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Review

1. Introduction

The demand for lightweight materials to reduce CO2 
emission from vehicles is increasing; a variety of metal-
lic sheets are used for structural components of vehicles 
manufactured by press forming. In press forming, it is vital 
to set the forming conditions appropriately depending on 
the deformation characteristics of the sheet, but it is quite 
difficult to determine them experimentally. Therefore, in 
recent years, finite-element simulations are indispensable to 
understanding the press formability and designing process.

In finite-element simulations, elastoplastic deformation 
of sheet metals is generally described by using phenom-
enological constitutive models. The main purpose of such 
models is to mathematically represent the macroscopic 
deformation behavior of sheet metals obtained experimen-
tally. Therefore, the following two technical problems are 
often faced. The first problem is that a huge number of 
material tests are required to utilize constitutive models 
effectively. Along with the growing need for accurate simu-
lations, advanced constitutive models are often used1) in 
which several parameters are involved. In order to identify 
the parameters required in advanced constitutive models, 
it is essential to conduct a variety of material tests such as 
uniaxial tension, compression, reverse loading, and biaxial 
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loading tests before finite-element simulations are con-
ducted.2,3) These experiments require significant effort and 
cost, which often hinders effective utilization of advanced 
constitutive models.

The second problem is that the deformation characteristics 
of target sheets can hardly be represented in simulations 
because appropriate constitutive models are still unavail-
able. For example, sheet metals with hexagonal close-packed 
(hcp) structure, including Mg alloy and α-Ti, have recently 
attracted attention as lightweight materials. In hexagonal 
metals, the deformation characteristics at the grain level, 
including critical resolved shear stress (CRSS) and work 
hardening, considerably differ depending on the slip sys-
tem.4,5) Moreover, deformation twinning with a polar char-
acter is also active.6) These strong crystal anisotropies lead 
to notable asymmetry and anisotropy in the macroscopic 
deformation behavior.7) However, material models suitable 
for these hexagonal metals have not been established; there-
fore, forming simulations of hexagonal metals are difficult.

Crystal plasticity models are expected to address the 
aforementioned technical problems and act as a bridge 
between mechanical properties of materials and forming 
simulation. The primary aim of crystal plasticity model-
ing is to predict macroscopic deformation behavior as well 
as texture evolution of metallic materials by modeling the 
activity of slip and twinning at the grain level in the frame-
work of continuum mechanics.8) The basis of crystal plastic-
ity models was already established in the early 1980s.9–11) 
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Initially, crystal plasticity models were mainly utilized for 
fundamental studies, such as strain localization analyses 
and predictions of texture evolution. Thereafter, due to the 
improvements in computational power, crystal plasticity 
modeling, and simulation technique, the number of stud-
ies on quantitative prediction of macroscopic deformation 
behavior, including work hardening, contour of equal plastic 
work, and Lankford values, has recently increased espe-
cially for hcp metals;e.g. 12–22) as a result, crystal plasticity 
models are also drawing attention in industrial applications. 
Contrary to phenomenological constitutive models, one 
of the advantages of crystal plasticity models is that they 
can predict the macroscopic deformation characteristics 
even if they have not been observed experimentally. In 
other words, the aforementioned experiments necessary to 
determine material parameters could be replaced by crystal 
plasticity simulations, thereby determining the parameters 
quite efficiently. Furthermore, it is also expected that the 
use of crystal plasticity models instead of phenomenologi-
cal models in forming simulations would further improve 
the predictive accuracy and deliver added value to finite-
element simulations.

The present author and his co-workers have been devel-
oping crystal plasticity models that can be used to accurately 
predict plastic deformation behavior of different metallic 
sheets. Specifically, we focused our attention on metallic 
sheets with hcp structure, such as Mg alloy and commer-
cially-pure Ti (CP–Ti) sheets. In this review paper, on the 
basis of our previous achievements,13–24) crystal plasticity 
modeling and some application examples for prediction 
of deformation behavior under various loading paths are 
explained, especially focusing on Mg alloy and CP–Ti 
sheets. Thereafter, recent tendencies and future prospects for 
practical application of crystal plasticity models are given. 
The application to fcc and bcc metals is also discussed.

2. Crystal Plasticity Modeling

2.1. Constitutive Equations for Single Crystals
The crystal plasticity model employed in our study is 

briefly explained in this section. The reader is referred to 
literatures for detailed formulations.9–11)

The velocity gradient tensor L is assumed to consist of the 
plastic part Lp and the elastic part L* in the form

 L L L� * p� .  ................................ (1)

L* is associated with rotation and distortion of crystal lattice 
and rigid body motions. The plastic velocity gradient tensor 
Lp is related to the activities of slip and twinning systems 
as follows
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where � �  denotes the slip/shear-strain rate of the α slip/
twinning system; sα and mα are the unit vectors that denote 
respectively the slip/twinning direction and the slip/twin-
ning normal plane; and N is the number of slip and twinning 
systems in a grain.

Assuming that the Cauchy stress σ is governed by the 
elastic strain rate D*, the elastic constitutive equations are 
given as
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where C is the elastic constitutive moduli. The ° and · sym-
bols over the elements denote, respectively, the Jaumann 
rate and material derivative. D and W are the symmetric 
and antisymmetric parts of L, respectively, and their addi-
tive decompositions are given in the following forms:
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Substituting Eqs. (4) and (5) into Eq. (3), we obtain the 
constitutive equations for single crystals:

 
�� �� �� ��

�� �� �� ��

� � � � � �

� � � � �
�
�

�

�

W W

C D C p: � � � � �

�

( : ).�
1

N ........ (6)

In the present study, the crystalline slip is assumed to fol-
low Schmid’s law. Because most metallic materials exhibit 
some degree of rate sensitivity, it would be reasonable to 
assume that the slip rate � �  is given by a rate-dependent 
equation in the form
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where τα is the Schmid’s resolved shear stress, � �Y  is the 
slip resistance of the α slip system, γ 0  is the reference slip 
rate, and m is the rate sensitivity exponent. This equation 
assumes that all slip systems are potentially active during 
deformation. To represent work hardening of the α slip 
system, the evolution of � �Y  is given as

  � ��
��

�

�
Y ��q h ,  ............................ (8)

where qαβ is the self (α =  β ) and latent (α ≠ β ) hardening 
moduli and h is the rate of hardening. h is usually given in 
either phenomenological equations or dislocation-density-
based models.e.g. 25,26) In the present study, the following 
phenomenological laws27) are used

 h h= 0 ,  .................................... (9)
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where τ0 is the CRSS, and h0 and τ∞ are the material param-
eters. Modeling of twinning systems is described in the 
following section.

