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Motivic integration in non-holonomic geometry

Go-o Ishikawa; Hokkaido Univ. JAPAN
(a1l MIER - JLKEE - BA)

From April 2003 to November 2003, I organized a seminar so called “E-mail seminar
2003” for the preparation of our RIMS workshop:

“New methods and subjects in singularity theory” (25th — 28th November 2003).
There 1 selected two topics of the seminar:
non-holonomic geometry and motivic integration.

| The details on the E-mail seminar 2003 can be seen in the web page
http://www.math.sci.hokudai.ac.jp/~ishikawa/benkyo.html

which has been presented only in Japanese so far.

In this note, as an informal and private report on E-mail seminar, I am going to show an
attempt to apply the idea of motivic integrations to non-holonomic geometry.

In §1, after a rough review on the idea of motivic integration, we introduce the non-
holonomic arc spaces and motivic integrations on them.

In §2, we review the results on Goursat systems due to Montgomery and Zhitomirskii
{10}, and we introduce a new invariant, in this note, on germs of Goursat systems using
the space of singular Legendre curves in the contact three space. The new results stated
in this section will be completed by the forthcoming joint paper with Piotr Mormul and
Misha Zhitomirskii. Moreover we introduce stringy invariants on Goursat systems by motivic
integration on Legendre arc spaces.

In §3, as an appendix, we introduce the notion of natural liftings of forms to tangent
bundle, and using it, define the prolongation of differential systems to arc spaces.

In §4, as an addendum, we consider the fundamental philosophy concerning “equations
and solutions”, so called “the dearest dream of middle aged Mr. Ishikawa”.

For simplicity we work with complex case in this note.

*Partially supported by Grants-in-Aid for Scientific Research, No. 14340020.



1 Motivic integration and non-holonomic geometry.

1.1 Motivic integrations for beginners.

For details, consult [3]{13]{4].

Let X be an algebraic variety over C. We consider the space £¥(X) of k-jets of curves

on X: If A is the function ring on X, then L*(X) is the set of ring homomorphisms 4 —
Clt]/ ().

Example 1.1 Let
X =C\ {0} = {z # 0} = {(z1,22) € C? | 122 = 1}.

Then A = Clz1,22]/(z122 — 1). For a ring homomorphism ¢ : A — C[t]/(t**1) we set
o(z1) = a(t), p(z2) = B(t). Then 0 = p(z122 — 1) = a(t)B(t) — 1 in C[t]/(t**!). This means
that B8(t) = 1/a(t) as k-jet.

We have £9(X) = X and £1(X) = TX. If X is non-singular, then £¥(X) — X is &
fibration with fiber C%, where d = dim(X). :

For k > £, there is the canonical projection ke : £L¥(X) — L£¥(X). Then we consider the
inverse limit £°(X) := li_n_lﬁk(X ), the space of formal arcs. Denote the canonical projection

by m : L2(X) — LF¥(X).

Let Ko(Varc) denotes the Grothendieck ring of complex algebraic varieties: To a complex
algebraic variety V, there corresponds an element (V] € Ko(Varc). If V = W, then [V] =
[W]. We understand Ko(Varc) as the universal ring generated by [V]’s enjoying the relations:

(1) [V]1=1[2]+[V\Z], (ZCV :Zariski closed in V),
2) VW] =[VxW]
We have 0 = [f] and 1 = [pt].

Example 1.2 By the relation (1), we have [C] = [pt] + [C \ pt]. Setting L := [C], we have

[C\pt]=L-1.

We set Mg = Ko(Varc)|L™!], the Laurent polynomial ring. Then we have

Proposition 1.3 (Denef-Loeser [4])

Jx(T) =Y _[LXXOIT*, Px(T) = [m(L(X))T*
=0 k=0

are rational functions.



Example 1.4 Let X = PT*C? — C? be the projective cotangent bundle over C2. Note
that X & C? x CP! and dim X = 3. Then we see
[CE(X)] = [C? x C x C%] +[C? x pt x C%¥)
— L3S | [8k+2 _ L362(L 4 1),
Thus we have -
Ix(T) = Yoo L3+2(L +1)T* ” )
Le(L +1

1.2 Motivic measure.

On an algebraic variety Y, we consider subsets in Y generated from algebraic subvarieties
by the operations of taking finite union, finite intersection and complement. We call them
constructible subsets in Y.

