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COMBINATORIAL ASPECTS OF MHS
Combinatorial aspects of the mixed Hodge structure

Susumu TANABE
(B3 B, ETAJTUHMIK)

ABSTRACT. This is a review article on the combinatorial aspects of
the mized Hodge structure of the cohomology group of 1) an affine
hypersurface in a torus and of 2) a Milnor fibre of the isolated
hypersurface singularity. In the first part, we calculate the fibre
integrals of the affine hypersurface in a torus in the form of their
Mellin transforms. The relations between poles of Mellin transforms
of fibre integrals, the mized Hodge structure of the cohomology of
the hypersruface, the hypergeometric differential equation, and the
Euler characteristic of fibres are clarified. In the second part we
give a purely combinatorial method to compute spectral pairs of the
singularity.

0 Introduction

This note consists of two part. In the first part (§1- §5), we review first the mixed Hodge structure
(MHS) of the cohomology group of a hypersurface in a torus and then propose to calculate concretely
fibre integrals associated to it. We establish an expression of the position of poles of the Mellin
transform with the aid of the mixed Hodge structure of an hypersurface Z define by a A—regular
polynomial explained by V. Batyrev [2]. The trial to relate the asymptotic behaviour of a fibre
integral with the Hodge structure of the fibre variety goes back to [22] where Varchenko established
the equivalence of the asymptotic Hodge structure and the mixed Hodge structure in the sense of
Deligne-Steenbrink for the case of plane curves and (semi-)quasihomogneous singularities.

The relation between the poles of the Mellin transform and the mixed Hodge structure has been
explained for examples of isolated complete intersections of space curve type in [19].

In this note, we illustrate the clarity of this approach in taking the example of a hypersurface in
a torus defined by so called simpliciable polynomial (see Definition 2).

The aim of the second part of the article (§6 -§7) is to give a survey on the combinatorial aspects
of the MHS of the cohomology of the Milnor fibre defined by a single function germ with isolated
singularity (hypersurface singularity).

In the case of a convenient germ f, A.G.Kouchnirenko [11] established a formula of Milnor
number u(f) = dimH™ 1(X;) for the Milnor fibre X; = {zx € C™|z| < ¢, f(z) = t} for small
enough ¢ and generic ¢ # 0. Based on a fundamental theory by J.H.M.Steenbrink {16}, V.I. Danilov
[3] (almost simultaneously Anatoly N.Kirillov [10] also) has calculated the MHS HP¢(H™"1(X,))
under the assumption that f is non-degenerate and simplicial (see Definition 5).

Despite these remarkable results, their description of H™ 1(X,) is not refined enough to study
more advanced question on the topology and the analysis on the Milnor fibre X,;. For example to
calculate the Gauss-Manin system of the fibre integrals f‘y,- (&) Wir Vi (t) € Ho_1(Xy), wi € HM1(X,)
we must know the precise disposition of representatives w; € H"~!(X;) with respect to the Newton
diagram I'(f). Or, at least, to describe the basis {w1,--,w,} in terms of integer points on R}
by means of combinatorics associated to I'(f). This task has been carried by A.Douai {5] for the
case n = 2 and non-degenerate f to obtain a concrete expression of the the Gauss-Manin system on
H'(X;). So far as it is known to me, the question of combinatorial description of the HP¢(H™1(X,))
is still open. Here we try to give an answer to this question (§6, Algorithm ).
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Quite recently, an slgorithm to compute HP9(H™~1(X,)) together with the monodromy action
on it has appeared (see [14]). It is implemented in the computer algebra system SINGULAR in the
library gaussman.lib. Everybody who wants to verify combinatorial statements on HP9(H"~1(X,))
can achieve it in computing non-trivial examples by means of this tool.

1 Hypersurface in a torus

Let A be a convex n—dimensional convex polyhedron in R™ with all vertices in Z". Let us define
aring Sa C Clzf, -, zE] of the Laurent polynomial ring as follows:

(2.1) Sa=Ce P C-%
£eA,3k>1

We denote by A(f) the convex hull of the set & € supp(f) and call it the Newton polyhedron of
f(z). We introduce the following Jacobi ideal:

_ .. 9f of
(2.2) Jra = (zl-a—a, e, T 3$n> Sa(r)
Let 7 be a £—dimensional face of A(f) and define
(2.3) ff@)= Y.  aaz®,
&erNsupp(f)

where f(z) = Y ¢ supp(s) @62° - The Laurent polynomial f(z) is called A regular, if A(f) = A and
for every £—dimensional face 7 C A(f) (¢ > 0) the polynomial equations:

af" afT

= =g
oz ™ Oy

fT(@) =m

=0,

have no common solutions in T® = (C*)™.

Proposition 1.1 Let f be a Laurent polynomial such that A(f) = A. Then the following conditions
are equivalent.

(i) The elements x; 8%%, - ,:cna%{-‘ gives rise to a regular sequence in Sa(y)
(ii)
dim(—-SA—) = nlvol(A).
J1.a
(i) f is A—regular. B
It is possible to introduce a filtration on Sa, namely & € Sk if and only if § € A. Consequently
we have an increasing filtration;

Cx{0}=8CS 1 C---CS,C-+,

that induces a decreasing filtration on TS!AA- :

This is called the Hodge filtation of —_,%A; It is worthy to remark here that the Hodge filtration ends
up with n—th term. .
Let us remind us of the notion of Ehrhart polynomial:
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Definition 1 Let A be an n—dimensional conver polytope. Denote the Poincaré series of graded

algebra Sa by
At) = L(kA)E,
© k20

Qalt) =) £ (kA)F,
k>0

where £(kA) (resp.£*(kA) ) represents the number of integer points in kA. (resp. interior integer
points in kA. ) Then

Ta(t) =Y wu(A)tF = (1 - )" Pa(t),

al) = 3 pu(A) = (1- 9™ Qalo),

k=0
are called Ehrhart polynomials which satisfy

t" A (1) = @alt).

Further, the main object of our study will be the cohomology group of the hypersurface Z¢ := {z €
T™; f(z) = 0}. We have an important isomorphism on the Hodge filtration of PH™ 1(Z;).

Theorem 1.2 ([2]) For the primitive part PH™Y(Z;) of H" }(Zs), the following isomorphism
holds;

FPH™YZ) . ai/Sa,_ FEA)
(24) FAPEI(z,) = OTF (7,0) T T (ia)
( f) f.a (Jf A )
Furthermore ,
dim Gry 1( =Y hH(PH"(Zf)) = $n-i(B),
q20
fori<n-1.

As for the weight filtration, we have the following characterization. We understand the notion
of the stratum of the support of the algebra ﬁk in identifying a polynomia,l % € Sp with & € Z™.

We call (n ~ j)—dimensional stratum of supp(SA) the set of those points i from kA, k = 1,2,

such that ,'c is located on the (n — j)—dimensional face of A and not on any (n — j — 1)—dimensional
face A’ C A.