It should be noted that, in the case of bcc metals, some-
times the so-called non-Schmid effect is considered in 
crystal plasticity models. This effect includes some different 
phenomena,28–31) such as the case where the slip/twinning 
activity is represented by not only τα but also other stress 
components, and the case where the slip resistance on the 
{112} slip plane is different between the twinning and 
anti-twinning directions. However, because the role of this 
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effect in mesoscopic deformation is not well understood, its 
effect on macroscopic deformation behavior remains open 
to discussion.

2.2. Selection of Slip and Twinning Systems
In crystal plasticity modeling, appropriate slip and twin-

ning systems selection depending on the material is signifi-
cant. In the case of Mg alloys, Graff et al.27) concluded that 
at least some <c +  a>  slip should be considered in addition 
to the basal (0001)<1120> slip (basal slip) as the primary 
slip system. Agnew et al.5) reiterated that some <c +  a> 
slip should be considered to properly predict the evolution 
of Lankford value in rolled Mg alloy sheets. Following the 
previous studies, the basal slip, prismatic { }1010 < 1120> 
slip (prismatic slip), and pyramidal { }1122 � �1123  slip 
(pyramidal <c +  a>  −1 slip) systems were considered in 
our study.13–18) The selection of slip systems is also similar 
in recent literature,32-36) although sometimes the pyramidal 
{ }1101 � �1120  slip systems are considered in addition to 
the aforementioned combination.

The number of potentially active slip and twinning sys-
tems is much larger for CP–Ti than for Mg alloys. Following 
previous numerical and experimental studies,37–43) the pris-
matic, basal, pyramidal { }1011 <1120> (pyramidal <a>), 
pyramidal <c +  a>  −1, and pyramidal { }1011 � �1123  
(pyramidal <c +  a>  −2) slip systems were considered for 
CP–Ti in our study.19) Again, the choice of slip systems is 
similar in recent literatures despite of small variations.44–47)

The difference in slip activities depending on the family 
was described by the hardening laws and material parame-
ters. In our study, the saturation law (Eq. (10)) was assumed 
for the slip systems. However, for the Mg alloys, the linear 
hardening law (Eq. (9)) was assumed only for the basal slip 
systems because it was understood that the activity of these 
systems was easier compared to other slip systems.

Concerning twinning systems, it is established in Mg 
alloys that { }1012  tensile twinning is active in the early 
stage of deformation, whereas { }1011  compressive twinning 
is observed in the later stage, resulting in fracture.48,49) There-
fore, both twinning systems tend to be considered in recent 
literatures.32–36) We focused our attention mainly on the 
deformation behavior within the uniform elongation range; 
thus, only { }1012  tensile twinning was considered.13–18)

In contrast, although activities of several types of twin-
ning systems have been reported in CP–Ti, { }1012  tensile 
twinning and { }1122  compressive twinning are more active 
and could affect plastic deformation behavior even at small 
strains.50,51) Therefore, in our study, these two families of 
twinning systems were considered.19) This combination is 
almost equivalent to the used in the recent literature.44–47)

The cases for cubic metals are rather simple. The 
{111}<110>  slip systems are considered for face-centered 
cubic (fcc) metals. For body-centered cubic (bcc) metals, 
on the other hand, the {110}<111>  and {112}<111> 
slip systems are usually considered, and sometimes also 
the {123}<111>  slip systems. Normally, twinning is not 
considered for cubic metals.

2.3. Twinning and Detwinning Model
Observing twinning activities at the grain level, it is 

established that large shear strain and lattice rotation arise 

simultaneously in twined regions, and these regions expand 
with twinning activity. As described earlier, twinning is 
active only under a specific loading direction—i.e., in the 
case of Mg alloys and CP–Ti, { }1012  twinning and { }1122  
twinning are active only under tension and compression of 
the c-axis, respectively. However, when { }1012  twinning 
and { }1122  twinning are subjected to reverse loading from 
tension to compression and from compression to tension of 
the c-axis, respectively, the so-called detwinning is active, 
i.e., the twined regions start shrinking and large shear strain 
and lattice rotation arise in the opposite direction of twin-
ning processes. Because our purpose of crystal plasticity 
simulation was to model macroscopic deformation, this 
behavior was modelled rather coarsely at the mesoscopic 
level in our study,15–19) as briefly explained in sequence.

The twinning and detwinning model used in our study 
was based on the twinning model proposed by Van 
Houtte.52) One of the features of this model is that the occur-
rences of shear strain and lattice rotation due to twinning 
activity are modelled separately, as follows. As in the case 
of slip, the shear strain rate of the α twinning system, � �tw, is 
assumed to be characterized by the resolved shear stress τα. 
Because the shear strain due to twinning within each grain 
may be considered to be mesoscopically similar to that of 
slip, the shear strain rate � �tw is given by Eq. (7). Moreover, 
slight work-hardening is numerically allowed by using the 
linear hardening law (Eq. (9)) to model the expansion of 
the twined region with increasing stresses. To represent the 
polar character of twinning activity, it is further assumed 
that { }1012  twinning and { }1122  twinning are active only 
when τα is positive and negative, respectively.

