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1 Introduction

In the study of viscoelastic materials, the state of stresses at the instant t defends on the
strain at the instant ¢, but also on the strains at the instants previous to the present instant
t. From this standpoint of view, the viscoelastic equations with long memory are introduced.
The qualification of long memory is given by the Volterra integrals on the effects of memory of
materials. We shall give the description of the linear viscoelastic systems with long memory in
the three dimensional Euclidean space R3.

Let  be an open and bounded set in R3 with sufficiently smooth boundary 8. Let T >
0 be fixed and let Q = (0,7) x Q and & = (0,T) x Q. We denote by ¥y = (v1,¥2,¥3) 2
displacement field in R® and aijkh are the coefficients of instantaneous elasticity. The system of
linear viscoelastic equations with long memory is described by

Py 0 ‘9, ds=fi, i=1,2,3 1.1
B2 ‘a_x;aijkhﬁkh(y) —/0 % ijkh(t—S,x)fkh(y) s=f;, 1=12,3, (1.1)
h _ 1, 0yp | Ok, , . 3 . ..
where exp(y) = 3(5- + ﬁ) is a strain tensor element, b;;xp are the coefficients of elasticity by
k h

taking into the memory effects of the material, f = (fi1, f2, f3) is an external force. Throughout
this paper we assume that the coefficients a;jxn and ;i satisfy

@ijkh, bijen € L(Q) for all 4,5, k, h,
Qijkh = Gjikh = Gkhij, (1.2)
aijknii€en = adijéij, Ja >0, V& €R, & = &G

and that a;jkn and b;jrs have the following time regularities:

t — aikn(t,-) € L®() is continuousely differentiable and

@—gi’ﬂ € L®(Q) for all i, 74,k k; ' -
t = bijkn(t,r) € L°°(Q) is continuousely differentiable and '

Bbéikh € L°(Q) for all i,j,k,h.
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The purpose of this paper is to study the boundary control problems for the viscoelastic
system (1.1). First we consider the following Neumann boundary control system

2,,. "
?%zié(—v)’ - éi—j“ijkhekh(y(”)) - /0 %bz‘jkh(t —5,2)exn(y(v))ds = f; in Q,
t
[aijkhfkh(y(’l))) +/0 bijkn(t — 5,$)Ekh(y(v))d5] n; =v; on X, (1.4)

a .
i(v;0,z) = 1, Fz’—(v;o,m)=y} inQ, i=1,23,

where f = (f1, f2, f3) € [L2(0, T5 (HY (D)), wo = (42,43, 43) € [L2()P, 1 = (v},93,13) €
[(H(£2)))3, n; is the j-th outward normal to 99, and the boundary control variables v =
(v1,v2,v3) are assumed to satisfy the condition

v; € LX), i=1,2,3. (1.5)

It is verified by the method of transposition (cf. Lions [2], Lions and Magenes [3], that there is
a unique transposed solution y(v) € [L3(Q)]® of (1.4) for each v satisfying (1.5). Therefore, for
the controlled system (1.4) we can attach the following quadratic cost functional given by

2 2 : 2
J(v) = qu(y,-(v) — zg;)*dzdt + gw /); v;“dzdt, (1.6)

i=1
where zg4; are desired values in L?(Q) and v; > 0,i = 1,2, 3.
Next we consider the following Dirichlet boundary control system

%y; 0 t g .
%ﬁ"l - %j%khékh(y(v)) - /0 aijijkh(t — s, 2)ern(y(v))ds = f; in Q,
yi(v) =v; on X, (1.7)

vi(v; 0,z) = y?, %%(11;0,:5) = y,-1 inQ), 1=1,2,3,

where f = (f1, f2, f3) € [L2(Q) w0 = (3,4%,43) € [H () and y1 = (v}, 43, 43) € [L2(Q)P
Further in (1.7) we assume the stronger regularity condition on v = (v1,v2,v3) such that

v; € H(Z), i=1,2,3. (1.8)

We can verify that there exists a unique weak solution y(v) of (1.7) in the sense of Dautray
and Lions [1] for each v satisfying (1.8). The solution y(v) has the regularity y(v) € [L(Q)]?,
y(v) € [C([0,T); L*(Q)))3. Hence, for the control system (1.7) we can attach the following two
types of quadratic cost functionals: '

3 3

1) = 3 [ (wilo) - 2wt + 3 vilila sy (1.9)
i=17'¢ i=1
3 3

Jw) = Z/{;(yi(”;T)—zdi)zdm'f‘zl/i“vi"%{g(z)' (1.10)
i=1 =1

In (1.9) and (1.10) z4; are desired values in L2(Q) and L%(Q), respectively, and v; > 0,7 = 1,2, 3.