Theorem 1.3 The weight filtration on PH"~Y(Z;) is defined as a decreasing filtration
0=Wp o CWa_1C:-- CWopn= PHn-l(Zf)’

such that Wyyi—1 2{ the integer points located on the strata with dimension > (n—1) of supp( 7 A)
but not on the (n — i — 1)— dimensional stratum.} for0 <i<n-—2.

This theorem is an easy consequence of the Theorem 8.2 [2]. First we notice that the following exact
sequence takes place, i

0~ HYT) » HY(T\ Zy) & H™(24) » 0
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The Poincaré residue mapping Res gives a morphism of mixed Hodge structure of the Hodge type

("‘l’*l):
Res(F3 H™(T \ Z5)) = FF~ H""Y(Z;), Res(W; H™(T\ Z;)) = Wj_2 H"1(Z;).

Thus we have,

0 = Wi H™(T) = Woys H(T\ Z5) %5 WoginaH" 1 (24) -0,
fori=2,---,n— 1 where
(2.5) W2n—1 Hn(T) == Wn—l H"(T) =

and dim Wy, H¥(T) = 1.
This filtration induces a natural graduation Grl¥ PH""}(Z;) := W;/W;_;. In view of the
equality (2.5) the Poincaré residue mapping Res gives an isomorphism

Res

Res: Wy i HYN(T\ Z5) = Woyi—oH" 1(Z5),

for i = 1,--+,n — 1. The algebraic structure of the space Wy4H*(T \ Z¢), 4 = 1,---,n — 1 has
already been established by Theorem 8.2 [2].
2 Preliminary combinatorics

Let us consider a polynomial

(2.1) fl@y= Y %0

1<i<M

with M > N + 1. Here &(i) denotes the multi-index
C-i("') = (O‘L e "a.}\l) € ZN'

In the case when M > N we associate to f(z) another polynomial in M — 1 variables f7(z,z')

M~-N-1
(2.2) Paa)= 3 aafe® .y Z 22400
i=1 j=M-N

with o € Sps, the permutation group of M elements. Here we used the notation of the multi-index:
Ca@(o(®) = (@9, 05Dy e ZV.

In this situation, the expression u(f%(z,z') + s) is a polynomial depending on (M + 1) variables
(1, ZN, 24, Ty _N—1) 8, u). Further we shall assume

(2.3) supp(fo)N int(A(f")) =0.

Here A(f°) denotes the Newton polyhedron of f7(z,z’).

Remark 1 A polynomial that depends on (M + 1)—variables and contains (M + 1) monomials is
called of Delsarte type. Jean Delsarte proposed to study algebraic cycles on the hypersurface defined
by a polynomial of this class.
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Let us introduce new variables 77, - Tps41:

(24) T1 = ux'lz{a(”(l)), T2 = um{zzg(d(z)), e
Tr-N-1 = uzhy_y g™ MV, Ty y = ugEM=M) . Ty = us.

To express the situation in a compact form, we use the following notations:

(25) 8=t (wl""ymN’Illy'",:DGW—N—I)U',’S)’
(2.6) LogT:='(log T\, - ,log Thrs1) =% (71, s Taat1)s
2.7 Log 2 :=* (log z1,---,log zn,log z},---,log zhs_n_1,l08 u,,log ).

In meking use of these notations , we have the relation
(2.8) 7 = log u+log 1+ < @(o(1)),log z >, -,
TM-N-1 =logu+logzhyy n_1+ < &(c(M - N —1)),logz >,

Tv-N = logu+ < G(a(M - N)),logz >, -, 7m+1 = log u +log s.

We can rewrite the relation (2.8) with the aid of & matrix L® € End(ZM+1), as follows:

(2.9) LogT =L°%.Log X.
where
[ 5 . ™ 100 - 00 1]
3P . 8P o010 001
001 001
afM=N=1 L GgM=NED g g o 101
(2.10) Lo = ,
JM-M L MmN g g g 001
M ™M g 00 - 001
|0 0 000 -0 11|

Further we shall assume that the determinant of the matrix L is positive. This assumption
is always satisfied without loss of generality, if we permute certain column vectors of the matrix,
which evidently corresponds to the change of positions of variables z. We denote the determinant
by 4° = det(L°). The row vectors of L” will be denoted by €7, - +,&%,,,. Later we will make use
of the notation of variables X := (X, - Xp—1) := (z1, -+, TN,&Y, -, Tpr_n—1) 80d that of the
polynomial f°(z,z') = fo(X).

Definition 2 We call that polynomial f(x) is simpliciable if for every o € Sy, det(L°) =~ #0.
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For 7 C A(f°) we denote by £(r) a (dim 7 4+ 1)~ dimensional simplex consisting all segments
connecting {0} and a point of 7. Let us define & graded algebra

(2.11) s$= |y cx=
2€3(1),3k21

and a polynomial

(2.12). Xy =y, X®
a€supp(f°)NT
Lemma 2.1 If f(z) is a simpliciable polynomial, then f7(X) is A(f)— regular.
Proof The condition det(L°) = v° # 0 yields that Xl%, Xg%g?;:, XM_IB—%%, form a
regular sequence in S, for any face 7 C A(f%). Q.E.D.

3 Mellin transforms
In this section we proceed to the calculation of the Mellin transform of the fibre integrals associ-

ated to the hypersurface Z e 1+, = {X € TM~1; f7(X)+s = 0} defined by a simpliciable polynomial.
First of all we consider the fibre integral taken along the fibre ¥(s) € Hpr-2(Zfo4s) as follows,

. [ oXgx 1 X3dX
3.) Ls 2 (6) = /m ToX) - anyl /ws) FE) + 9%

where 8v(s) € Hy—1(TM~1\ Z;04,) is a cycle obtained after the application of 8, Leray’s cobound-
ary operator. Here X! = X;---Xp_1, X = X o+, X4y"1. See the works by F.Pham and
V.A.Vassiliev ([23]) for the Leray’s coboundary operator.

The Mellin transform of I%; 5. (s) is defined by the following integral:

d
(32) Ms(3) = [ (~9)" I 0(5)5-
i
Here II stands for a cycle in C that avoids the poles of Ix1 5,(s). We assume that on the set
OV = UgenB(s,7(s)), R(f°(X) + s) — +oo. We denote by L£4(J, z) the inner product of (J, z,1)
with the g—th column vector of (L?)~!. Let us deform the integral (6.2) in making use of the
definition (3.1):

o du dX ds
o - w(fOX)F8) v I, (o222 A G2 22
(3.3) M3 (2) /R o Xhu(-sy 2N S A S
M+ M+1
1 (T) L£4(3,2) dT,
=— e T, —
77 J(Ley (R x5 g e g /\ T,
where
(3.4) Y(T) =Ti(X,s,u)+ -+ Tnm(X,3,u) = u(f7(X) + s)

where each term T;(X, s, u) represents a monomial term of variables X, s, u of the polynomial (3.4).
By virtue of the simple structure of the matrix L° (2.10), we can consider the simplex polyhedron

9
79 € RM-1 defined as (&7, -Y+,&,,,). where we identify &/ € ZM+! with that of ZM~! after
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ignoring the last two entries. It means that we identify € with the i—th row vector of the matrix
L? of which one removes the last two columns (0,0,---,0,1),t(1,1,---,1) € ZM*!, The chain
R_ x 87" can be deformed in CM+! 5o far as it does not encounter the singularity of the integrand.
Proposition 3.1 1) The Mellin transform M%,;(z) of the fibre integral associated to the simpliciable
polynomial f(X) has the following form.