A subset A C £2(X) in the formal arc space is called a constructible subset if A = 7, *(C)
for a constructible subset C C L£¥(X) of the algebraic variety £*(X). Then we define the
motivic measure of A by

A o~
u(4) = tim DL 57,

where d = dim(X) and Mg is the completion of M¢ relatively to the weight
weight([X]L™") = dim(X) — n.

Thus a sequence with maximal weights tending to —oo is regarded to converge to 0. For
example we have L™ — 0(n — oo).

Example 1.5 Let A =X = PT*C?2. Then

L3k+2 (L + 1)

S = LA(L +1) = [X].

ML(X)) = Nm

Let A C £L%°(X) be a constructible subset. Let o : A — ZU{oc} be a function. Suppose,
for any m € ZU{o}, @~ 1(m) is a constructible subset. Then we define the motivic integration
of a by

LL‘"‘du = Z w(Ana~(m))L~™.

meZ

Example 1.6 Let X be a non-singular variety, and D a non-singular hypersurface in X.

Consider the function ord(D) : £L>®(X) — N N {oo} by ord(D)(y) := ordo(f o 'y)l, for a local

generator f of D. Then u((ord(D)~1(m)) is equal to [X \ D] if m = 0, [D](1 — f) ifm=1,
1 1

(D] I~ ﬁ) if m = 2, and so on. Thus we have
~ord(D) - _ 41 1 1,1 ...
Jewi L7OMPdn. = DX\D]+ D10 = D+ PI(E - )z +
= [X]=[Dls=—%

14+L°



1.3 Non-holonomic jets and arcs.
Let M be a complex manifold. We define

ch(c,0), M) = £PM) := {c¢| c: (C,0) = M is a holomorphic germ},
the space of holomorphic arcs on M, and

[’k(M) = {jkC(O) | ce ChOl((C,O)a M)}7 (k =0,1,2,... )

If M is a non-singular algebraic variety, then £¥(M) coincides with the one defined in the
previous subsections.

We have £°(M) = M and £!(M) = TM. In general, £*(M) is a complex manifold
with dim(L£*¥(M)) = (k + 1) dim(M). If k > £, then there is the canonical projection g :
LEM) — L5M). We set L2(M) = imL*(M), the space of formal arcs. Notice that .
LMY C L=(M).

In some sense, £(M) and £2(M) are “infinite dimensional complex manifolds”. In fact
we can define “holomorphic structures” on any quotient space of any space of holomorphic
mappings.

Now, let E C TM be a holomorphic subbundle. We assume that F is non-holonomic,
i.e., that F satisfies Hérmander condition: Any tangent vector to M is obtained by finite
iterations and summations of Lie brackets of local sections to E.

We set

LB (M) = {c € LY(M) | &t) € B,t € (C,0)},

where é(t) denotes the differential of ¢(t) by t. Moreover we set

E'ﬁ:(M) = {5%¢(0) | c € LF'(M)}, LF(M) = [mLE(M).

Note that LL(M) = M, LE(M) = E. Thus LL(M) = dim(M) + rank(E). In general,
E’E(M ) is an analytic subset of £*(M).

Example 1.7 Let X = M = PT*C?. Let E C TX be the canonical contact structure on
X. If @ = &dx + ndy is the canonical 1-form on T*C?, then E := {&dz + ndy = 0}. If we set
p = —£/7 on the open subset {n # 0}, we have E = {dy — pdx = 0}. Then L§(X) is in fact
an algebraic subset in £*(X)

[£5(X)] = [C? x C x C?*] + [C? x pt x C*] = L#*+¥(L +1).

Now we define
JE(T) = 212(’:0[5,}‘2()( )]Tk = Zl;“;() L2k+2(L + 1)Tk
L*(L +1)
1-L2T



For the motivic measure, we have

L2*2(L+1) y

o LA(L+1)
L3k k—oo Lk

WLE(X)) = lim =0.

It seems natural to define another measure ug(A) for A C Lg(X) by

. 7 A
pe(4) = khm ——-[ I;‘(rk)],
where r = rankE.

Example 1.8 Let X = PT*C? and E the contact distribution on PT*C?. Then we have

L2k+2 (L + 1)

pE(EF (X)) = Jim T~ 12+ 1) = (x].

