'(S), D'(S) E'.D1戸) 1(8) 

' 
and'.D be obtained from S' 

X', n: E'.D8, and'.D8, by shrinking of (zふ弓],respectively; 

CutMinlnterval(S'D'(8) 1(8). 
'''.D S')' 

Perform inverse shrinking of (zふ弓];
｝ 

Based on Lemmas 5.2, 5.4 and 5.8, we can show that Mechanism 5.1 correctly finds, 
in O(nりtime,an envy-free allocation心＝｛ふ，ふ，．．．，ふ}of the cake C to a set of n 
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players N withふ={A紅，Aね,...'心}such that Ai = Ai1 + Ai2 +・ ・ ・+ A尻こ Cifor 
each player i E N and the number of cuts made is at most 2n -2. Actually, envy-freeness 

and truthfulness of Mechanism 5.1 can be obtained by induction on the number of calls 

on Procedure CutCake(P, D,'.Dp) by Lemma 5.2. Truthfulness of Mechanism 5.1 can be 

also shown in a similar way as in papers [2], [6]. We can show that the number of cuts is 

at most 2(n -1) in a similar way as in paper [6]. 

We will give a little more details below. For simplicity, we use AN = (A : i E N) and 
Ai in place ofふ＝｛ふ，ふ，..●）出}and心 respectively.Then the following lemmas 

can be obtained. 

Lemma 5.9 For a cake X which is a minimal interval of minimum density Pmin, play-

ers S and solid valuation intervals = 叫 {DiI i E S} with uiES Di = X, Procedure 
CutMinlnterval(S, X, 応） satisfies the following (a) -(c). 

(a) CutMinlnterval(S,X,'.Ds) returns an envy-free allocation (Ai: i ES) of X to players 

S such that Ai~Di E'.Ds, csize(Ai) = Pmin for each i E Sand区iESA= X. 

(b) CutMininterval(S,X,'.Ds) runs in O(sりtimewheres= ISi. 

(c) The number of cuts made over X by CutMinlnterval(S,X,'.Ds) is at most 2s -2. 

If Xis nonseparable, then, by Lemma 5.4, Allocatelnterval(S,X,'.Ds) finds an alloca-

tion (Ai : i E S) of X to players S such that Ai~Di E'.Ds, csize(A』=Pmin for each 

i ES and区iESAi = X. The number of cuts made by Allocatelnterval(S, X,'.Ds) is s -1. 

A perfect matching of a bipartite graph in Lemma 5.4 with 2s vertices can be obtained in 

0(感） time. Thus, Lemma 5.9 holds. 

If X is separable, Lemma 5.9 can be shown by induction on the number of recursive 

calls of CutMininterval(・, ・,・)in CutMininterval(S,X,'.Ds) in total. 

Assume that the lemma holds if CutMinlnterval(S,X,'.Ds) contains at most k~0 
recursive calls. Consider when CutMinlnterval(S,X,'.Ds) contains k + 1 recursive calls. 

Thus, X has a separable interval and CutMinlnterval(S,X,'.Ds) contains J recursive calls 

CutMininterval(S (Z几Z・ '.D')J, S(Z1) for the cake Z・which is a mm1ma mterval of mmunum 

density Pmin by Lemma 5. 7 and a recursive call CutMinlnterval(S', X'(S),'.D誓） for the 

cake X'(S) which is a minimal interval of minimum density Pmin by Lemma 5.8 if S'=/ 0. 
By the induction hypothesis, CutMinlnterval(S(Zj), Zj,'.D~(Zj)) finds an allocation (Ai : 

i E S(ろ）） of Zj to players S(Zj) such that Ai こ D~E'.D~(z1) (thus, AiこDiE'.Ds), 

csize(Ai) = Pmin for each i E S(Zj) and LiES(Zj) Ai = Zj for each j = 1, 2, ... , J. 

Furthermore CutMininterva l(S',X'(8l,'.D炉） finds an allocation (A~: i E S') of X'(S) to 

players S'such that A~ ~D;(s) E'.D炉， csize(A:)= Pmin for each i ES'and LiES'A~= 
x1(8). By inverse shrinking of (zふ弓],we have the allocation (Ai : i E S') of X'= 

X¥ (zふzj]to players S'such that Ai~D~E'.D~, (thus, AiこDiE'.Ds), csize(A』=Pmin

for each i E S'and LiES'Ai = X'. 
Thus, we can obtain that CutMinlnterval(S, X,'.D s) returns an allocation (Ai : i E S) of 

X to players S such that Ai~Di E'.D s, csize(Ai) = Pmin for each i E S and LiES Ai = X. 