M
(3.5) M%s(2) = 9(2) [[ T(£e(3,2)), 1 Sg< M +1,
q=1
where g(2) is a rational function in e with 77 = (M — 1)wol(A(f°)). The linear function
(3.6) L£y(J,2) =" (J, 2, 1)y,

where @7 is the g—th column vector of the matriz (L)1,
2) The M +1 linear functions L4(3, z) are classified into the following three groups.

BY, o
(3.7h Ly41(3,2) = %z = ::——gz =z.
For q such that W = B (73,1, —1) for some 95 € QM~1,and B # 0,

BI(<52,I> +z-1)
(3.7)2 Lyd,2) =~ )

For q such that & = (v7,0,0) for some 7 € QM-1 and By =0,

(< 48,3 >)
(37) £,@,5) = =22
Here the case (3.7)3 corresponds to such q that dim 77 < M — 1.
3)
(3-8) |Bg| = (M — L)lwol(7y).

4) For J € 77 N A(f9), with dim 7§ = M — 1, 77 # A(f?),
(97,3) =1.

q)

(ﬁxlf+17 J> =0.

Proof 1) The definition of the I'~ function sounds as follows;
/ eT(__T)ag — (1 _ e21ria)/ eT(_T)ag‘_ — (1 _ eQwia)P(a),
R T R- T

for the unique nontrivial cycle R_ turning around T = 0 that begins and returns to T — —oo.
We apply it to the integral (3.3) and get (3.5). We consider an action A on the chain C, = R— or
R_ on the complex T}, plane, A : C; — A(C,) defined by the relation

[ ememgnZes [ ooy e
A(Ca) a (Ca) @

21
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By means of this action the chain L,(R—- x 4™) turns out to be homologous to

‘Y’
(p) ;(0) =
> ma e M (R2) [V (R-),
o FP I ) VAT 2
(jj(,p)n"‘1j£+1)e[1v7vlnl+l =2
with m, X . This situation explains the pr ac =Y. )
t M i €Z situation explains the presence of the factor g(2) Z(J{”’v--aﬂ'}ll)e[ln"]““

M e2nV=13{" £1(3.20) T[MH1 VU La 3.0 (1 _ V=1L, (3,54)) except for the T'—f
1 WM
unction factor.

The points 2)- 5) are reduced to the linear algebra. For example 3) can be shown, if one
remembers the definition of M minors of the matrix L7 calculated in removing the M —th column.
4) If J € 72, the vector &7 is orthogonal to (#%441, 1, —1) for i # q and (&7, B (TF41, 1, -1)) ="
The result on the M —th and (M +1)—st element is explained by the fact that €%,,; = (0,---,0,1,1)
is orthogonal to (V%,,,,1,—1)for 1< g < M.

Q.E.D.

Let us denote the set of such indices ¢ with strictly positive (resp. strictly negative) B7 by
It c{1,--,M+1}, {resp. by I C {1,---,M + 1}). The set of indices g for which B = 0 will
be denoted by I°. With these notations, one can formulate the following,

Corollary 3.2 1) The Newton polyhedron admits the following representation, A(f”) = {ie RM,
(53,0 21 for g€ I, (#5,3) <1 forge I, (¥%,i) 20 forg" € I° }.

2) We denote by x(Zf41) the Euler-Poincaré characteristic of the hypersurface Zgo41 = {X €
TM-1; £9(X)+1} here under the constant 1 we understand a generic value for f7(X). The following
equality holds,

(3.9) 3 BZ = (M - Dlwoly—1 (A (X) +1))= (=1} x(Zfo11)-
riad
3) 23’:1 Bg = 0. In other words,
(3.10) > Bf=-(>_ BY).
gel- gel+
Proof 1) After the definition of vectors 47 ,---,7%; we can argue as follows. If i does not belong

v -
to the hyperplane (&7, Y+, &%), then (ﬁ"q’,f) = 1+ %;. In the case when g € I* (resp. € I"7)
p ,
(#5,7) > 1(resp. (7, 7) < 1) that is equivalent to say that all the points 4 of the Newton polyhedron
- q
A(f7) satisfy (37,7) > 1 for g € I* (resp.(i%,i) < 1for g € I7). If i € (&, ¥-,&,), then
- - qo
(t?g,ﬂ =1.For ¢° € I°, A(f°) C {5; (ffq"o,D > 0}, because (EZD,D =1fori¢ (€7, " &) Asall
possible cases are exhausted by I*,17,1% |I*| + |I~| + |I°] = M. This yields the statement. 2)

Apply the Theorem by [9],(13] on the Euler characteristic. 7) The (M + 1)—st column vector of L
is orthogonal to the M—th row vector of L9}, (B, .-, Bfa)-

Corollary 3.3 Under the above situation, the Mellin inverse of M‘;,ﬁ(s) with properly chosen
periodic function g(z) with period ol

aes+ T(£a(3, 2)
[laer- T(1 - £a(3, 2)

defines a convergent analyiic function in —w < arg s < 7.

s %dz,

(3.12) I (8) = /n 9(2)
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Proof In applying the Stirling’s formula
T(z+1) ~ (2m2)2%¢™%, Rz — +o0,

to the integrand of (3.11), we take into account the relation (3.10). Here we remind us of the formula
I(2)[(1 — z) = =—. As for the choice of the rational function g(z) one makes use of Nérlund’s

sin wz2° o
technique. In this way we can choose such g(z) that the integrand is of exponential decay on II.
Q.E.D.

Example Let us illustrate the above procedures by a simple example.
(3.12) f(@) =2} + 2les + 2125 + 25
We have 4 possibilities to add a new variable z/ so that the polynomial (3.12) becomes a simplicial.
o (z,2') = 222 + zizy + 7125 + 7}
7% (z,2') = 2 + 2 2?zs + 2123 + 2.
1 (z,2') = 2 + 222y + T\ 7125 + 25
fo(z,2') = 23 + 22z2 + 717 + 2175,

Let us calculate L° and (L)1,

5 0 0 01
21001
L*=|12 10 1],
0 4 001
(000 11
3 -4 0 1 0
oy 1 2 -5 0 3 O
(Lo?) =z 1 -6 7 -2 0
8 —-20 0 5 7
-8 20 0 -5 0

Let us denote by €1 = (5,0,0),&2 = (2,1,0),63 = (1, 2,1), €1 = (0,4,0),65 = (0,0,0). Then we have
vol(7s) = 3lvol(é, €2,€3,€4) = 7.