Using the cumulative shear strain � �� �
tw tw d� � t, the 

volume fraction of the α twinning system f � �� �� tw ref  
is calculated during simulations, where γref represents the 
reference shear strain due to twinning. When f f� �� th  is 
satisfied, where fthα is the threshold value for the volume 
fraction, the orientation of this grain is rotated by using the 
rotation tensor in the form

 R m m Itw � � �2 � � ,  ....................... (11)

where mα is the unit vector normal to the α twin plane, 
and I is the identity tensor. The threshold value fthα(≤1) 
is determined randomly for each twinning system prior to 
simulations. This algorithm indicates that each grain can be 
configured as unrotated or rotated. It is also assumed that the 
shear strain rate � �tw cannot develop after the grain is rotated 
due to the α twinning system.

For grains that experienced the activity of the α twinning 
system, the present model assumes that detwinning can be 
active when the sign of τα is reversed. The shear strain due 
to detwinning, � �dtw, is also described by using Eq. (7). Det-
winning can be active until � �� �

dtw ref th� f  is fulfilled, where 

� �� �
dtw dtw d� � t, suggesting that detwinning can be active 

until the volume fraction of the α twinning system vanishes. 
This assumption is introduced based on our experimental 
observations.53,54) If the grains already experienced lattice 
rotation due to twinning before the sign of τα was reversed, 
the orientations of the grains are re-rotated by using the rota-
tion tensor ( )TRtw  when � �� �

dtw ref th� f  is fulfilled.
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In recent years, several twinning models have been pro-
posed because of the increasing attention to hcp metals.55–60) 
Excluding the mentioned model, other well-known twinning 
models are introduced only briefly. Kalidindi55) proposed 
the following form of the plastic velocity gradient tensor Lp
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where the superscripts O-s1, O-tw, and tw-s1 denote the 
active slip systems in the matrix, active twinning systems 
in the matrix, and active slip systems in the twined regions, 
respectively. Unlike the Van Houtte model, one of the 
advantages of this model is that it can consider both matrix 
and twined regions within each grain. Because large lattice 
rotation due to twinning is not necessary in this model, 
simulations are more stable than in the Van Houtte model. 
On the other hand, twinning activities lead to increase in 
the number of slip systems in each grain; thus, the compu-
tational cost is sometimes high.

Proust et al.56) proposed a detwinning model for the first 
time based on their so-called composite-grain model. This 
model considers the compatibility conditions of stresses 
and strains between the matrix and the twined regions. 
Moreover, this model also considers a Hall-Petch like effect 
associated with the occurrence of twined regions.

2.4. Crystal Plasticity Finite-element Method
A variety of numerical techniques have been used to 

evaluate homogenized deformation behavior of polycrystal-
line metals, including the Taylor model,61) self-consistent 
models,62,63) crystal plasticity Fast Fourier Transform 
(FFT),64,65) and crystal plasticity finite-element methods. 
In our study, the single crystal-plasticity model was intro-
duced into the static finite-element method with explicit 
time integration.66) One of the advantages of finite-element 
methods is that inhomogeneous deformation fields at the 
mesoscopic level can be evaluated satisfying the mechanical 
compatibility conditions. Furthermore, it is easy to consider 
grain geometries in simulations. In contrast, mesh distortion 
often affects simulation results, especially at large strains. 
Therefore, when evaluating the deformation behavior to 
large strains, the effect of mesh distortion on the predictive 
accuracy should be carefully examined. High computational 
cost is also a notable problem in finite-element methods that 
should be solved for further applications.

For the stability of the explicit time integration, the rate 
tangent modulus method proposed by Peirce et al.67) was 
adopted. In addition, the size of the increment of each time 
step was adjusted by using the generalized rmin-strategy to 
prevent an excessive increase in nonequilibrium between 
external and internal forces. In fact, the generalized 
rmin-strategy was quite useful to prevent numerical instabil-
ity due to lattice rotation of twinning.

A cubic model was utilized as a representative volume 
element that was uniformly divided in each direction using 

8-node solid elements with selective reduced integration. 
Assuming that an element corresponds to a grain, the same 
initial orientation was assigned to all 8 integration points in 
an element. It should be noted that crystal orientations after 
plastic deformation may vary depending on the integration 
point even within an element because the crystal rotation 
was calculated independently for each integration point. 
Initial crystal orientations were prepared from results of 
electron backscattered diffraction (EBSD) measurements 
of the sample. More specifically, initial orientations were 
randomly extracted from the measured data and assigned to 
each integration point. To accurately represent macroscopic 
deformation behavior of polycrystalline metals using the 
crystal plasticity model, it is important to consider a suffi-
cient number of initial orientations, i.e., the number of finite 
elements, in simulations. Our previous study confirmed that 
for Mg alloy13) and CP–Ti19) sheets sufficiently homog-
enized results could be obtained by dividing the cubic model 
into 7 to 10 elements in each direction, which corresponds 
to the number of initial orientations of 343 to 1 000. This 
result is consistent with a statistical analysis conducted by 
Tadano.68)

2.5.  Identification of Material Parameters
It is important to appropriately determine the material 

parameters used in the crystal plasticity model, such as 
the parameters in Eqs. (7)–(10) and the twinning model, to 
conduct reliable simulations. This problem is particularly 
notable for hcp metals because the activity of slip and twin-
ning systems differs significantly depending on the deforma-
tion mechanism. In addition, it is also necessary to refer to 
a sufficient number of experimental data to systematically 
determine the parameters. For instance, in the case of Mg 
alloys, it was shown that several sets of material parameters 
could be determined to reproduce a stress-strain curve under 
uniaxial tension, but the evolution of Lankford value was 
completely different depending on the set, suggesting that 
a single stress-strain curve is not enough to determine the 
parameters.69)

To address this problem, procedures to systematically 
determine the material parameters for rolled Mg alloy18) 
and CP–Ti sheets19) were proposed in our study. Utilizing 
the strong basal textures feature, as shown in Fig. 1, the 
proposed procedures enabled determining the parameters 
considering the role of each deformation mechanism by 
referring to experimental results of stress-strain curves 
under tension, compression, and reverse loading, and evolu-
tion of Lankford value along different directions.