2 Singular Legendre curves and Goursat systems.

This section is written based on my talk given at the famous Singularity Seminar, Hokkaido
University, Japan, and given at the workshop in Matsumoto, Japan, on January 2004.

2.1 Singular Legendre curves.

Let us consider the manifold PT*C? of contact elements on the plane C? with the canonical
contact structure F.

A holomorphic curve-germ c : (C,0) — PT*C? is called a Legendre curve if the velocity
vector ¢(t) € E(C T(PT*C?)), for t € (C,0). Here we do not assume ¢ is an immersion.

In term of local coordinates z,y,p with E = {a = dy — pdz = 0}, the Legendre condition
means that c*a = 0. If we set ¢(t) = (x(t),y(t),p(t)), then the y-component is given by

v®) = [ podatt) = [ 5 2 4.

Two Legendre curves ¢, : (C,0) — PT*C? are called contactomorphic (resp. diffeomor-
phic) if there exist a diffeomorphism o : (C,0) — (C,0) and a contactomorphism (resp. a
diffeomorphism) 7 : (PT*C?,¢(0)) — (PT*C2,/(0)) such that the following diagram com-
mutes:

(C,0) < (PT*C?c(0))
cl lT
(C,0) % (PT*C2,c(0)),
where a diffeomorphism 7 is called a contactomorphism if 7. F = E.
Then we have

Theorem 2.1 ([17][5]) Let ¢,d : (C,0) — PT*C? be Legendre curves of finite type. Then c
and ¢ are contactomorphic if and only if they are diffeomorphic.



A Legendre curve is called of finite type if it is of finite type as a space curve-germ, i.e. if
it is determined by its finite jet up to diffeomorphisms. If a Legendre curve is of finite type,
then it is of finite order (non-flat), and it has unique integral lifting to any prolongation.

In [5], we have constructed Mather’s type theory of Legendre curves.

The following is one of important open problem:

Problem(Zhitomirskii[17]): Characterize diffeomorphism classes of space curve-germs which
are realized by Legendre curves.

2.2 Goursat systems.

Let N be a complex manifold of dimension n (n > 2). Let E be a germ of differential system
of rank 2 on N at zg. This means that £ C TN is a subbundle of rank 2. In other words,
E = (X,Y)¢ for a local holomorphic vector fields X,Y over N at @y which are pointwise
linearly independent. As a dual expression we have E = {w; =0,...,w,2 = 0} for a local
independent holomorphic 1-forms wy, ... ,wWn—2.

For example, the contact structure E C TC? is expressed by
g 0 0
E = <6p 6w+p6 > = {dy — pdz = 0}.

For a differential system E, we set E? = E + [E, E|.

We call E a Goursat system if E? is of rank 3, namely, of corank n — 3, and, setting
E = Ep9,E? = Ep_3, if E;_) = (E;)? is of corank 1 — 1, for i = n—-2,n-3,...,2,1
([1]{10][2]).

Then we have

Theorem 2.2 ([10]) For anyn > 3, there exist a complez n-manifold M™ and a Goursat sys-
tem En_o ( “Monster Goursat”) on M such that any Goursat germ (N, o, E) is isomorphic
to (M, yo, E) for some yo € M.

That (N™,xo, E) is isomorphic to (M, 3, E) means that there exists a holomorphic dif-
feomorphism ® : (N, z0) — (M, 3%) satisfying &« E = E.

Now we describe the Monster Goursat systems in short.
For n =2, M? := C? and Ey = TC2.
For n = 3, we set M3 := PE; = PTC? = PT*C?, the manifold of tangent lines of C?.
We set
= {v € TM3 | T;M3s, m,v € £},

for the canonical projection 7 : M? — M,. Then E; is the canonical contact structure on
M3, and El is a Goursat system. By Darboux’s theorem, E, is transitive, namely, for any
pomts Yo,yh € Ma, there exists an isomorphism (Mg, yo, E1) = (M3, 45, E1).



For n = 4, we set My = PE;, the fiberwise projectivization of E;. For the projection
7 : My — M3 we set
E; = {veTM* | v e T M, mw € £}.
The differential system E; is the prolongation of E;. We see (M%, E;) is Goursat and
transitive. However note that (M*, Es) is directionally non-transitive. Namely, the self-
isomorphisms on (M?, 1o, Es) does not act on the projective line P((Ep)y,) transitively. In

fact the fibers of  : My — M3 give special directions (Cauchy characteristics of the system
(E3)? of corank one).