Similarly vol(r4) = 5, vol(13) = 0, vol(r;) = 20, vol(11) = 8. Rematk 1 + 3+ T4 + 75 = 72 (a
subdivision of simplex into three simplices) which yields 7 + 8 + 5 = 20. The face not affected (see
Definition 3 below) by o3 is that spanned by €3, €2, 3.

4 Hodge structure of the fibre integrals

Now we can state the relationship between the Hodge structure of the PHM~2(Z;.) and
the poles of the Mellin transform after suitable period function multiplication ETIETM;C"'Y’ (2) =
I..,.t{c.@3.2))
nael— F(I—La (3.2)

y: Here we remind us of the relation I'(2)T(1 — z) = 2. We will misuse the

ILepr D (2e0.2)

acr- r(1-£a(@.2))’
Theorem 4.1 1) For X7 € GryGr{;_,PHM~%(Z;.),0 < p < M —1, the following properties hold

expression “the poles of the Mellin transform” in meaning those of
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0<(#%,J)<M-1-p forg®el’

g
M—l—p<(ﬂq",J><(M—1—p)(l+-’-YB?) gelI*

(M—1~p)(1+%;)<(17§,J)<M—,1—p forgel™
q

if not (¥5,J) = 0.
b) The mazimal pole of the Mellin transform satisfies;

4
1—(M—1—p)(1+maxq51+—;?)<z<2+p—M.

Here the pole is not necessarily a simple pole.
2) For X* € Gr%.Gry_PHM~%(Z;.), 0 < p < M — 1, the following properties hold
a) There exists unique indez ¢ € I™ such that:

(1')';',J>=M—l——p

b) The mazimal pole of the Mellin transform is the simple pole

z=2+4+p-M.
8) For X3 € Gri.Gr¥y_,, . PHM"%(Z4.),1 <1 < M—3,0 < p < M —1, the following properties
hOlli) There exist v indices q1,- - gr € IT such that:
| (7,3) = (7, ) = = (L. 0) =M ~1-p,
but no such r + 1 pair of indices q1,- -, gr41.

b) The mazimal pole of the Mellin transform satisfies;
z'= 24+p— M,
which is of order < r +1 i.e. there can be cancellation of poles.

The defect number (r + 1)— {order of poles } will be described in §5.

Proof of the theorem can be achieved by a combination of Theorems 1.2, 1.3 and the Proposition
3.1, Corollary 3.2. We remember here that the I'(z) has simple poles at z =0,-1,-2,--.

The above theorem mentions about how the Hodge structure of PH™~2(Zs.) influences on the
poles of the Mellin transform. How about the original Hodge structure PHN=1(Z;) 7 To state this
relationship, we need to introduce the following notion.

Definition 3 The face 7 € A(f) is called “not affected by o” € Sps if T € A(f7) after the extension.
of (i1, -,in) € T C R¥ into RM transforming it into the vector (i,0) = (i1,---,in,0,---,0,0) €
RM,
The face not affected by o for the polynomial (2.2) is a face (or its sub-face) spanned by the vertices
M .
Z m:_x(c(J))
j=M-N

i.e. vertices free of z;.
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Theorem 4.2 1) Forz! € Gr&.Gr¥,_,PHN=1(Z{),0 < p < N, for which (1,0) lies in supp(%‘—’_ir’:-;),—))
not affected by o, the following properties hold
a)
0< (1%,(1,0)) <N —-p forg® el

N-p<(,G0) < (N-p)1+ L) forgel*,
q

(N—p>(1+g%,) <(3,G,0)<N—p forgel,

if not (97, (i,0)) = 0, or (¥7, (i,0)) = 0.
b) The mazimal pole of the Mellin transform satisfies;

1—(N—p)(1+mazqel+;—g)<z<1-—N+p.

Here the pole is not necessarily a simple pole.

The proof is straightforward if one applies Theorem 4.1 to A(f). We consider the N—dimensional

face 77 C Z" that is a N—dimensional simplex contained in A(f). One can verify that there
exist (i,0) € 3upp(7%%%—f;;) such that z' € Gri.Gr¥_, PHN"1(Z;), 0 < p < N — 1 for the cases
N = 2,3,4 by means of polyhedra realizing the formulae 5.11, [4].

We remark the following simple combinatorial fact.

Proposition 4.3 For every z* € GriGr¥_, PHN=1(Z;), there ezists an element o € Spr such that
z' is not affected by 0. That is to say there exists o € Spr such that 2! € San N Sa(fo)-
5 Hypergeometric group associated to the fibre integrals

Let us introduce two differential operators of order A7 := (M — Dwolp-1(A{f7(X) + 1)) =
[x(Zge41)] = [I*] = |I7};

B-1 o
(5.1) Prw) = T] T1 a3 -9+ )
qer+ j=0 ?
—BF ,
(5.2) Q509 = [T TT (~£a@ =0 =1+ ),
- ger- j=1 q

where I, I~ are those sets of indices introduced in §3.
Theorem 5.1 The fibre integral I%s, ,1(.9) is annihilated by the operator

(5.31 R§(85) = P§(9s) — 8" Q5 (5s),
that is to say

(5.4) [P5 (Bs) — 87" QF(9:)) %3 (8) = 0.
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It is worthy to remark that the operator R§(d,) is a push-forward of the Pochhammer hypergeo-
metric operator of order A%,

(5.3)2 Py (779:) — tQ3 (77 B1),

by the Kummer covering t = 57" . In certain cases, the operator (5.3) turns out to be reducible. Let
us introduce the following set of rational numbers.

(<77, >-1)

C*(J) = Uger+ Uogj<Bs 1 {gg' - = }
j <7, J > -1
C~(J) = Uger- Vigj<-Br -1 {— g—q—;,—‘—‘)‘}-

I =ct@d)n C"(J).

We define a positive integer A = f|C*(J)\ C°(J)| = §|C~(J) \ C°(J)|. Then “the nontrmal part”
of (5.3); (i.e. after the division by operators with rational function solution of type s*°, a0 € C(J))
can be defined as

R§(9:) = II (B +at) -t IT (Bt +a” +1),
ateC+(INCC(J) a=~€eC—(IN\C°(J)

as an operator of order A° up to multiplication by a constant to the variable gt
‘We consider solutions ug,m(t),1 < £ < A7, to the equation

(5.5) R§ (B4)ue,m(t) =0,

with the asymptotic behaviour

m

(5.5)1 ugm(t) 2 175 (log t)” Ay (t).

v=0

Here 0 < m < my, 3_,(me + 1) = A%, Ay(t) holomorphic in the neighbourhood of ¢ = 0. Similarly,
we consider the asymptotic behaviour at t = co of the solutions to (5.5)

k

vea(®) 2 (315 Y (log 1 Bu(3).

w=0

Here 0 < k < ke, Y p(ke +1) = A%, Be(3) holomorphlc in the neighbourhood of } = 0. Here
myg + 1 (resp.k¢ + 1) denotes the mulmphcn:y of —p4 (resp. —p%) in the set C* (I} \ C°(J) (resp.
C-(IH\ C°@)).