In this paper we establish the necessary conditions of optimality both for the Neumann
boundary control system (1.4) with the cost (1.6) and the Dirichlet boundary control system
(1.7) with the cost (1.9) or (1.10) by introducing proper adjoint systems.
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2 Neumann boundary control problems

In this section we study the Neumann boundary control problems of (1.4). To formulate the
problems, we need to introduce the transposed solution of (1.4) by the transposition method.

Lemma 2.1 Assume that f € [L2(0, T; (HH ()3, wo € [L2(Q)], 11 € [(H*(Q))'}® and (1.5)
in the system (1.4). Then there exists a unique element y = (y1,%2,%3) in [L2(Q)]® such that

Z/ 6 ¢z _ ah“nkhev(‘ﬁ / B bijkn(s — t, x)eij (¢ )ds)dmdt
0
= Z / fiidzdt — Z f y?-—?—(O,z)d:v+; /Q v (0, z)dm+i§ L v;$idZ

i=1
for all function ¢ such that ¢ € X, where

X={ ¢=(d1.42.43) | & €L*0,T;H'(Q)),

82 i 0 T 9

5:; - a%‘khﬁz‘j(d’) - /t %‘bijkh(s —t,z)€ii(¢)ds € LA(Q),
T

[aijkhfij (¢) + / bijen(s — 1, w)eij(¢)ds] n,=0 on X,

¢:(T,z) = a"5’(1“ )=0, i=1,2, 3}

Here we note th;'-mt
b€ C(0, THH'(Q)), 22 e C(0, 71 I2(Q), ¢ils € HE(D) € LA(S)

ot
for all ¢ = (¢1, ¢2, P3) € X.
By Lemma 2.1, for the system (1.4) we can consider the cost given by -

3 3
Jw) = ;/Q(’yi(v) — 24;)%dzdt + ;Vi /; vidE, ve [L3(Z))3, (2.1)

where v; > 0 and 24 € L*(Q), i = 1,2,3. Let Uyg C [L*(Z)]® be a closed and convex set of
admissible controls. The element u € U,q4 such that

inf J(v) = J(u) (2.2)

vE uad

is called the optimal control. It is easily verified that the optimal control u for the cost (2.1)
exists uniquely by the positivity v; > 0 for 4 = 1,2, 3. Then the optimality condition is given by

Z / (yi(w) — 24i) (3i(v) — yi(u))dzdt + szf (us)(v; — ui)dE > 0, Vv € Uy, (2.3)

i=1
where u is the optimal control for (2.1). We want to write down the condition (2.3) in terms of
adjoint state equation. For this, we introduce the adjoint system by

20 (u
2 3;; ) éa—haijkheij (p(u)) — /tT a_a‘bukh(s t,z)eij(p(u))ds = yi(u) — 2¢; in Q,
[aleheiJ(p u)) +/ bijrn(s — t, )€ (p(u) )dS] n,=0 on%, (2.4)

pi(u; T: .’E) = 07‘ %?(uv Ta z) - in Q7 i=12, 3.
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Since y;(u) — 245 € L%(Q), i = 1,2,3 by assumption, we can verify that the weak solution
p = (p1,p2,p3) € X of (2.4) exists uniquely. The optimality condition can be obtained by the

following theorem.