For the twinning model, γref and fth
α are also the fit-

ting parameters. These parameters were determined with 
reference to texture evolution in addition to stress-strain 
curves. Rigorously speaking, γref would correspond to the 
microscopic shear strain determined geometrically by the 
twinning activity. In contrast, the present twinning model 
focused rather on coarse-grained mesoscopic deformation 
behavior, as described earlier. Therefore, in our study, γref 
was allowed to deviate somewhat from the geometrically 
determined shear strain.

One of the most difficult aspects of crystal plasticity mod-
eling is determining the parameters of the latent hardening 
moduli qαβ in Eq. (8). Because it is almost impossible to 
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determine the parameters only by means of experiments, 
researchers utilized numerical simulations, including dis-
crete dislocation dynamics, for fcc70,71) and bcc metals.72,73) 
However, these results are not conclusive and, moreover, 
the parameters for hcp metals are still hardly discussed. In 
our study, the parameters reported by Graff et al.27) were 
used for Mg alloy sheets, whereas for CP–Ti sheets the 
parameters were determined by trial and error19) to fit the 
abovementioned macroscopic deformation behavior.

3. Prediction of Deformation Behavior by Crystal 
Plasticity Model

3.1. Application to Mg Alloy Sheets
3.1.1. Uniaxial Loadings18)

This chapter presents some simulation examples of defor-
mation behavior of hcp metals by using the crystal plasticity 
model described earlier. In this section, experimental and 
simulation results of Mg alloy sheets are shown. In the 
experiments, rolled AZ31 Mg alloy sheets with a thickness 
of 1.0 mm were used unless otherwise noted. In the simula-
tions, the material parameters determined using the proce-
dure explained in section 2.5 were utilized. As an example, 
Fig. 2 shows the result of parameter identification, i.e., the 
results of the stress-strain curves under tension, compres-
sion, and reverse loading from compression to tension, and 
the evolution of Lankford value along the rolling direction 
(RD). The determined parameters are shown in Table 1. The 
simulation results accurately reproduced the characteristic 
deformation behavior of the Mg alloy sheet, including the 
tension-compression asymmetry and the sigmoidal curve 

after stress reversal, which shows that the parameters were 
properly determined for these conditions.

The mechanisms that yield the pronounced tension-
compression asymmetry and the sigmoidal curve can be 
explained using the evolution of relative activities. The 
relative activity is the relative contribution of each family 
of slip/twinning systems to the plastic deformation. The 
relative activity of the family of the slip/twinning system i, 
ri, is given in the form
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where k is the number of slip and twinning systems of the 
family i, j is the number of all slip and twinning systems, 
and ns is the number of grains. Figure 3 shows the evolu-
tion of relative activities during tension and reverse loading 
depicted in Fig. 2. Basal and prismatic slips were dominant 
during tension (Fig. 3(a)), while basal slip and twinning 
were active during compression (Fig. 3(b)). The large activ-
ity of twinning occurred during compression because the 
strong basal texture was developed in the initial sheet; thus, 

Fig. 1. Initial pole figures measured using EBSD. (a) Mg alloy sheet18) and (b) CP–Ti sheet.51) (Online version in color.)

Fig. 2. Deformation behavior of Mg alloy sheet under uniaxial loadings.18) (a) Stress-strain curves and (b) evolution of 
Lankford value during tension. (Online version in color.)

Table 1. Material parameters determined for the Mg alloy sheet 
(MPa).18)

Basal Pris Pyram < c +  a > Twin Detwin

τ 0 /MPa 25 95 100 40 35

τ∞ /MPa – 230 190 – –

h0 /MPa 10 1 200 1 200  5  5
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a lot of grains were subjected to tensile stresses in the c-axis 
direction during compression. This result suggests that the 
stress level was much lower under compression than under 
tension because the CRSS of twinning is lower than that of 
prismatic slip (Table 1).

After the stress reversal in Fig. 3(b), detwinning was 
dominant from the beginning of reverse loading, but it 
rapidly decreased at a cumulative strain of approximately 
0.07 and, alternatively, prismatic slip became active. Inter-
estingly, the subsequent activities were similar to those of 
tension (Fig. 3(a)). This is due to the fact that detwinning 
completed at a cumulative strain of approximately 0.07 and 
the deformation mode shifted to that of monotonic tension. 
This result indicates that the sigmoidal curve was exhibited, 
i.e., the stress level increased rapidly in the later stage, 
because the CRSS of prismatic slip was much larger than 
that of detwinning. It is emphasized that, using the crystal 
plasticity model, these complex work-hardening behaviors 
could be simply reproduced as a result of mesoscopic defor-
mation behavior at the grain level.

3.1.2. Two-step Loadings18)

Since sheets often undergo complex strain-path changes 
during sheet forming processes, material models need to 
reproduce deformation behaviors with strain-path changes. 
To verify the availability of the present crystal plasticity 
model, the following two-step loading tests were conducted.

Figure 4 shows the schematic diagram of the two-step 
loading tests. In these tests, 6% tensile or compressive strain 
was first applied to a large sample prepared along the RD. 

After small samples were prepared from the pre-strained 
large sample along an angle θ, 10% tensile strain was 
applied to the small samples as the second step. θ was set to 
either 0, 30, 45, 60, and 90°. The purpose of this test was to 
examine how the work-hardening behavior and the texture 
evolution differ depending on the angle. Figure 5 shows 
the stress-strain curves during the second loading. When 
pre-tension was applied, the stress level was the largest for 
θ =  0° and tended to decrease as the angle θ increased. 
The work-hardening rate abruptly changed after yielding 
for θ =  0°, while it gradually changed for the other condi-
tions. A certain degree of in-plane anisotropy appeared, but 
it was not significant. On the contrary, a remarkable in-plane 
anisotropy appeared for the pre-compression condition. An 
apparent sigmoidal curve was exhibited for θ =  0° because 

Fig. 3. Evolution of relative activities.18) (a) Tension and (b) reverse loading from compression to tension. (Online ver-
sion in color.)

Fig. 4. Schematic diagram of the two-step loading test. (Online 
version in color.)