Under this situation, we define characteristic polynomials of the exponents of solutions to (5.5)
att=20

Aﬂ
Xoa(t) = H(t — e2miVly H (t = e~2mV10ty
t=1 a+teCH\Co
and t = o0 -
Xoo,J (t) = H(t - 82‘"]5_‘1 \/:1) = H (t _ e—Zvr\/——-la‘)‘
t=1 o+eC-\C°

Especially in the case C° = ), we have the following simple formulae.
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Corollary 5.2 The characteristic polynomials defined above can be calculated in the following way.

BU
(5.6); Xoa(t) = [T 5% - (2= (T an vy
gert
e
(5'6)2 Xm’J(t) = H (t"B; - 6—2"(1‘<17;.J>)7g'\/:1)‘
eel-

For the polynomials introduced in (5.6)1, (5.6)2, we introduce two vectors (A1, Az, - -, Az<), (B, Bz,
-+, Bas) € CA°| after the following relation:

Xoa(t) =t27 4 A2 =1 4 AtB7"2 4 4 Ag,,

Xeoa(t) =t3 4+ BytA "1 4 BptA"~2 ... 4 Bj..

Let us denote by w,i = 0,1,2,.--,7° — 1 the non-zero singular points of the equation (5.4) i.e.
{s € Ci Il er+ Bf — (Ilges- B)s™ =0}

Proposition 5.3 A representation of the hypergeometric group (global monodromy group) of the
solutions to (5.5) is given by

(5.7) My = hgdv Mo =hy = (hﬂhm)_l:Moo = thMu‘ = h‘;oihlhio(i =1,2,--+,7" - 1),

for the matrices

00 - 0 —Az.
10 0 —“ABa_l
(58) ho=1 0 1 0 —Agey |
00 e 1 —A
00 - 0 —Bz
1 0 ". 0 -BA’—-I
(hoo) ™! = 1 0 —Ba- o
6o 1 —-B

where M« denotes the monodromy action around the point w* € CPL.

proof The monodromies of the solutions annihilated by R§(%;) are given by hg, (resp. hi, hoo) after
[12]. at t = 0, (resp.t = 1,00). Let us think of a y°—leaf covering C:Pi of CP: that corresponds

to the Kummer covering 87" = t. In lifting up the path around t = 1 the first leaf of C~Pi, the
monodromy h; is sent to the conjugation with a path around ¢ = oo. That is to say we have
M1 = h3 ]l hiho. For other leaves the argument is similar. Q.E.D.

In combining the above result with that of Theorem 4.1, 3), we get the following.

Corollary 5.4 For X7 € GriGr¥y_, ., PHM %(Z4:),1<r <M —-2,0<p< M -1 the size of
a Jordan cell of the monodromies Mo with unit eigenvalue arising from the term of the form (5.5
with ot = pf isr + 1\ #{at € CH(I)\ C*(I);0t € Z}.
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proof It is enough to remember the following relation for a cycle C avoiding 2z + a = 0:

(r+1)!/;(z.+a)’”+1dz /_z[(dz (z+a)]

L d e [ L e e
=./cm[(_35)s ]dz—L—(z+a)s (log )" dz = 2my/15%(log 3)".

If the set C°(J) is empty, the order of the poles of the Mellin transform for X e GraGry s
PHM-%(Z.) is v + 1 after Theorem 4.1,3)a). If C°(J) is not empty, the order of poles is reduced
by #{a € C*(I)\ C°(J);x € Z}. Q.E.D.

6 Local Milnor fibre

We describe here the mixed Hodge structure of the local (vanishing) cohomology of the Milnor
fibre. From combinatorial point of view, the local structure is considered as a combination of
combinatorics treated in the global case.

Let us consider a germ f(z) € C[[z1, -, Zn]] that defines the isolated singularity at = 0. That
is to say dimension u(f) (Milnor number) of the Milnor ring A(f) defined below is finite:

C[[I1, ) zn]]

A(f) =
(f) <38'£’ D’;E')C[[xh : axn]

6.1)

For a convex set
(6.2) T4 (f) := convex hull of{@+ R%};a € supp(f) \ {0}},

we define Newton boundary of the germ f(z), I'(f) := union of all closed compact faces of ', (f).
We call a germ f(z) convenient if it allows a decomposition as follows,

f(=) = g(=) + R(z),

with g(z) = Y0, aizl, [Tie; @i # 0, n; > 2 for all i € {1, 7] and supp(R) C T'+(g).
Definition 4 A germ f(z) is called non-degenerate with respect to its Newton boundary I'(f) if for
every closed face T € I'(f) the system of equations

afT af"

f ($)=x1_3_x;= _’”"ax,,

0,

has no common solutions in T = (C*)*.

This notion is similar to that of A—regular polynomisl defined in the global case, but it treats only
T € I'(f). Let us denote by 7 the convex hull of 7 U {0}. Then the non-degeneracy of f(x) is known
to be equivalent to the finite dimensionality of the ring

A= 5
T -(Il%%,"',.’tn%%)sg?

Here we followed the notation of (2.1) for the algebra S;. Let us denote by I'_(f) union of ail
segments connecting a € I'(f) and {0} or equivalently I'_(f) = U,cr(s) 7 Let us denote by Vi
k—dimensional volume of disjoint sets (there are ,Cj such sets in total) I'_(f)N { k—dimensional
coordinate planes with (n — k) zero coordinates }.

In this situation, we have the following theorem on the Milnor number u(f).

(6.3)
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Theorem 6.1 ([11]) Let f(x) be a germ convenient and non-degenerate with respect to I'(f), then
we have

(6.4) | pf)=nVa—(n - 1)Vaa +---+ (-1

" Definition 5 We introduce the notion of simplicial Newton boundary which means that for each
7 C T(f) the following inequality holds

#{T; face of O(f);dim Ty =dim 7+ 1,7 C i} < n—dim 7.

.As a matter of fact, we can formulate the above theorem by Kouchnirenko in a more precise form.
We introduce a new C— vector space V, associated to a face 7 € T'(f) not contained in a coordinate

plane.
Vi = Ar\ (Br0erAr) \ (Br@er A \ (- \ {0}) 1),

where 7)) € 7 denotes a codimension j face of 7 contained in a coordinate plane. Here we remark
that though 7 not contained in a coordinate plane 70 € 7, j € [1,dim7] may be contained in a
coordinate plane. We introduce another C— vector space W, corresponding to the interior points
of supp(V7), :
WT = A‘l' \ (®T(1)ETAT(1) \ ($7(3)ETAT(2) \ ( . \ {0}) o '),
where 719 € 7 denotes a codimension j face of T not necessarily contained in a coordinate plane.
We say that a set c(o) is a copy of set o if the relation ¢(o) = +o + W, for some W € Z™ holds.
Further on we use the notation ¢(0), j = 1,2, - - - to distinguish different copies of a set 0.
Proposition 2.6 of [11], (5.6), (5.7) of [16] entail the following.

