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Abstract. In terms of countable state Semi-Markov decision processes, the
expected regret-utility incurred until the first-passage time into the absorbing
set is considered. The utility of regret is represented using two variables, one
is the target value and the other is the present value. We call it the regret-
utility function. In order to characterize the regret-optimal policy, we derive
the optimality equation, for which the uniqueness of solution is proved. As
application, a few examples of regret-utility functions are given, under which
some analyses are developed.
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1. Introduction and notation

In social life or in business, the decision making is commonly executed by making the
regret incurred from the decision as small as possible, where the regret means the difference
between the target value and the real payoff. In this paper, the above problem will be
considered in terms of countable state Semi-Markov decision processes (SMDP’s) with an
absorbing set.

The utility of regret is represented by a function using two variables, one is the target
value and the other is the real payoff, called regret-utility function, and the problem to be
solved is to minimize the expected regret-utility incurred until the first-passage time into
the absorbing set. As for utility functions, refer to [3, 9] and for general utility treatment
of Markov decision processes refer to [1, 2, 5, 6, 7].

In the remainder of this section, we define the regret-utility optimization problem for
SMDP’s to be examined in the sequel. '

SMDP’s are specified by (i) a countable state space S = {0, 1, 2, ---}, (ii) a finite
action space A, (iii) transition probability matrices p = {pij(a)|i, j € S, a € A}, (iv)
distribution functions {F};(-|a)| i,j € S, a € A} of the time between transitions, (v) an
immediate reward r and reward rate d which are functions from S x A to R,, where
R, = [0, 0). When the system is in state ¢ € S and action a € A is taken, then it
moves to a new state j € S with the sojourn time 7, and the reward r(i, a) + d(i, a)T is
obtained, where the new state j and the sojourn time 7 are distributed with p;.(a) and
F;;(-|a) respectively. This process is repeated from the new state j € S.
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The sample space is the product space Q = (S x A x R;)*. Let X,, A, and Tpi1
be random quantities such that X,(w) = Zn, An(w) = @, and Ty (w) = tpyq for all
w = (xo, ao, t1, T1, a1, tg,---) € Qand n =0, 1,2, ---. A policy 7 = (mp, m1,--+) is a
sequence of conditional probabilities m, such that 7,(A | zo, ao, t1, -+, 2s) = 1 for all
histories (2, ag, t1, *-+,Zn) € (S X A X R;)" x S. The set of all policies is denoted by
II. A policy 7 = (mo, m1,---) is called stationary if there exists a function f : § — A
such that m,({f(zn)} | %o, @0, t1, -+, 2x) = 1 for all n = 0 and (2o, ao, t1, -++,Zp) €
(S x Ax R,)" x S. Such a policy is denoted by f=.

For any 7 € II, we assume that ,

(1) PrOb(XrH-l = JI XO’ AO’ Ty, = 7Xn = ?:, An = a’) = pij(a)

and

(i) Prob(Tn+1 < t| Xo, Do, 71, -y Xn =1, Ap = a, Xny1 = J) = Fj(t|a)
forallm =0, i, j € S and a € A. Then, any initial state i € S and policy 7 € II determine
the probability measure P, (- | Xo = %) on Q by a usual way.

We make the general assumption: There exists an absorbing set Jo C S and Jp # S, for
which that  pi;(a) = 1and r(i, a) = d(, @) = Oforalli € Jyanda € A. Let J = S—J

Jj€Jo
and N be the first-passage epoch into Jj i.e.,

N =min{n| X,, € Jy, n 20}, where min = co.