For n = 5, we set My = PE, and
E; = {ve TM?® | v € T,M?®, 1w € £},
for the projection m : M® — M*. E3 is the prolongation of Eo. It is Goursat and no longer
transitive.

Also for any n > 6, we define in the same way Goursat system (M™, E,_2) inductively.

2.3 Legendre invariant on Goursat systems.

Let n > 3. Consider the canonical projection 7,3 : M™ — M3. Let v : (C,0) — M" be an
integral curve to E,_», namely 4(t) € E,_a, (t € (C,0)). Then oy : (R,0) — M3 = PT*C?
is a Legendre curve. '

Conversely if ¢ : (C,0) — M3 is a Legendre curve of finite type, there exists a unique
integral lifting ¢ : (C,0) —» M™ to E,_2 with roé=cforalln > 3.

Now we introduce an important invariant of Goursat systems: For yo € M”, we denote
by Cy, the set of contactomorphism classes of Legendre curves m oy : (C,0) — M? where
v : (C,0) — M" runs over integral curves to E,_p with ¥(0) = yo and 7 o y of finite type.

o L. 7 :(C,0) — M" integral to E,_z,
vo ™ 7| %(0) = yo, 7 o yisof finite type [/~

where ~ means the contactomorphism equivalence.
Then we have

Theorem 2.3 Let yp, 95 € M™, (n > 3). Then the following conditions are equivalent to
each other:

(1) (M, y0,E) = (M, y, E).
(iii) Cyo N Cy # 0.
Let (N™, 29, E) be a germ of Goursat system of rank 2. Then there exists intrinsically

the projection 7 : (N™, 29) — M3 making F is the prolongation of the contact E;. Then we
define intrinsically

_ v:(C,0) - M" integral to E,_q,
Ce = {WO’Y ‘ ¥(0) = zg, w o yis of finite type / ~



where ~ means the contactomorphism equivalence.

Then we rewrite Theorem 2.3

Theorem 2.4 Let (N",xzo, E) and (N™,z}, E') be germs of Goursat systems of rank two.
Then the following conditions are equivalent to each other:

(i) (N, 20, E) = (N', 2, E).

(if) Cg =Cp.

(iii) CE N Cr # 0.

Thus the classification problem of Goursat systems is reduced to the classification problem

of Legendre curves ([17][5]). On the other hand, the classification of Goursat systems([11][12])
gives an insight to the classification of each individual Legendre curve.

2.4 Legendre-Goursat duality.

Let ¢: (C,0) — PT*C? be a Legendre curve of finite type. Then we define G. to be the set
of isomorphism classes of Goursat systems E satisfying |c| € Cg. Actually G, is realized, up
to isomorphism, by nothing but the prolongation-deprolongation infinite sequence of Goursat
systems which is obtained by lifting of c.

Then we have

Theorem 2.5 Let ¢ : (C,0) — PT*C? be a Legendre curve of finite type. Then the contac-
tomorphism class [c] of ¢ is recovered from the sequence Go: We have

) Ce={d}
[El€G.

Conversely, let E be a Goursat system of rank two. Assume E is not the contact system.
Then the isomorphism class [E of E is recovered from Cg: We have

sup{n | #mn ( U Gc) =1} = d(E),

[cleCE

where d(E) denote the dimension of the base manifold of E, and 7, means the operation of
taking isomorphism classes of Goursat systems over n-dimensional manifold. Moreover we

have
T4(E) ( U Gc) = {[E]}.

leleCE

The basic idea of the proof lies on the finite determinacy([14]). I have provided the theory
of finite determinacy on Legendre curves via contactomorphisms in [5].

The theory of Goursat systems can be regarded as a generalisation of the theory of
ordinary differential equations. Thus we have to seek corresponding result to the above
classifying theory of Goursat systems. Then first we need the characterisation of systems
for partial differential equations([15], [16]). Our final goal should be the construction of
geometric theory of third order partial differential equations.



2.5 Stringy invariants on Goursat systems.
For the Engel structure E, we set

C% = {5*(mr 0 ¥)(0) | v: (C,0) — M* integral through the base point}.