Proposition 6.2 1) For A,, we have the following relations,

dimr+1

dim A, = Z i(?) = (dim 7 + 1)lvol (7).
i=1
2)
wh= D (FYTTEdim A,
7Ccoordinate planes
3)
(6-5) A(f) =~ @(n—l)dimensional faces TCIL'(f) Vf-
In the case of repetitive appearances of A,’s, for some face v in different V,U Ve, (Y Cnn

---M k) these copies of Ay (or rather supp(A)) shall be shifted and located anew in a way that
they form a symmetry with respect to the Hodge filtration of Ar, for some i C {1,k].

4) Let us denote by sV (o) the shift of a set o € F*/Fi+1 to another properly chosen set 59 (o) €
Fi~t/Fi—t+1 Then we have another representation as follows,

n—dimo—1 n—dimoe—1Ct

A= DD D B CVEEOw)

oCT(f)TCo =0 j=1

Here different copies of (s (W, )) shall be distributed in @, F~*/F*~**1(A, ), in such a way that
I (sOW,)) N &’ (59 (W) =0 for all pairs j # j'.

28
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A precise way to arrange copies in accordance with the Hodge filtration shall be explained in the
Algorithm below.

Further we shall establish a connexion between the volume of a polyhedron and a set of integer
points. Let 7 be a (k — 1)—dimensional face of I'(f) and # be a k—dimensional simplex. Let us

denote by iy, - - - , 7ty vertices of 7\ {0}. We consider the cone
k
(6.6) ' cone(r) = {3 birhi; b; 2 0},
i=1

associated to 7. We introduce & grading on the algebra S;. First we consider a piecewise linear
function h : N® — N satisfying h|r(s) = 1. Then there exists M > 0 such that h(a) C 37N for all
o € N™. We define ¢ = M - h|nn». Let us denote by A, algebra of polynomials written as a linear
combination of monomials z%, ¢(c) > 1. Denote by A,(7) subalgebra of polynomials of A, whose
supports are contained in cone(r). Then we can consider the Poincaré polynomial of S§; defined by

Ps,(t) i= 3 dimo (Ag(r)/ Agia(r)-

q=0
Then we have the following relationship

k
©7 klvol(7) = §{Z" N {cone(r) \ | (i + cone(r))}} = Ps, (£)(1 — t)*le=1.

i=1

Here we recall the fundamental theorem from [16] (3.10). To formulate it, we need to introduce
preparatory notions. Let us consider a resolution of singularity X, that is to say a proper mapping
p:Y — C™ from a smooth algebraic variety Y D C” such that 1) p is an isomorphism on C" \ {0}
and 2)E = p~!(Xp) is a divisor on Y with transversal intersections. Let Ep be the proper image
of Xo through p, i.e. the closure of p~1(Xy \ {0}) in Y. Let us denote by E1, .-+ Ex the remaining
irreducible components of F. Assume that E = Eg -{-Zév:l m; E; with multiplicities m; of the divisor
E;. Let M be the least common multiplier (l.c.m.) of my, - - -, my. We consider a covering 7 : c-cC
that sends z to 2. For the pair of mappings (f, ) we denote the fibre product Y x¢ C_byj( . Let
D; = 7™ Y(Ei)red, € [1, N] be the reduced part of 71 (E;). If we consider the morphism f : X — c,
and its special fibre D := f~1(0), then we have D = Y. Di. We will use the notations,

Dk = H (Dig N+ nDik),-ed)I D" = H (Di, N N Dy,)

fo< < g 0<io < <ir

red’

Under these circumstances we have the following theorem ([3], [16]) on the vanishing cohomology
Hr+k( Xoo)-

Theorem 6.3 There exists a spectral sequence Elr‘k converging to H™t*(X ) satisfying the follow-
ing properties.

1) It converges to the weight filtration on H™*(X,,), i.e. ELF = Grl¥ H™+*(X,),

2) It degenerates at the term Fy and Ej = Fu.

3) The E, term is given by the formulae

EPF = B0 H* T3 =%(DEH-)(r — i) for r<0,
= Hk(lD('r)) @ ( Disr Hk+2r—2 (D(zi—--r))(r — z)) for r>0
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We can classify the elements of A, after their eigenvalues under the action z — (.(z) = M)z

with ( = t»zz_’rl«‘4‘:—1 that coincides with the action 75 of the semisimple part of the monodromy
T =T, Ty, where T,, denotes the unipotent part of 7. _

Let us introduce the Poincaré polynomial of A,4(7)/Aq+1(7) in taking the monodromy action (.,
into account,

(6.8) Py Agamy () == Y, ALH™TTOX,
0<x<1

(6.9) Par)/ Agra(n)(t) = RPE.

where

REHTTT0i= H{e® € Ag(r)/ Agra (7); h(a) = x + a},
B = H{o® € Aq(r)/ Agir ()i h{e) = a}-

The main theorem of [3] can be formulated as follows,

Theorem 6.4 We suppose that I'(f) is a simplicial Newton boundary. Then Poincaré polynomials
(6.8), (6.9) satisfy the following relations,

(6.10)
P.Aq(‘r)/Aq+l(T)(t) — (__l)dzm‘r—q Z Z(_l),dctm 7+1Cp+k+1( Z th(Ot)___ Z th(a)_ Z th(a)),
all facesyCr k>0 ac(k+1)%¥ a€ky acky
(6.11) Z Payr)/agmsn () = z (t — 1)¥Em7,
g>0 all facesyCT

Let us recall fundamental notions around the spectral pairs of the singularity that reflect the in-
terplay between the monodromy action T and the MHS of H" (X)) [17]. The MHS on H™ (Xoo)
consists of an increasing weight filtration W. and a decreasing Hodge filtration F' ( [16]). Let T,
be the semisimple part of T, and T, unipotent, then T preserves the filtration F" and W. whereas
N =log T, satisfies N(W;) C Wi_, and N(FP) C FP~1. For eigenvalue x of T, we define

HPY = Ker (T, — x - idy; Grit A" (X)),

" Pd . KpP 9
dim HP9 = h24,

where H"~1(X,) denotes the reduced cohomology, Gr¥ = W;/W;_;, and Gr& = FP/F?+l, For
a € Q and w € Z we define integers mq , as follows. Writta =n—-1-p—-fFwith0 <8< 1

and let x = e~2"V=1¢ If x # 1 then mq ,, = h2Y=P while Mg, = hfc';’l’*' 1=P_ The spectral pairs are
collected in the invariant