Fig. 5. Stress-strain curves of Mg alloy sheet during the second loading.18) (a) Pre-stretched and (b) pre-compressed 
sheet. (Online version in color.)
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this condition corresponded to the simple reverse loading 
from compression to tension, shown in Fig. 2(a). On the 
other hand, the sigmoidal tendency became less pronounced 
with increasing θ and was not visible for θ =  60° and 90°. 
The aforementioned work-hardening behavior was well 
reproduced in the simulation results, verifying the model.

The in-plane anisotropy of work-hardening behavior 
observed in the pre-compressed sheet can be explained as 
follows. Figure 6 shows the evolution of relative activities 
of each slip and twinning systems during the second load-
ing for θ =  0°, 45° and 90°. It should be noted that only 
the activities in the matrix region are shown. As described 
earlier (Fig. 3(b)), the condition of θ =  0° showed a rapid 
transition from detwinning-dominated to slip-dominated 
deformation. The detwinning activity became less pro-
nounced with increasing θ. For θ =  90°, the detwinning 
activity was quite small from the initial stage of the second 
loading, whereas the activities of basal and prismatic slips 
were dominant; thus, rapid transition of deformation mode 
did not arise as happened with θ =  0°. These results suggest 
that the sigmoidal tendency became less pronounced with 
increasing θ because of the decrease of detwinning activity.

It is well known that the twinning activity yields rapid 
texture evolution. Figure 7 shows the (0001) pole figures 
before and after the second loading for the pre-compression 
condition. Strong peaks appeared in the vicinity of the RD 
before the second loading. This is because of the large 
activity of twinning during the first loading (compression), 
as shown in Fig. 3(b). After the second loading, the peaks 
in the RD disappeared for θ =  0° and resulted in the tex-
ture quite similar to the initial one (Fig. 1(a)). This notable 
change occurred because of detwinning activity. On the 
other hand, for θ =  45° and 90°, the peaks remained and 
their intensities tended to become larger as θ increased 
because of the decrease of detwinning activity. The simula-
tion results were in good agreements with the experimental 
results. Moreover, these results were consistent with the 
detwinning activities observed in Fig. 6, which supported 
the abovementioned deformation mechanism.

3.1.3. Unloading13)

Figure 8 shows the stress-strain curves during cyclic 
tension-unloading. It is well known that Mg alloy sheets 
show a remarkable nonlinear behavior during unloading, 
as shown in Fig. 8. Because the unloading behavior is con-
sidered important in springback, which is one of the major 
defects in sheet metal forming, it is crucial to properly 
model the unloading behavior in simulations. In classical 
elastoplasticity theories, the unloading process is often mod-
eled as elastic deformation, i.e., the stress-strain relationship 
during unloading is assumed to be linear with a gradient of 
Young’s modulus. In other words, if the nonlinear behav-
ior during unloading needs to be modeled using classical 
elastoplasticity theories, it is essential to assume in advance 
that nonlinear behavior occurs. In contrast, the nonlinear 
behavior can be well reproduced without giving any special 
assumptions if the crystal plasticity model is used, as shown 
in Fig. 8. Although detailed descriptions are not provided 
here, the simulation result showed that the nonlinear behav-
ior during unloading could be explained by the following 
mechanism. Prismatic slip was active during tension (Fig. 

3(a)), suggesting that the stress level during tension was 
governed primarily by the prismatic slip resistance. When 
the sheet was macroscopically unloaded thereafter, basal 
slip was active. This is because of the fact that basal slip had 
a remarkably low slip resistance compared to prismatic slip 
(Table 1); thus, resolved shear stresses of basal slip could 
be sufficiently large to activate even during macroscopic 
unloading. Eventually, the activity of basal slip yielded 
nonlinear behavior during unloading. This result indicates 
that the nonlinear deformation behavior during unload-
ing of the Mg alloy sheet is due to plastic deformation. It 
should be noted that the nonlinearity is further pronounced 
for the compression-unloading condition because of the 
pronounced activity of detwinning during unloading.16,74)

Fig. 6. Relative activities in matrix region during the second load-
ing for θ =  (a) 0°, (b) 45° and (c) 90°.18) (Online version in 
color.)
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3.1.4. Application to Cast Sheet17)

One of the major advantages of crystal plasticity models 
is that the effect of the initial crystallographic orientations 
on the macroscopic mechanical behavior can be examined 
numerically. In this section, an application example of the 
present crystal plasticity model to a cast AZ31 Mg alloy 
sheet with random crystallographic orientations is shown. 
In the experiment, a sheet with a thickness of 1.0 mm was 
prepared from an ingot of AZ31Mg alloy.

The simulation model was prepared as follows. Initial ori-
entations were randomly assigned to each element. Because 
the parameter identification procedure explained in Section 
2.5 is applicable only for rolled sheets with strong basal 
texture, it was difficult to determine precisely the param-
eters of the cast sheet. Therefore, we first assumed that the 
parameters identified for a rolled sheet could be applied to 
the cast sheet. Moreover, assuming that the Hall-Petch law 
for Mg alloy sheets75) was also applicable for CRSS, τ0 was 

adjusted to account for the difference in grain size between 
the rolled and cast sheets.

Figure 9(a) shows the stress-strain curves during tension 
and compression. It should be noted that both axes are in 
absolute values to directly compare the results of tension 
and compression. The stress level was higher during tension 
than during compression, exhibiting the tension-compres-
sion asymmetry. The asymmetry was predicted qualita-
tively well in the simulation results. Figure 9(b) shows the 
stress-strain curves during reverse loadings from tension to 
compression and from compression to tension. A small sig-
moidal tendency occurred after stress reversal as in the case 
of the rolled sheet (Fig. 2), when the loading direction was 
reversed from compression to tension, whereas such a trend 
was not observed when reversed from tension to compres-
sion. The strain-path dependency was predicted qualitatively 
well in the simulations. These results display that although 
the parameters were determined rather roughly, the crystal 
plasticity model could capture the effect of initial orienta-
tions on the work-hardening behavior.