Theorem 2.1 The optimal control u € Uyq C [L*(Z)]? for the cost (2.1) is characterized by the
following system of equations and inequality:

0%y; 0 .
gtg'”) ~ % Jafz]khekh / 92, bijkn(t — 8, 2)exn(y(v))ds = fi in Q,

[aijkhekh( )+/ bijkn(t — s, w)ekh( (v))ds]nJ =v; on Y,
y(;0,2) = (), (w;0,2) =gh(e) nQ, i=1,23,

20 (u
%ﬁ——) - E%Gijkhfij(i’( ) —/ —i; ijkh(8 — t,2)€i5(p(u))ds = y;(u) — 24; in Q,
[a,]khe,,(p(u) +/ bijkn(s —t, x)e,-j(p(u))ds]nh =0 on X,

8
“mT@ 0inQ i=1,23,

pi(u; T, z) =0,
3
Z A(p,(u) + viui) (v — w;)dE > 0, Vo = (v1,v9,v3) € Usg C [LA(D)].
i=1

Example 2.1 Assume that the admissible set U,q4 is given by
Upg = {'v = (v1,v2,v3) |vi > 0 on X, i = 1,2,3}.

Then by Theorem 2.1 the optimal control u = (u;, uz,us) is given by

t
wi= |aienern(y) + _/0 bijkn(t — 5, )ern(y)ds|nj, i =1,2,3,
where y is the solution of the following unilateral problem on y and p:
%y
ot?
0? opi 0
Fra a_—aijkhfu(p) a bijkn(s — B, 2)ei(P)ds = yi — 2 In Q, i=1,2,3,

¢

0 )
— —aijknern(y) — -bijkn(t — 8, z)ern(y)ds = fi in Q,
3z, a

[aukhekh ) +/ bijkn(t — s x)ekh(y)ds] n; >0 on X,

i+ v [azjkhfkh.(y + / bijkn(t )Ekh(y)ds] n; >0 on X,
[amkhe,,(p +/ bijkn(s — t, e.,,(p)ds]nh, =0 onX,
[essencin(®) + j bijka(t — 5, 2)exn (y)ds] ny x

\ (Px + v [aukhfkh Y) +/ bijkn(t — s, w)ékh(y)ds]ng) =0, onX, i=1,2,3.
(’9yz

A

yi(ov m) = y?( )7

Opi
pi(T,z) =0, ;

We note that the above equations and inequalities are given in the sense of distribution.

(Oa:) y(z) inQ,
(Ta:)--O inQ, i=1,2,3.
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3 Dirichlet boundary control problems

In this section we consider the Dirichlet boundary control system (1.7). At first, we define an
inner product of [H? ()3 ))3 by

(&) = / Ari(t, ) Argsi(t, z)dTds + Z / & st 2) Syt 2)drae

where Ar is the Laplace-Beltraml operator on I' = 9Q).
For each v = (v1,v2,v3) satisfying (1.8) we can construct ¢ = (1, @2, 3) such that

p; € H(Q), ¢i=v; on I,
0 .
¢i(0,z) = gt—cpg(o,w) =0, 1=12,3.

Let z; = y;(v) — ;. Then we have the homogeneous Dirichlet boundary problem

8%z; 0 t 9 .
S - aasmern() = [ bt s, Dew(x(0)ds = i in Q
J
zi(v) =0 on X, (3.1)

0z;
z;(v; 0, z) = ¥ (z), 7,%—(1) 0,z) =yi(z) nQ, i=1,2,3,

8%p; 0
9 = fi‘{'%%g(i)l— 5z A ijknekn((v) / 52; -bijkn(t — s, T)exn(p(v))ds] € Lz(Q), 1=1,2,3.
The system (3.1) admit a unique weak solution z = (21(v), 22(v), z3(v)) under the conditions
f €[LAQ)PB, yo € [H(N)® and y; € [L*(N)]® and (1.8) (cf. Dautray and Lions [1]). Thus we
have the solutions y; = 2 (v) + @i, i = 1,2,3 of (1.7). Hence y € [L*(Q)]® and y(T) € [L*(Q)]?
follow.

3.1 Case of distributive value observations

In this case the cost functional is given by

J(v) = Z f (yi(v) - Zdz)dedt'*‘ZVz”'Uz” By vi>0,i=1,23 (3.2)

=1

where zg; € L*(Q), i = 1,2,3. Let Uyq be a closed and convex subset of HZ(Z). Then there
exists a unique optimal control u € U,q for the cost (3.2). The optimal control u = (u1, u2,u3)
is characterized by

Z/ (yi(u) — 2ai) (wi(v) — yi(u))dzdt + ZVa(uza'Uz ui)gaz) 20, Vv = (v1,v2,v3) € Uag.