(6'12) Spp(f) = Z Ma,w(a, ’UJ),

to be considered as an element of the free abelian group on Q x Z. It is known that Spp(f) is
invariant under the symmetry (o, w) — (n — 2 — @, 2n — 2 — w) [17], Theorem 1.1, (ii).
Theorem 6.4 entails the relations

(613) Z P.Aq (T)/Aq+1(1)(t) = Z hgc’d—th,
dimt=d 0<x<1 ’



32

S. TANABE
(6.14) Y Y Panidean(®) =) At
g20rCI(f) ¢=20
As a corollary we have,
(6.19) BTIPRTI = B2, KRR = W,

We can write down the formula (6.10) in a more combinatorially clear way,
(6.16)

WS TP (Ds) = (1) NS (< 1)im 41 Cprkrr (€1 ((k + 1)7) — £°(k%) — (k7))
all facesyCT k>0

where Dy = P; N X for 7 suspension of (r,0) ¢ R*! with (0,---,0, M) € R*t..
Algorithm

Further we give an algorithm to get a basis of A(f) in a purely combinatorial way. We shall
achieve this task in making the decomposition of A(f) in (6.5) more precise. This is the unique
original part of this article.

Let 17, -, M be vertices of a k—dimensional simplex face 7 (if necessary we divide a non-
simplex face into a sum of simplices). Here we remark the fact that for two simplices 71,72 whose
sum give a face A C I'(f) i.e. A =73 U7, and whose intersection is again a simplex v ;v = 71 N7y,
we have

PSA(t) = PS;,_ (t) + PSﬁ (t) - PS.v,(t)'
Thus the following procedure has meaning.
Definition 8 Simplex subdivision &1,- -, 0 of faces of ['(f) means that for each (n—1) dimensional

compact face v C I'(f), there ezists an unigue subdivision of it into a sum of (n — 1)~ dimensional
simplices,

for a set of indices I(vy) C [1,---,m] associated to 4. Consequently,

r-(n=Ué

i=1
is a subdivision into n dimensional simplices 6;, 1 <i<m.

We describe a combinatorial algorithm (not unique) to get a basis of A(f) consisting of several
steps.

1) For a (n — 1)dimensional simplex 7 (whose vertices are #, ' -+, Un) of a simplex subdivision,
we consiruct the parallelepiped

(6.17) B, :={R"N {cone(r) \ O(i}" + cone(7))}}.

i=1

The inclusion relation B, D supp(A,) D supp(V;) can be easily seen from (6.6). For fized subset of
indices J C {1,---,n} each vertex of the parallelepiped has the form

7(J) := Zﬁ',,
ieJ

where no repetition of indices is allowed.
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2) To consider the set Gr = By \ { all open skeletons of dimension less than (n — 1) contained
in FO/FY(A,) } In other words G, = supp(W,).

As a special case of copy, we introduce the notion of canonical copy c,(a) of a point o with
respect to a (n — 1)dimensional simplex 7 of the simplex subdivision (whose vertices are 71, -+, 7n)
that means the points o, c,(a) are symmetrically located with respect to 3 3", %,

(6.18) c(a)+a= z":f)‘,;.

i=1

We shall choose basis of A(f) in such a way that the symmetry property of Hodge numbers (6.15) can
be realized. As for the integer points of A, on the intermediate Hodge filtration level F*/Fit1(A,),
1 <€ i £ n— 2, the points of G, already realize this symmetry property. This can be seen from
the arguments of [4], §5 where essentially supp(A.) is combinatorially described. Thus we shall
further first care about the choice of supp(A.) on the extremal Hodge filtration levels FO/F1(A,)
and F™"1/F"(A,).

3) To count the number of interior points of each canonical copy c- (') of #*™ in Gy, located
on the Hodge filtration level F°/F*(A,).

4) For every (n — 1) simplez 7 from simplex subdivision to exclude faces from G;, contained in
Fr=1/Fn(A,), that are located on some coordinate plane.

The following two measures 5), 6) are to be taken to cope with repetitive appearances of A,’s
mentioned in the Proposition 6.2, 3).

5) Suppose that Ay, - -+, Ay are (n—1) simplices from a simplez subdivision of faces of T'(f) such
that A;n---NAg # 0. To choose a canonical copy ca, (0'™t) of each open skeleton a*™t of AjN---NA
with respect to a simplex A; that is to be chosen in dependence of o*™. If the open skeleton o*™ has
another expression like 0™ C 41 N +-- N4y for another pair of simplices of a simplex subdivision
{A1,--, Ak} # {n, %}, we do not add any of canonical copies cy, (0™), j € [1, k']

This procedure is necessary to recover these mteger points that are located on the intersection
Ay N N Ay on the level of F°/F!(Ap,) for some unique i € (1, k].

For example, in f; case below (see 7.3) (1,1,1) € (0 'vo)"‘t contained in ['; N T, 'y NI'3 and
'3 NT. The canonical copy cr, ((0, %)) = (91 + T3, To + T1 + 2)™™* shall be added to Gr,

8) Purthermore if dim(A, N--- N AL) = dim o™ we shall add other not canonical copies
A (o™),. -, (o) (in understanding cl(o™) = o', cF(o™"t) = ca,(0™) of the procedure 5)
above) such tha.t ‘

(6.19) I (ginty ¢ F[%—l]“/Flﬂ#H‘j“(AA‘j)

for2 -5l <j<k- [5] ~ 1 such that they produce a symmetry with respect to the Hodge
filtration F".

In the case of simplicial Newton boundary I'(f) we have & < n thus the above procedure can be
realized so that (6.19) holds in such a way that c/(c®"t) € Ga., and By, # Ay for all pairs j # 7.
On the contrary, if I'(f) is not simplicial, such a simple construction is already impossible. This
situation explains why Danilov restricted himself to the simplicial Newton boundary case in {3].

For example, see (7.1.1), (7.1.2) and (7.1.3) below.

7) Add zero dimensional faces (i.e. vertices) of A; not belonging to the coordinate plane and
their canonical copies with respect to A; only once for each.

Making use of the above basis, one can calculate the MHS of A(f).

8) We classify all points from 2% € A(f) according to their position with respect to faces of
simplex subdivision 6, ,0m. That is to say to find &; such that

2%t ¢ By,
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where xt = 1 -+ Ty,

9) To evaluate h(&+1) by means of the piecewise linear function h such that hls, = 1 introduced
Just after (6.6).