The present value and the total lapsed time of the process {Xn, An, Tat1 : R =0, 1, 2,
-+ -} until the £-th epoch are defined respectively by

-1
Dy = Y (r(Xn, An) + Tn1d(Xn, Ag))  and

n=0

[}
o= ) T (£21).
n=1

Let G: R, x R, — R be a Borel-measurable function, which will be called a regret-
utility function. Then, for a constant g*, called a target value, our problem is to minimize
the expected regret-utility with a target g*

E.(G(g"%n, Dn)| Xo=1i) overallweTl,

where E(- | Xo = %) is the expectation with respect to Pr(-| Xo = 4). We say that el
is regret-optimal with a target g* if

Eﬂ-- (G(g*ﬁv, EN) I Xo = Z) é E—,; (G(g*ﬁv, EN) | Xo = Z)

forallmelland i€ S.

In Section 2, under some reasonable assumptions concerning the speed with which the
decision process is driven into Jy, we give the optimality equation in order to characterize
the regret-optimal policy. Also, uniqueness of solution to the optimality equation is proved.

In Section 3, as applications of our results, some examples of regret-utility functions are
given, under which some analyses are developed.
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2. Regret-optimality and related optimality equations

To develop our discussion, the following assumption is needed.

Assumption 1. The following (i)—(ii) holds:

(i) 0Lr(t,a) £ M <00, 0£d(i,a) £ My <ooforallie S, a€ Aandsome M,
and Mz.

(ii) There exist L > 0, B > 0 with

Lgfﬁmwm@gg foralli,jeS and ac A
For each 7 € J and n = 0, we define e;(n) by

ei(n) =sup P (X, € J| Xo =1),
nell

which means the maximal probability of being not yet absorbed in Jp at the n-th epoch.
Putting e(n) = sup e;(n), it clearly holds (cf. [4]) that e(n+1) £ e(n) and e(m +n) <

e(m)e(n) for all m n 2 0. The following assumptlon is needed.

oo

Assumption 2. It holds that & := ) e(n) < oo.
n=0
If the following Assumption 2’ holds, Assumption 2 follows.
Assumption 2°. There exist 0 < g < 1 and ng = 1 such that e(ng) < 1 — 7.

In fact, if Assumption 2’ holds, we have that

0 oo np—1 o0
bo = Z 8(71) = E Z e(kno + n) < Zn()E(kno)
n=0 k=0 n=0 k=0

[e o]
< no Yy e(no)* < momy' < 0,
k=0

which shows that Assumption 2 holds.

Since P(N > n|Xo = i) £ e(n) for n 2 0, it holds that E (N|Xo = i) < &, which
implies ,}i_{{}o”PW(N >n|Xo=1)=0for any 7 € I

Here, we define an optimal value function when starting from the initial state ¢ € S by

(2.1) g;(cl, 62) = %Iellfl E, (G(Cl +g*’3:N, Cca + BN) | Xo= Z) .

By the above definition, we observe that g;(c;, c2) = G(cy, ¢3) for i € Jy and g;(0, 0) is
the optimal expected regret-utility in our optimization problem.
The following assumption is needed to characterize the optimal value function.

Assumption 8. There exists a K > 0 such that

(2.2) Ljﬂq+¢t®+ﬂ@@+ﬂt@ﬂ—mqmﬂ

Fy(dt|a) < K

forallc;,co€e Ry, i,7€S and a€ A.
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0G(cy, c2) 0G(cy, c2)

8c1 662
bounded in (c1, ¢2) € Ry x R, Assumption 3 holds from applying the mean value theorem
and Assumption 1. Hereafter, Assumption 1, 2 and 3 will be remained operative.

Remark. If G(c1, ¢p) is differentiable and ' and are uniformly

Lemma 2.1. There exists a K* > 0 such that

(2.3) /0 ”

forallc;,cs € Ry, i,j €S and a € A.