Then
OF] = L2-D(L -1 L-1)= L1
CE) = “D4 e L) =
Thus we have Engel-Poincaré series:
(L-1)T

PEngel(T) = Z[C’E‘]Tk =

2 1-LT)(1-T)

Moreover we have Engel-motivic volume:

(9 L% -1 1-L-%* 1

A ) I _y _ _
NEngel(CE) = Mg L2k = limg_00 sz(L-}-l) = L1 =I+1

For the regular Goursat system E of rank two on 5-space, we have
[CF] = (L - L2,

Therefore
(L-1)L*-2 L-1

L2k TOLd

pe(CE) = Jim.

Moreover we have
(L —1)T?

1-LT

For the singular Goursat system E of rank two on 5-space, we have

Pregular(T) =1+ T +

- L2(k—2) 1
ue(Ch) = % =14
Thus simply the “volume” distinguishes regular and singular Goursat systems of corank two
on five space. Moreover we have
T2

Psingular(T) = ‘1 +T+ ———"1 — 12T

3 Natural liftings and prolongations.

We recall the notion of natural liftings [6]. It should be essential for general consideration of
non-holonomic arc spaces.

Let a be a differential form on a manifold M. Then there exists a differential form & on
TM such that, for any local section v : M — T'M, the pull-back v*& is equal to Lie derivative
L,a. We call & the natural lifting of a. :
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For example, if f : M — R is a 0-form, namely, a function on M. Then its natural lifting
f:TM — R is defined by

n
. ;. f
f= Z 8:1:z
where (z1, ..., Zy,) is any local system of coordinates of M and vy, . .., v, be the corresponding
fiber coordinates of TM.
In general we see ~
da = da.

aAB=aAmB+r*aApB.

Moreover the natural lifting is locally defined: If f : M — W be a mapping and a is a form
on W, then we have

Fra = (f)'a.

In particular, taking f the inclusion U «— W of an open set U of W, then we have
o|U = a|U.

For example, we have .
d:!:,; = d.i;' = d’U,‘,

—_— ~ <= Oa
adz; = adr; + adx; = ; -é-m—jvjdwi + adv;,

for a function a, and
db = ZZB{B,&I: ———vdz +Z d’”‘n ,
i=1 j=1
for a function b.

Set T%(M ) = T(TM), and TF(M) := T(T*1M) inductively. For a function f : M — R,
we set f1:=f: TM — R, and fx : T*(M) — R by fi := fx_1 inductively. Then

ZZ i§j+2%wi)
i=13 1 i=1 Ot

where (z,v; £, w) is a system of coordinates of T2M.

Let o be a differential form on M. Then we set a; := &, the natural lifting of o to TM.
Inductively we set aj, := ax_1, the natural lifting to TkM.

There exists a natural embedding ix : £¥(M) — T*(M). Note that dim £*(M) = (k +
1) dim M, while dimT*(M) = 2* dim M.

Let o be a differential form on M. Then we define nw'a = i*ax, for the projection
T =M : L¥(M) —» M. We call m'a the prolongation of a to L¥(M).

Now we can prolong an differential ideal Z of the de Rham algebra Q(M) on M. to an

differential ideal Z; to £L¥(M) generated by prolongations oy of all generators « of Z. The
construction is applied also to sheaves of differential ideals in easy manner.




If E C TM be a subbundle, then we consider the sheaf of differential ideals £+ generated
by local sections to the subbundle E+ C T*E defined by

Et = {aeT*M | a|E =0}

Then we have the sheaf of differential ideals (£+)x on L¥(M) .

4 The dearest dream of middle aged Mr. Ishikawa.

“Equation”should be one of the most popular notions in mathematics. If an equation is given,
then students and researchers will be forced to find solutions to the given equation. What
are solutions? The question causes of course non-trivial problems: Before trying to solve
the equation, you have to make clear the space of possible solutions for the equations. For
example, for the equation 22 + 1 = 0, the finding solutions depending on whether you seek
them in the real numbers or complex numbers. Even though we are aware of that very much,
we pose the principle that the solutions determine the equation as well as the equation do
the solutions. Then we can recall the basic framework of algebraic geometry. The principle
is in fact realized by the theory of scheme.