Since Ai~Di, csize(A』 =Pmin and uti(A』=csize(Ai n D』=csize(Ai) = Pmin = 
csize(Aり ~csize(Aj n Di) = uti(Aj) for each i,j E S, the allocation (Ai : i E S) is 

envy-free. Thus, (a) is obtained. 
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Similalry, (b) and (c) of the lemma can be shown by induction on the number of 

recursive calls of CutMinlnterval(・, ・, ・) in CutMinlnterval(S,X, 応） in total. Note that, 

all the separable intervals can be found in (茫） time. 

The following two lemmas can be obtained similarly. 

Lemma 5.10 For a cake H which is a maximal interval of minimum density Pmin, players 

R, and solid valuation intervals叫={ Di I i E R} with LJ. zER Di = H, Procedure 

CutMaxinterval(R, H, 叫） satisfies the following (a) -(c). 

(a) CutMaxlnterval(R, H, 叫） returns an envy-free allocation (Ai : i E R) of H to 

players R with A; <:;; Di E叫， csize(Ai)= Pmin for each i E R皿 dLたRふ =H.

(b) CutMaxlnterval(R, H, 叫） runs in O(r3) time where r = IRI. 

(c) The number of cuts made over Hin CutMaxlnterval(R, H, 叫） is at most 2r -2. 

Lemma 5.11 For a cake D, players P, and solid valuation intervals'Dp = {Di I i E P} 

with LJiEP Di = D, Procedure CutCake(P, D,'Dp) satisfies the following (a) -(c). 

(a) CutCake(P,D,'Dp) returns an envy-free allocation (Ai: i E P) of D to players P 

such that AiこDiE'Dp, csize(Ai)~Pmin for each i E P and LiEPA; = D. 

(b) CutCake(P,D,'Dp) runs in O(pりtimewhere p = IPI-

(c) The number of cuts made over D in CutCake(P, D,'D p) is at most 2p -2. 

By Lemma 5.11, the Mechanism 5.1 (Procedure CutCake(N, C, 邸） is envy-free and 

runs in O(nりtime,and the number of cuts made by Mechanism 5.1 is at most 2(n -1). 

Note that, in CutCake(P, D,'Dp), if Dis a maximal interval of minimum density Pmin, 

then CutMaxlnterval(P, D四p)is called and, by Lemma 5.10, CutMaxinterval(P, D四p)

finds an envy-free allocation (Ai : i E P) of D to players P such that AiこDiE'Dp, 

csize(Ai) = Pmin for each i E P and区，EPふ =D. On the other hand, if D is not a 
maximal interval of minimum density Pmin, then P'=J 0 after the deletion of all maximal 
intervals of minimum density Pmin, and CutCake(P', n(S), 功釣 isrecursively called, and 

the minimum density p伍inin CutCake(P', n(S)り戸） satisfies p位in> Pmin・Thus, by 
induction on the number of recursive calls of CutCake(・, ・, ・) in CutCake(P, D,'Dp), we 

can show that CutCake(P,D,'Dp) returns an envy-free allocation (Ai: i E P) of D to 

players P such that Ai <:;; Di←'D p, csize(Ai)~Pmin for each i E P and江EPAi= D. 
As mentioned before, truthfulness of Mechanism 5.1 can be shown in a similar way as 

in papers [2], [6]. Thus, we have the following theorem. 

Theorem 5.1 Mechanism 5.1 is envy-free皿 dtruthful, and the number of cuts made by 

Mechanism 5.1 on the cake is at most 2(n -1). Mechanism 5.1 runs in O(n3) time. 
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6 Appendix: Proof of Theorem 5.1 

Although the truthfulness of Mechanism 5.1 can be obtained in a similar way as in papers 

[2], [6] as metioned before, we give a proof for completeness. 

Lemma 6.1 Mechanism 5.1 (mechanism M) is truthful. 

Proof: Let似={C1, C2, ... , Cn} be an arbitrary input to the mechanism JV(and 

AN = (Aj : j E N) be an allocation of the cake C to n players N obtained by JV(with 

Aj for each j EN. Let e~(i) = {C1,C2, ... ,Ci-1,Cf,Ci+1,・.. ,Cn} be an input to the 
mechanism JV(in which only player i gives a false valuation interval Cf and let an allocation 

of the cake C to n players N obtained by JV(be A詞=(A.i : j E N) with A'. for each 
j E N. Note that, by Lemma 5.11, we have 

AiこCi, A'. こCi, Aj,AJこCj for allj EN¥ {i}. 

Thus, the value uti(A) of Ai for player i and the value uti(AりofA'. for player i are 

uti(Ai) = csize(Ai n C』=csize(A』, uti(Aり=csize(A'. n Ci) ::::; csize(Aり．

We will show that uti(Ai) 2:: uti(Aり・

(48) 

Let H1 = (hi, h1], H2 = (h~, h~], ... , HL = (h~, hi] be all the maximal intervals of 
minimum density Pmin of solid valuation intervals邸={ C1, C2, ... , Cn} with density p. 