It is interesting that both tension-compression asymmetry 
and strain-path dependency also occurred in the cast sheet 
with random orientations. Although detailed mechanism is 
not explained here, the simulation results suggested that 
the tension-compression asymmetry and the strain-path 
dependency arose due to the difference in twinning activities 
between tension and compression, as in the case of rolled 
sheets. This result indicated that the tension-compression 
asymmetry and the strain-path dependency are inevitable in 
Mg alloy sheets regardless of the initial orientations.

3.2. Application to a CP–Ti Sheet19)

3.2.1. Uniaxial Loadings
In sequence, application examples to CP–Ti sheets are 

described. In the experiment, a rolled CP–Ti grade 1 sheet 
with a thickness of 1.0 mm was used. Figures 10(a) and 

Fig. 7. (0001) pole figures measured before and after the second loading in the pre-compressed Mg alloy sheet.18) 
Results (a) before the second loading and after the second loading for (b) θ =  0°, (c) θ =  45°, and (d) θ =  90°. 
(Online version in color.)

Fig. 8. Stress-strain curves of Mg alloy sheet under cyclic 
tension-unloading.13) (Online version in color.)
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10(b) show the stress-strain curves under uniaxial loadings 
and the evolution of Lankford value under tension, respec-
tively. The two axes of Fig. 10(a) are in absolute values. The 
initial yield stress and subsequent work hardening between 
tension and compression and between the RD and the trans-
verse direction (TD) considerably differed. The Lankford 
value in the RD was approximately 1.5 and remained 
almost unchanged during deformation, while in the TD, it 
was remarkably high at the beginning of deformation and 
then decreased rapidly. In the case of the CP–Ti sheet, these 
experimental results were used to determine the parameters 
of the crystal plasticity model shown in Table 2. As a result 
of the parameter identification, the simulation results accu-
rately captured the anisotropic deformation behavior.

Figure 11 shows the (0001) pole figures measured after 
the uniaxial loadings. When the sheet was loaded in the RD, 
peaks occurred in the vicinity of the RD for both tension and 
compression, but the intensity was stronger in compression. 

In contrast, when loaded in the TD, weak peaks occurred 
in the RD in tension, while the pole figure hardly changed 
from the initial one (Fig. 1(b)) in compression. These results 
depicted that the texture evolution strongly depended on 
the loading direction. These tendencies are well predicted 
in the simulation results. Although detailed results are not 
provided here, the simulation results suggested that the 
difference in texture evolution depending on the loading 
condition would be because of the differences in the twin-
ning activities and in the types of active twinning systems.

Figure 12 shows the stress-strain curves under reverse 
loading in the RD. When the sheet was subjected to reverse 
loading from compression to tension, a small sigmoidal 
tendency occurred after reversal. In contrast, in the case of 
reverse loading from tension to compression, such tendency 
did not occur, showing that the CP–Ti sheet also exhibited 
a strain-path dependency as in the case of Mg alloy sheets. 
These tendencies were well predicted in the simulation 

Fig. 9. Stress-strain curves of a cast Mg alloy sheet.17) (a) Tension and compression and (b) reverse loading. Solid and 
broken lines are respectively experimental and simulation results. (Online version in color.)

Fig. 10. Deformation behavior under uniaxial loadings of the CP–Ti sheet.19) (a) Absolute true stress-absolute true strain 
curves. Solid and broken lines are simulation and experimental results, respectively. (b) Evolution of Lankford 
value under uniaxial tension. Closed and open circles are experimental and simulation results, respectively. 
(Online version in color.)

Table 2. Material parameters determined for the Cp–Ti sheet (MPa).19)

Basal Pris Pyram < a > Pyram < a +  c > −1 Pyram < a +  c > −2 Ten. Twin Comp. Twin

τ 0 133 62  81 145 145  90 140

τ∞ 180 160 210 270 270

h0 1 950 1 050 580 2 050 2 050 350 350
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results. Although detailed results are omitted, the simulation 
results showed that the sigmoidal tendency observed under 
reverse loading from compression to tension was due to det-
winning activity, suggesting that the mechanism that yielded 
the strain-path dependency was quite similar between Mg 
alloy and CP–Ti sheets.

3.2.2. Contours of Equal Plastic Work
Because sheet metals are often subjected to multiaxial 

loadings in practical forming processes, it is also important 
to understand and to model deformation behavior under 
multiaxial stress conditions. Figure 13 shows the simulation 
results of the contour of equal plastic work of the CP–Ti 
sheet. Both axes are non-dimensionalized using the stress 
under uniaxial tension in the RD, σ0. Noteworthy asym-
metry occurred between the RD and the TD in the initial 
contour. Specifically, the stresses were globally higher in 
the TD than in the RD. However, the non-dimensionalized 

contour tended to shrink with the progress of plastic defor-
mation. Interestingly, the degree of shrinkage was more 
noticeable in the TD than in the RD. Thus, the contour 
resulted in a nearly symmetrical shape at a uniaxial tensile 
strain of approximately 0.085. The initial asymmetry and 
the anisotropic hardening were in qualitatively good agree-
ments with the experimental results reported by Ishiki et 
al.,76) displaying that the crystal plasticity model is also 
useful to predict deformation behavior under multiaxial 
stress conditions.

From the simulation results, the mechanism that yielded 
the strong initial asymmetry can be explained as follows. 
The most active slip systems were different depending on 
the stress ratio because of the strong rolling texture. Specifi-
cally, as illustrated in Fig. 13, the activities of prismatic slip, 
pyramidal<a>  slip, and either basal slip or pyramidal<a> 
slip were dominant for the conditions σRD>σTD, σRD =σTD, 
and σRD<σTD, respectively. The CRSSs of basal slip and 

Fig. 11. (0001) pole figures measured on samples subjected to uniaxial loadings to an absolute strain of 10% of the 
CP–Ti sheet.19) (a) Tension along RD, (b) compression along RD, (c) tension along TD, and (d) compression 
along TD. (Online version in color.)