Proof. Let t be such that g;(c; + g*t, ¢z + (i, a) + d(i, a)t) — gi(c1, c2) 2 0 and € > 0.
Then, by (2.1) there exists a policy © = ={i, a, t} (depending on %, a, t) satisfying that

giler +g't, e +7(i, a) +d(i, a)t) — giles, ) |Fis(dt|a) < K

1.91'(61 + g*ta Co + T(ia a) + d(’l, a)t) - gi(cla Cg) I
< E; (G(c1 +g't+ g*7n, e+ (i, a) +d(, a)t + Dy) — G(c1 + g, €2+ DN)) +e

=Y P(N = m)E[E[G(¢] + 6T, ¢ +7(Xat, Buct) +d(Xo 1, Ani)ra)

n=0

_G(c,ll +g*Tm (é, + T(X -1, An-—l) + d(X -1, An—-l)Tn) lN =n, Hn” +E)

where ¢, =c; 4+ g't+ g*Taz1, & =cz +7(i, a) +d(i, a)t + Dy,
d=ci+gFu1, & =ca+ Doy,
H, = (Xo, Ao, 71, -+, Xn), P:=Pr(-|Xo=1) and E:= E;(-| Xo =1).
Applying Assumption 3, we have that «

.qi(cl + g*t1 c+ 7‘(7:, a) + d(?” a’)t) - gi(ch Cz) ’

< 3 P(N = n)E[E[(G(d, &) — G(d)y &) |N =, Hot] +2K] +e

n=0
(repeating the same discussion)

< io: P(N =n) (G(q + g't, ¢+ (i, a) + d(i, a)t) — G(c1, c3) + 2nK) +e€

n=0

=G(c + g°*t, c2 +r(i, a) + d(i, a)t) — G(e1, ¢2) +2K Y nP(N =n)+e

n=0

Since ) nP(N=n)=) P(N2n)<) e(n)= 8o, by letting & — 0 in the above, we
n=0 n=0 n=0

get that

20 giler + g°t, e +7(i, a) + d(i, a)t) - giler, c2) |
2.4
< |Glar + g°t, c2 + 70, @) + d(s, a)t) — Gy, c2)| + 2Ky
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Similarly, for any t with gi(c1, ¢2) — gi(e1 + g*t, c2 + 7(3, @) + d(3, a)t) > 0, we get (2.4).
Therefore, applying Assumption 3 again, we obtain (2.3) with K* = K(26 + 1). O

In the same way as the proof of Lemma 2.1, we can prove the following.

Lemma 2.2. Foranyi € J, and ¢, c; € R, it holds that

(2.5) gi(e, e2) = G(e, c2) — Kéo.

We denote by B(R., x R, ) the set of all bounded Borel measurable functions on R, x
R,. For any set h = (h; : i € J) with h; € B(R, x R, ), we define U{h}(c1, c3]1, a) by

U{h}(cy, cali, @) = Zpij(a) fow hjlcr + g't, ca+ (i, a) + d(i, a)t)Fy;(dt|a)
(2.6) JjeJ .
+Y pij(a) /O G(e1 + g't, ca +1(3, a) + d(4, a)t)Fi;(dt|a)

Jj€do

forci;,cs € Ry, i€ J and a € A.

Obviously, for each i € J and a € A, U{h}(-, - |1, a) € B(R; x Ry}).

Here, we can state one of main results, whose proof is done by a slight modification of
that of Theorem 3.2 and 3.3 in our preceding paper [6], so that the proof is omitted.

Theorem 2.1. (i) The optimal value functions g;, ¢ € J satisfy the following optimality
equation:

(2.7) gi(c1, ¢o) =minU{g}(e1, e2|4, a)

for alli € J, and ¢, c; € R, where g = (g; : 1 € J).
(ii) Let =* = (n§, n},---) € Il be any policy satisfying

(2.8) w5 (A*(g"%, Dn: Xo)|Ho) =1 on {X,€J}
for all n =2 1 and H,,, where

A*(cly C . ?') - a‘rgminaeAU{g}(ch 02"&, a’)

for c;,co € R, and i € J. Then, ©* is regret-optimal with a target g*.