Let Hf, H~, ... , Hしbeall the maximal intervals of minimum density p価inof solid valu-

ation intervals唸(i)= {C1, C2, ... , Ci-1, CI, Ci+i, ... , Cn} with density p'(the argument 
below can be extended to the case when e~(i) is not solid valuation intervals). Thus, 

p(Hc) = Pmin for each£= 1, 2, ... , L, and p'(H~,) = p盆infor eachり =1,2, ... ,L'. We 

divide into three cases: (i) P:Uinく Pmin,(ii) P位in> Pmin, (iii) p位in=Pmin・ 
(i) p盆inく Pmin・Inthis case, we can show that CI is contained in some H~,. By 

symmetry, we can assume£'= 1 and C: ~Hf. 
Suppose contrarily that CI <le Hf. Then we have the following. 

If Ci rJc Hf then p'(HD = p(HD since CI <le Hf, and p盆!n= p'(HD = p(HD 2:: Pmin・ 
Otherwise (i.e., if Ci~HD, the number n't.(H~) of valuat10n intervals of e~in Hf is 
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equal to the number of nN(Hi) of valuation intervals of岱 inHf minus 1 (i.e. n , N(HD ＝ 

nN(HD -1), since Ci is in Hf, but Cf is not in Hf and p伽in= p'(Hf) > p(Hf) 2 Prnin• 
Thus, in either case, a contradiction that p:r,in < Pmin・ 

Thus, we have CfこHf.Since the allocation A¼(i) = (AJ: j EN) obtained by mecha-

nism M satisfies A~ こ Cf~Hf we have p伍innHi= csize(Hi) and uti(Aり=csize(A~nCi) :S 
csize(Aり=p如in< Pmin :S Uti(Ai)-

(ii) p:r,in > Pmin・In this case, we can show that Ci is contained in some He by an 

argument similar to one in the case (i). By symmetry, we can assume£= 1 and CiこH1.

Since p'(ふ） 2 p伍infor each intervalふ with0: こXi,we have csize(AD 2 p伍in•
Similarly, for each j E N(H1) with valuation interval Cj~H1 and for each interval X・ 
with Cj~Xj, we have p'(ふ） 2 p贔inand csize(AJ) 2 p:r,in• Since p如in>Pmin, Aj~Cj 
for all j E N(H1) ¥ {i}, and A~~Cf (A~n CiこCi,but A~ こCimay not hold), we have 

csize(H1) 2 LjEN(Hi) csize(AJ n Cj) and 

叫 (Aり = cs1ze(Ai n Ci) 

:S csize(H1)ー L csize(A1 n Cj) = csize(Hリー L csize(Aり
jEN(H1)¥{i} jEN(H1)¥{i} 

< csize(H1) -Pmin(nH1―1) 

応 (H1)Pmin-P;,,;n(nH1 -1) = Pmin -(nN(H1) -l)(p位in-Pmin) 

く Pmin= uti(Aか

(iii) p伍in= Pmin• By symmetry we can assume that this case can be divided into four 
subcases as follows: 

(a) CiこH1and CfこHf,
(b) Ci~H1 and 0: ~H;, for all£'= 1, 2, ... , L', 

(c) Ci~He for all£= 1, 2, ... , L and Cf~Hf, 
(d) CiこHefor all£= 1, 2, ... , Land CfこH;,for all£'= 1, 2, ... , L'. 

In subcase (a), uti(Ai) = csize(A』=Pmin and csize(A~) = p:r,in = Pmin and thus, we 

have uti(Aり=csize(A~n Ci)さcsize(Aり=p伍in= Pmin = uti(Ai)-

In subcase (c), uti(Ai) = csize(Ai) 2 Pmin and csize(Aり=p位in= Pmin and thus, we 

have uti(AD = csize(A~n Ci)さcsize(Aり=p伍in= Pmin :S Uti(A』.
In subcase (b), by the same argument for the case (ii), we can show uti(Aり=csize(A炉

Ci) :S csize(ADさ叫(A』asfollows. 