Fig. 12. True stress-true strain curves under reverse loading along RD of the CP–Ti sheet.19) Solid and broken lines are 
simulation and experimental results, respectively. Loading directions were inverted (a) from compression to 
tension and (b) from tension to compression. (Online version in color.)
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pyramidal<a>  slip were larger than the CRSS of prismatic 
slip; thus, the stresses were higher in the TD than in the RD. 
Similarly, the contour was more expanded in the σRD<σTD 
region than in the equibiaxial condition because the CRSS 
of basal slip was larger than that of pyramidal <a>  slip. 
These results suggested that the strong initial asymmetry 
occurred because of the strong rolling texture and the 
notable difference in the CRSSs between the slip systems.

It should be noted that the contour of the plastic work in 
Mg alloy sheets could also be well predicted by using the 
same crystal plasticity model,14) indicating that deformation 
behavior of different materials can be predicted by using a 
same simulation program; it can be achieved if the active 
slip and twinning systems are selected according to the 
material and the material parameters are properly deter-
mined. This advantage shows the applicability of crystal 
plasticity models for a wide range of sheet metals with less 
effort.

3.3. Applications to FCC and BCC Metals
As described in the previous sections, anisotropic and 

asymmetric deformation behavior of hcp metals could be 
approximately reproduced by using the aforementioned crys-
tal plasticity model. One of the reasons of this achievement 
is that the noticeable crystal anisotropy of hcp structure, 
such as the large differences in CRSS and twinning activity, 
is important in the macroscopic anisotropy and asymmetry, 
and moreover, the resulting macroscopic anisotropy and 
asymmetry are also quite pronounced. On the contrary, the 
crystal anisotropy is much less pronounced in fcc and bcc 
metals, and therefore, the resultant macroscopic anisotropy 
is also much less pronounced than that of hcp metals; thus, 
more precise modeling, including parameter identification, 
is required for fcc and bcc metals. Some recent studies on 
crystal plasticity analyses of Al alloy sheets are introduced 
in sequence.

Yoshida et al.77) studied the predictive accuracy for a 

Fig. 13. Simulation results of contours of equal plastic work of the 
CP–Ti sheet.19) ε0

p denotes plastic strain under uniaxial 
tension along RD.

3000-series Al alloy sheet and reported that anisotropic 
work-hardening behavior could be qualitatively predicted 
if a dislocation-density based hardening model was uti-
lized. However, the degree of anisotropy was much less 
pronounced in the simulation. Zhang et al.78) used several 
crystal plasticity models to reproduce the in-plane anisot-
ropy of AA3103-H18 and AA3103-O sheets and found that 
the Alamel-type models and crystal plasticity FEM yielded 
better predictive accuracy than the other models used. 
Brahme et al.79) predicted the work-hardening behavior of 
an AA5754 Al sheet using different crystal-plasticity mod-
els and found that the predicted work-hardening for large 
strains was different depending on the model. This result 
suggested that the parameters determined by using a stress-
strain curve until ultimate strength did not always accurately 
reproduce the work-hardening behavior under various load-
ing paths. Hu et al.80) used different crystal plasticity mod-
els to reproduce stress–strain curves and texture evolution 
of an AA5754 Al sheet. They reported that the predictive 
accuracy of the mechanical responses was dependent on the 
loading path.

To the author’s understanding, the predictive accuracy 
for bcc metals is worse than that of fcc metals and needs 
to be notably improved. Jeong et al.81) used a viscoplastic 
self-consistent crystal plasticity model to predict the aniso-
tropic hardening of plastic contours in an interstitial-free 
steel sheet. However, the simulation results were not in 
good agreement with the experimental results. Eyckens et 
al.,82) Coppieters et al.83) and Hama et al.84) reported that for 
steel sheets the anisotropic hardening of the plastic contour, 
especially for the equibiaxial tension condition, could not be 
reproduced regardless of the crystal plasticity model they 
utilized. One of the reasons for this difficulty in the simu-
lation of bcc metals is that the deformation characteristics 
at the crystalline level, including the difference in activi-
ties of the {110} and {112} slip systems,31,84) the effect of 
non-Schmid law,28–30) and the latent-hardening/interaction 
matrix,70,71) are not understood and modelled well, as 
described earlier. For instance, a same CRSS value is 
usually assigned to both {110} and {112} slip systems 
in crystal plasticity simulations, but its validity is not yet 
confirmed. Hama et al.84) reported that the anisotropic hard-
ening of plastic contours could be qualitatively reproduced 
when different CRSS values were assigned to the {110} and 
{112} slip systems, as shown in Fig. 14. In addition, they 
also showed that the latent hardening parameters remark-
ably affected the anisotropic hardening. To verify these 
results and to further improve the predictive accuracy, it is 
indispensable to understand these microscopic deformation 
characteristics, especially at the grain level.

4. Concluding Remarks: Recent Tendencies and Future 
Prospects

As concluding remarks, recent tendencies and future 
prospects of crystal plasticity models are discussed with a 
focus on practical applications, particularly for sheet metal 
forming processes.

The author considers that one of the most realistic indus-
trial applications at the present stage is numerical material 
testing in which the material parameters of phenomenologi-
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cal constitutive models are determined. As mentioned in the 
introduction, several experiments are typically required to 
select an appropriate constitutive model and determine its 
material parameters. If crystal plasticity analyses could 
replace the experiments, time, cost, and effort required to 
conduct a variety of material tests could be considerably 
reduced; thus, it is expected that the modeling accuracy 
would further improve. Some attempts have already been 
reported. Inal et al.,85) Zhang et al.,86) and Hashimoto et al.87) 
determined the parameters of phenomenological constitutive 
models for Al alloy sheets by using crystal plasticity mod-
els. Yamanaka et al.88) conducted a simulation of hydraulic 
bulging of a 5 000 series Al alloy sheet using the material 
parameters determined by using a crystal plasticity model 
and showed that the simulation results were as accurate as 
those obtained using the parameters determined experimen-
tally. A similar study on a cold-rolled steel sheet was also 
conducted by Coppieters et al.,83) verifying their ALAMEL 
model. Roters et al.89) developed the open source software 
“DAMASK,” which contained a variety of crystal plastic-
ity models to describe plasticity of metals and constitutive 
models. Han et al.90) evaluated the material parameters of 
phenomenological models and their evolution with aniso-
tropic hardening of a 2090-T3 Al alloy sheet by using 

DAMASK and simulated a deep drawing process using the 
determined parameters. They exhibited that the prediction of 
earing could be improved when the evolution of anisotropy 
was considered. Zhang et al.91) also employed DAMASK 
to identify phenomenological models for AA3104 Al alloy 
sheets. It is expected that this approach would be a solu-
tion to the first technical problem of present finite-element 
simulations described in the introduction. Moreover, various 
advanced material tests can be performed quite easily by 
using crystal plasticity models, leading to a deeper under-
standing of plastic deformation behavior of sheet metals 
and eventually to an improvement of phenomenological 
constitutive modeling. This approach is especially useful for 
materials for which phenomenological constitutive models 
have already been well established.