The following theorem asserts the uniqueness of solution to the optimality equation
(2.7). Theorem 2.2. There exists a unique solution to the optimality equation (2.7) in
C,
where

C={h=(Mhi:ieJ)|he B(R, xR,) forall ieJ

and h satisfies the statement of Lemma 2.1.}



14

Proof. Let h=(h;: i€ J), h' = (h}: i€ J) be solutions to (2.7) and h, h' € C.
Then, from (2.6) and (2.7), there is an @ € A such that

|hi(e1, e2) — hi(er, )|

< pi;(@

Am hj(C1 +g°t, ca + (3, a) +d(3, a)t)'Fij(dti a)
jeJ

(2.9) -
- /0 Ri(cs +6t, ¢+ (3, @) + d(i, a)t) Fy;(dt| @)

< 3 po(@ ([hiles, o) = e ) |+ 2K)

for some K > 0.
Repeating the relation (2.9), we get that

|h,—(cl, Cz) - h;(cl, 62) I < 2}?2 e(n) = 2—K~60 < 00.
n=0
So, if we put ||hi — Bl|| = sup |hi(ci, c2) — hi(er, c2) |, then ||h; — B || < 2K&, and

c1,C2€R

from the first inequality in (2.9), we get

(2.10) lhi = Rill < D" pii(@)h; — hyl| for i€ J.
je€d

Repeating (2.10), we obtain
(2.11) |h— K| Le(n)||h—Fh| for all n=21,
where ||h — h'|| = sup ||h; — h;||. Letting n — oo and noting that €(n) — 0 from Assump-
ieJ
tion 2, (2.11) means ||h — h'|| = 0. Thus, A = &', so that uniqueness of solutions follows.
0 .
3. Examples

In the following examples, the results in the preceding section are applied to the cases
of some types of regret-utility functions.

Example 1. Consider the case that G(z, y) = =z — y. From Remark in Section 2, we
observe that Assumption 3 holds. Putting

gi = ;IellfIEw(g*?N — Dy | Xo = 9),
We get from (2.1) that
gi(c, @) = 1irIe11fIE"(cl + g7y — 2 — Dy | Xo = 9)

(3.1)
=ci—C+ g (ted, c,ce € Ry ).
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Thus, the optimality equation (2.7) becomes:
(32) gi = rargg{ ~ R(4, a) + ¥ pis(a)g; + g°7(i, a) }
jed
for i € J, where  R(i, a) = r(4, a) + d(¢, a)7(4, @) and
(G, a) = 3 pij(a) /0 " tF;(dtla) forie Jand a€ A

jes

Applying Theorem 2.1, we can obtain a regret-optimal policy using the unique solution
of (3.2).

Remark. We consider recurrent Semi-MDP’s and put:

Jo={0}, N=min{n|X,=0,n21} and

= sup PDN| X0 =0)
n€ll E'ir(Nl XQ = 0) '

Then, (3.2) with go = 0 is corresponding to the optimality equation for the average case.
In fact, it holds (cf. [8, 10]) that

min { — R(0, a) + 3" pos(a)g; +9'7(0, a)} =0,
370
so that putting go = 0, (3.2) holds for all ¢ € S.

Example 2. Consider the case of the exponential type: G(z, y) = e (A>0
). When the target value g* is sufficiently large such that g*t — r(3, a) — d(i, a)t 2 0 for
allt=0,7i€ S and a € A, Assumption 3 in Section 2 holds obviously.
Let '
i — e~ Mg T™N=DN) | X, = §
9"’%21f1E"( e NI TNTEN lXo—Z),

fori € J. Then, gi(ci, c3) = € 217, 50 that the optimality equation (2.7) comes to

g = min[ 3" pi(a)R(i, a, 1)g; = 3 P(@)R(: 0, 1) ]

jed j€Jo

where R(i, a, j) = /0 e~ Mg*t-rlha)-dha) [ (dt|a) fori€ J,je Sanda € A

Applying Theorem 2.1, we get a regret-optimal policy for the exponential regret-utility
case.
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