Since p'(ふ） 2 p盆infor each intervalふ withC: ~Xi, we have csize(AD 2 p盆in•
Similarly, for each j E N(H1) with valuation interval Cj~H1 and for each interval Xj 
with CiこXj,we have p'(Xj) 2 p如inand csize(Aj) 2 p:r,in. Since p如in= Pmin and 

A'.~Ci for all j E N(H1) ¥ {i}, A; こCf(A; n Ci~Ci, but A; こCimay not hold), we 

h~ve csize(H1) 2 LjEN(Hi) csize(AJ n Cj) and 

叩 (Aり = cs1ze(Ai n Ci) 

:S csize(H1)一 L csize(A.i n Cj) = csize(Hリー L csize(Aり
jEN(H1)¥{i} jEN(H1)¥{i} 

< csize(H1) -p己（呪— 1) = nN(H1)Pmin -P如in(nH1―1)= Pmin = Uti(A」

In subcase (d), since Ci~He (C = 1,2, ... ,L) and Cf~H;, (£'= 1,2, ... ,L'), 

we have p(Xi) > Pmin for each凡 withCi~Xi and p'(Xり>p盆infor each Xf with 
CI~x;. We show叫 (Aり:Suti(Ai) by induction on the number of calls of Procedure 

CutCake(P, D,'Dp). 
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Suppose that Cfこ凡 forsome£= 1, 2, ... , L. We can assume Cf~ 凡 bysymmetry. 

Then, the number n of valuation intervals of e~in H1 is equal to the number of N(H1) 

nN(Hi) of valuation intervals of似 inH1 plus 1 C + 1) . i.e., バ(Hi)= nN(Hi) , smce Ci 1s m 

Hi, but Ci is not in H1. This implies that p位in:::;p'(H1) < p(H1) = Pmin, a contradiction 

that p位in=Pmin・ 
Thus, we have that no He (£= 1, 2, ... , L) contains Cf. This implies that p'(Hc) = 

p(Hc) = Pmin = P伍inand He is an interval of minimum density in valuation intervals e~. 
Similarly, we can show that no H;, (£'= 1, 2, ... , L') contains Ci, and each H;, is an 

interval of minimum density in valuation intervals eN・

Thus, we can claim that each He is a maximal interval of minimum density in valuation 

intervals e~and that each H;, is a maximal interval of minimum density in valuation 

intervals e N・

Suppose contrarily that some He were properly contained in a maximal interval H~, of 
minimum density in valuation intervals e~. Then He would not be a maximal interval of 

minimum density in valuation intervals応， sinceH;, is an interval of minimum density in 

valuation intervals eN. This is a contradiction that He is a maximal interval of minimum 

density in valuation intervals邸. Similarly, we can show that each H;, is a maximal 

interval of minimum density in valuation intervals eN. Thus, we have L'= L and, by 

symmetry, we can assume凡＝町 foreach£= 1, 2, ... , L. 

When Procedure CutCake(C, N心） is called, the cake-cutting problem of type (ii) 

for the cake D = C ¥ L L 
£=l He, players P = N ¥ L 

L 
f=l N(He) and valuations'.Dp = 

L 
{ Dk = ck ¥ LR=l He I ck E応 ¥LにeN(山）} is obtained. Similarly, when Procedure 
CutCake(C, N, e½) is called, the cake-cutting problem of type (ii) for the cake D = C ¥ 

区にHe,players P = N ¥区L 
£=l N(Hc) and valuations'.D'p = {D£= C£¥区f=1HcI a£E 

唸¥LL e'} . f=l N(He) 1s obtamed. 

Note that Dk = D£for all k E P ¥ {i} and that Di = Ci ¥とにHeand D~= 
Cf¥LにHe.Furthermore, note that, the allocated piece A; to player i in the cake-cutting 

problem of type (ii) for the cake D = C ¥ L如He,players P = N ¥ L如N(Hc)and 

valuations'.D p = { Dk = ck¥区にHeI ck E eN\Lに e½(He)} is the same as the allocated 

piece Ai to player i in the original cake-cutting problem. Similarly, the allocated piece A~ 
to player i in the cake-cutting problem of type (ii) for the cake D = C ¥口にHe,players 

P = N¥LL N(Hc) 
L 

£=l and valuat10ns'.D'p = { Dk = C£¥ L幻Hcla£E唸¥Lc=le~(He)} 
is the same as the allocated piece to player i in the original cake-cutting problem with 

valuation intervals e½(i) = {C1, C2, ... , Ci-1, Cf, Ci+1, ... , Cn}-

By induction hypothesis, uti(A;) 2". uti(AD holds, where uti(Ai) = csize(Ai n Ci) = 

csize(A』isthe value of the allocated piece Ai to player i in the cake-cutting problem of 

type (ii) for the cake D = C ¥ L L 
£=l He, players P = N ¥ L 

L 
£=1 N(Hc) and val叫 10ns

叫 ={Dk=ck¥ LにHeI ck E応 ¥Lし心N(He)}and uti(Aり=csize(A~n Ci) is 
the value of the allocated piece A; to player i in the cake-cutting problem of type (ii) for 

the cake D = C ¥ L 
L L 
£=l He, players P = N ¥ LR=l N(He) and valuations'.D'p = {D£= 

Cん＼口=1HeI q Ee½\ とに以⑳）｝．
Thus we have completed Proof of Theorem 5.1. ロ
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