=1 =1
We introduce the adjoint system by

82 ; ] T o .
gtgu) ~ g, Gikneii (0(u)) - /t B, k(s — tz)ess(p(w))ds = yilu) — zas in @,

pi(u) =0 on X,
pi(u; T, z) =0, %(U;T, z)=0 inQ, i=1,2,3,
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where y;(u) — zg; € L*(Q), i = 1,2,3. There exists a unique weak solution p = p(u) of this
adjoint system. Hence we have the following optimality condition for the cost (3.2).

Theorem 3.1 The optimal control u € Uyg C [HE(Z)]® or the cost (3.2) is characterized by the
following system of equations and inequality:

&%y, 0 t 9 .
Tul) 0 o) = [ mbigkn(t — 5, 2)exn(y(w)ds = fi in @,
ot 5:1;_, 0 Ox;

yi(u) =u; on X,

yi(u; 0, .’E) = y?, %%(U,O,.’II) = yil' in Qa i1=1,2,3,
0%p;(u 0 T 9 .
—%’—%ﬁ—l - 'a?,;aijkhfij(p(u)) - /t %;bijkh(s —t,2)€ij(p(u))ds = yi(u) — z4 in Q,
p‘h(u) =0 on Ea

P T,2) =0, BuT,z)=0 n®, i=123,

3
/z: [‘"aijkheij (p) - /t ) bijkn(s — t,z)e; (P)ds] np(v; — u;)dE

3 32
+3 [(Ar+ g (ar +

=1
32

@)(Ui —4))dE >0, Yov € Upg.

3.2 Case of terminal value observations

In this case the cost functional is given by
3 3
Jw) =3 /Q(yi(v;T) — z4)%dz + ZW”W“%{@(E), Vo = (v1,ms,v3) € [HE(Z)P, (3.3)
i=1 i=1

where 24 € L2(Q), v; > 0, i = 1,2,3. Let Uyq be a closed and convex subset of HE(Z). Then
the optimal control u = (u1,ug,us) for the cost (3.3) exists uniquely and is characterized by

3 3
(wi(u; T) = 245) (wi(v; T) — yi(u; T))dz + ) viui, vi — ui) g2sy = 0, Yo = (v1,v2,v3) € Uag.
—~ Ja - 3(2)

i=1
We introduce the adjoint system by

4 82 i a T a .

atgu) _ aaijkhfij(p(u)) - A -55; iikh(8 — t,T)€ij(p(u))ds =0 in Q,
! pi(u)=0 on I, (3.4)
pi(u; T, .'L‘) =0 in Q’

L 'aap—;—i(u; T, :L') = yi(u; T, .’I}) - Zdi(ilo') in Q, i= 1,2,3.

Since y;(u; T) — z4; € L3(), i = 1,2, 3 by assumption, we can obtain the unique weak solution
p = p(u) of (3.4). Hence the optimality condition can be obtained by the following theorem.
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Theorem 3.2 The optimal control u € U,y C [HZ(X)]? for the cost (3.3) is characterized by
the following system of equations and inequality:

[ 0%y;(u) o t 5 '
oz Y =) Gz, tiknlt = 8, T)€ ds = f; )
o2 axjajkhﬁkh(y(u)) /(; aijjkh(t s, 7)exn(y(u))ds = fi in Q

| %i(u) =w onX,
0y; .
| i(450,2) =4(a), Z(0,0)=3i() in 9, i=1,23,

( 8%p;(u 0 T 9 )
gtg ) _ %;aijkhfij(]’(u)) - /t Eabijkh(s —t,z)€;(p(u))ds =0 in @,
pi(u) =0 on X,

pi(u; T,z) =0 in Q,
8 .
{ gti(u;T,x)=yi(u;T,x)—-zdi($) in Q, i=1,23,

—_—

3 T
g [3 [aijkhfij(p(u)) + /t bijkn(s — 1, E)Eij(p(u))ds]nh(vi — 4;)dT

+i/u~((A +—Bi)u~)((A +-a—2—)('u-—u-))d2>0 Yo € Upg C [HE(Z)]?
~Jy i r 3t2 1 r t2 1 % =Y ad 0 .
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