Utilizing crystal plasticity models directly in forming 
simulations as alternative constitutive equations would also 
be an effective approach, although significant effort is still 
required for practical use from the viewpoint of compu-
tational costs. For instance, this approach would be quite 
effective for hcp metals for which phenomenological model 
has not been established yet, but the complex deformation 
behavior can be accurately predicted by crystal plasticity 
models. Hama et al.92) recently performed FEM simulations 
of cylindrical cup deep drawing processes of a CP–Ti sheet 
by using the aforementioned crystal plasticity model and 
showed that the simulation results were in good agreements 
with experimental results in terms of earing formation, 
thickness strain distribution, and texture evolution. Because 
the texture evolution could be predicted simultaneously, its 
effect on the evolution of mechanical anisotropy could also 
be considered in the simulations; thus, the improvement of 
the predictive accuracy can be expected. Moreover, Hama 
et al.93) conducted FEM simulations of time-dependent 
springback of a CP–Ti sheet by using the crystal plasticity 
model and showed that it occurred primarily because of 
slip and twinning activities driven by the residual stresses. 
As understood from these examples, one of the advantages 
of this approach is that the deformation mechanism at the 
crystalline level during forming processes can be examined 
numerically.

There are also several application examples for cubic 
metals, including stamping simulation of Al alloy and steel 
sheets by Nakamachi et al.,94) simulations of deep drawing 
processes of a 17% Cr stainless steel sheet by Tikhovskiy et 
al.,95) simulations of deep drawing processes of an Al alloy 
sheet by Van Houtte et al.,96) Tikhovskiy et al.,97) and Inal et 
al.,98) and simulations of ECAP processes of pure copper by 
Zecevic et al.99) It is expected that further improvement of 
this approach will lead to a solution to the second technical 
problem of the present finite-element simulations described 
previously.

In addition to the aforementioned approaches, it may 
also be useful to utilize crystal plasticity models for the 
development of innovative materials with improved form-
ability. Using the advantage of crystal plasticity models 
that macroscopic and mesoscopic deformation can be cor-
related seamlessly, textures with rich formability can be 
numerically explored. Yoshida et al.100) investigated the 
forming limit of Al alloy sheets by using a crystal plasticity 
model and explored textures with excellent forming limit. 

Fig. 14. Contours of equal plastic work of a steel sheet.84) (a) 
Experimental results and (b) simulation results. In the 
simulation, different CRSS values were assigned to {110} 
and {112} slip systems. (Online version in color.)
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Nakamachi et al.101) studied textures with rich bendability 
in Al alloy sheets. Ikawa et al.102) and Muhammad et al.103) 
also studied the bendability of Al alloy sheets using crystal 
plasticity models and discussed the effects of microstructure 
and enhancement of the bendability from the microstructural 
viewpoints. These examples show that crystal plasticity 
models are beneficial not only for forming processes of 
metallic materials but also for exploring advanced materials, 
if the simulation results could be effectively fed back to the 
development of materials.

However, further efforts are still essential to solve several 
remaining technical issues and eventually to widely utilize 
crystal plasticity models to practical applications. One of 
the remarkable challenges is to establish procedures of 
parameter identification for a variety of materials. There 
were some reports that studied the identification of CRSS 
or work-hardening parameters in addition to those proposed 
in our study for rolled Mg alloy18) and CP–Ti sheets.19) 
Steglich et al.104) determined the work-hardening parameters 
for Mg alloy sheets by referring to anisotropic hardening in 
contours of plastic work. Recently, Baudoin et al.24) studied 
appropriate ratios in CRSS values of CP–Ti by referring not 
only to macroscopic stress-strain curves but also to in-plane 
strain distributions in an oligocrystal. For bcc metals, the 
difference of the parameters between the {110} and {112} 
slip systems were studied both experimentally and numeri-
cally,31,84) as described earlier.

Furthermore, determining latent-hardening/interaction 
moduli parameters is more problematic. Kubin et al.70) and 
Madec et al.71–73) used discrete dislocation dynamics to 
determine the parameters for fcc and bcc metals. Graff et 
al.27) evaluated the parameters by trial and error for pure 
Mg. Hiura et al.105) experimentally evaluated latent harden-
ing under basal self and coplanar dislocation interactions 
in pure Mg and reported that hardening of the coplanar 
slip systems would increase proportionally to the disloca-
tion density accumulated in the other coplanar slip system. 
Zecevic and Knezevic106) extended their dislocation-based 
crystal plasticity model to incorporate the latent-hardening 
effects for prediction of anisotropic deformation behavior of 
AA6022-T4 sheets. However, such results are not conclu-
sive and are still open to discussion. Because the parameters 
of latent-hardening/interaction moduli would be important 
especially in the prediction of anisotropic hardening under 
biaxial loadings,84) further studies are essential from aca-
demic as well as practical viewpoints.

Computational cost is also an important issue for practi-
cal applications. Specifically, finite-element methods are 
quite time consuming although heterogeneous strain fields 
can be evaluated reasonably. For this problem, effective 
calculation algorithmse.g., 107) and effective homogenization 
techniques have been proposed, including the self-consistent 
methods62,63) and the FFT method.64,65) It is expected that 
these studies can accelerate the development of practical 
applications for crystal plasticity models.
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