The principle can be applied also to differential equations. In non-holonomic geometry,
equations are, for instance, given by subbundles of a tangent bundle. Then solutions are
integral submanifolds, or, in particular, integral curves. If fact studying of the space of
integral curves is one of main problems of non-holonomic geometry as well as control theory

(918D

Here is an easy statement:

Lemma 4.1 Let E,E' be subbundles of TM. Then the following conditions are equivalent
to each other:

(1) Li'(M) = Li(Mm),

(2) LF(M) = LF(M),

@ LE(M) =LE(M), (k=1,2,3,...),
4 E=F.

Also the following facts should belong to the principle I am speaking.

Example 4.2 Let M be a manifold. Let g : TM — R>o be a Riemannian metric on M.
Then we set

Geod(M, g) .= {v: (R,0) — M | ~ is a germ of geodesic.}.

Then we observe that, for a Riemannian metrics g,¢ on M, Geod(M, g) = Geod(M, d) if
and only if g = ¢’. Also for a sub-Riemannian metrics g,¢’ on E, E' C TM respectively, we
see that the spaces of the sub-Riemannian geodesics Geod(M, E, g) = Geod(M, E, ¢} if and
only if g = ¢'.

1
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Inspired by the idea of motivic integrations, we have considered in §1 the integral jet
spaces of non-holonomic structures.

We examine the idea in particular to Goursat systems in §2.

In [7], we provided a realization of the principle that solutions determine the equation.
In fact types of singularities of solutions distinguish certain type of equations. In this note,
however, we consider the space of solution itself. Then topology of solution spaces and
singularities of solution spaces, not of individual solution come into our scope. Thus my
dearest day dream may be summarised as to construct invariants of an equation from the
topology and singularities of solution spaces.

Here, as a conclusion of my speculative story, we describe an elementary idea for the
investigation of solution spaces to differential equations.

First we start with the linear algebra.
Let © be the Grassmann algebra over C™ (the dual vector space to C*;

Q=N &,

Qo = C,0 = C™,Qy = C* AC™, and so on. Let T C Q be a subset of 2. Then define
S(T) € Up_(Gr(k,C™) by ‘ '
S(Z) :={W | a|W =0, for any o € T}.

Conversely, for each subset S C Up_,Gr(k,C"), we define I(S) C Q by
I(8) := {a| a|W =0, for any W € S}.

We call T C Q reduced if T = I(S(Z)). We call S CU_,Gr(k, C™) reduced if S = S(I(S)).

Lemma 4.3
(V) ZTCI(S(T), SCSU(S)).
(2) If T C T, then S(Z) 2 S(T).
(3) If S C &, then I(S) 2 I(S).
(4) S(T) = SIS(T), I(S)=1SI(S).
(6) IS(Z) = ISIS(T), SI(S)=SISI(S).

Corollary 4.4 T := IS(T) is reduced. 8 := SI(S) is reduced.

Let us extend the above story to de Rham algebra.

Let Q = Q, be the de Rham algebra, namely the differentiable algebra of germs of
differential forms on (C",0):
Q=QWOeNWeQd--,
Qo = Oy, Q is the space of germs of 1-forms and so on.

We denote by H(k,n) the space of holomorphic map-germs (C¥,0) — (C",0). Let T C Q
be a subset of Q. Then define S(Z) C Up_,H(k,n) by

S(T) := {f € UpoH(k,n) | f*a =0, for any o € T}.



Conversely, for each subset S C U}_,H (k,n), we define I(S) € 2 by

I(8) :={ae Q| ffa=0, forany f € S}.

We call Z C Q reduced if T = I(S(Z)). We call § C Up_,Gr(k, C*) reduced if S = S(I(S)).
The we have at last:

Lemma 4.5

(1) TSHS@), SCSUE)).

@) IfT ST, then S(T) 2 S(T').

(3) If § C &, then I(S) D I(S").

(4) S(T) = SIS(Z), I(S)=1ISI(S).

(5) IS(T) = ISIS(T), SI(S) = SISI(S).

Corollary 4.6 T := IS(Z) is reduced. S := SI(8) is reduced.

The method of motivic integrations in algebraic geometry can be regarded as a sort of

perturbation of the correspondence between equations and solutions. So, we are going to
realise the idea of deforming the space of integral curves in the forthcoming papers.
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