10) (x #1 case ) [fR(@+1)=n—-1-f-pfor0<p<n—1,0< B <1, thenz® € HYY,.
Here the index q can be chosen in the following way. For p < [25}] the indez q is to be chosen
g = dim o™ —1> 0 if G+1 belongs to one of the copies of 0. While for p > [251] the index q is to

n—1

be chosen q = n—dim ¢*™ > 0 under a parallel situation. All other cases (I xaéI ) except H 7 -,

(n : 0dd) can be recovered from the above data making use of the relation (8.15) B¢ = h_; 1”’ no1-q
realized by taking proper copies. The exceptional case has a following ezpression,

H;gTu{aﬂeUB*"‘," <h(a+1)<———}

11) (x =1 case) Ifh(@+1)=n—-1—pfor0<p<n—1and&+1 belongs to one of the copies
of o', then z% € H”_i'q Here the index q can be chosen as q = dim o*™ > 0 if @ + 1 belongs to
one of the copies of a’"t, while for p > [B5= 1] the index g is to be chosen g = n—dim o™ > 0 under
a parallel situation. All cases can be recovered from the above data making use of the relation (6.15)
h23, = hy ™7 realized by taking proper copies.

Remark 2 The choice of the representative modJsa in Ba does effect not only on the weight
filtration but also on the Hodge filtration (see examples below).

7 Examples

We show examples of calculus by means of the computer algebra system for computation
SINGULAR. One can find an introduction to algorithms to compute monodromy related invari-
ants (namely spectral pairs) of isolated hypersurface singularities in [15]. In the sequence, we use
the notation [i)’ = [i]zy for 7.1 and [i} = [{]zyz for 7.2, 7.3. In the description of the spectral
pairs we use the convention ((a,w),Mq,) under the notation of (6.12). We see that the rational
monodromy o of the basis [i] is expressed as o; = h([i]') ~ 1 for piecewise linear function h(-)
introduced just after (6.6).

7.1 Let us begin with a polynomial in two variables,

fo = 25 4 2Byt + 23y 4 y12

Here and further on, we shall make use of the notational convention ziyjzk = z*yi2*. The algebra
A(f1) (rank A(f1) = 94) has the following basis, [1] = zy13, [2] = y13,{3] = zy12,[4] = y12,[5] =
zyll, [6] = y11, [T} = zy10, [8] = y10, [9] = zy9, [10] = ¥9, [11] = zy8, [12] = 8, [13] = zy7, [14]
y7,(15] = zy6,[16] = y6,(17] = x245,(18] = xy5, [19] = y5,(20] = 25y4,[21] = z4y4,[22] =
z3y4,[23] = x2v4,(24] = zy4, [25] = y4,[26] = =8y3, [27] = z7y3, (28] = x6y3,[29] = =x5y3,
[30] = 493, [31] = z3y3, [32] = x2y3,[33] = zy3,[34] = y3, [35] = z16y2, [36] = z15y2, (37]
z14y2, [38] = w13y2, [39] = x12y2, [40] = z11y2, [41] = z10y2, [42] = 29y2, [43] = 28y2, [44]
zTy2, [45) = z6y2, [46] = z5y2, [47] = z4y2, [48] = x3y2, [49] = 22y2, [50] = zy2, [51] = ¥2,{52] =
x19y, [53] = z18y, [54] = z17y, [55] = z16y, [56] = z15y, [57] = z1dy, [58] = z13y, [59] = z12y, [60]
= 11y, [61] = =10y, [62) = z9y, [63] = =8y, [64] = Ty, [65] = z6y, [66] = 5y, [67] = =4y, [68] =
23y, [69] = 22y, [10] = zy, [Tl)=y , [72]=x22 , [73]=x21 , [74]=x20 , [75]=x19 , [76]=x18 , [77]=x17
, [78]=x16 , [79}=x15 , [80]=x14 , [81]=x13 , [82]=x12 , [83]=x11 , [84)=x10 , [85]=x9 , [86]=x8
[87)=xT7 , [88]=x6 , [89]=x5 , [90]=x4 , [91]=x3 , [92]=x2 ,[93] =z, [94] = 1.
The spectral pairs are calculated as follows,

]

i
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((-19/24,1),1),((—43/60,1),1),((-2/3,2),1),((—13/20,1),1),( ('7/12’1)13) ’ ( ('31/601 1) ) 1) ) ( ('1/2
12)a1)7(('1/211)51):(('11/24v1)71))(('9/20’1)’1);(('13/3())1)51),(('5/12!1)
» 1) ) ( ('23/60 3 1) ) 1) ’ ( ('3/8v 1) ’ 1) ) ('(‘11/30a 1) ) 1) ’ ( ('1/3 ’ 2) ’ 1) ) ( ('1/3 s 1) ’ 1) ’
( ('19/60!1)’1))( (’3/1091)11)7( ('7/2471)v1):( ('1/4’1) ’ 4) ’ ( ('7/30 ) 1) ) 1) ) ( (’13/60 H 1 ) ’ 1) 3 (
(‘11/60,1);1)a(('1/671))4)7(('3/2011)»1)7(('I/Syl):l)a(('7/6071)71)s(('1/10»
1) 3 1),(('1/12) 1))4)7(('1/2011)a1) ’ ( (‘1/24,1) ’ 1) $(('1/30) 1)31) ’(('1/60’ l)al)v
((0,1),4),((1/60,1),1),((1/30,1),1),((1/24,1),1),((1/20,1),1),((1/12,1),
4), ((1/10,1),1),((7/60,1),1),((1/8,1),1),((3/20,1),1), ((1/6,1),4), ((11/60
,1),1), ((18/60,1),1), ((7/30,1),1),((1/4,1),4),((7/24,1),1),((3/10,1), 1), (
(19/60,1),1), ((1/3,1),1),((1/3,0),1),((11/30,1),1), ((3/8,1),1), ((23/60,
1),1),((5/12,1),1), ((13/30,1),1),((9/20,1),1), ((11/24,1),1),((1/2,1), 1), (
(1/2,0), 1), ((31/60,1),1), ((7/12,1),3), ((13/20,1),1),((2/3,0),1), ((43/60, 1)
1), ((19/24, 1), 1).

Let us use the notation #) = (0,12), 72 = (3,6), ¥ = (6,4), ¥4 = (5,0), 1 = convexz hull{?1,¥a},
Ty = convex hull{Us, U3}, 73 = convez hull{Us, U4}. Then we have

supp(Vs,) = 2% N {convex hull{v1, vy, ¥y + T2} U convex hull{0, Ta}int}.
supp(Vs,) = Z2N{convez hull{y, T3, Tr+73 } " Uconvex hull{0, T2} ™Uconvex hull{0, 73} U2{0}}.

supp(Vy,) = Z% N {convex hull{¥s, T, U3 + 74 }*™ U convez hull{0, T3}ty

As we see there are repetitive appearances of convez hull{0, 72}, convez hull{0,7s}*** and {0}
each of them twice. Thus the summation (6.5) must be taken in the following way,

(7.1.1) A(f1) = 2% N {convex hull{, T, 11 + U2 }'™* U convex hull{vy, U3, 72 + Tp}irt

(7.1.2)  Uconvex hull{#s, 1, U3 + 53}*™ U convex hull{0, 26;}™ U convez hull{0, 203}*™}.
Here it is worthy to notice that
(7.1.3) convex hull{0, 25;}"™ = convex hull{0, 72}"™ U {72} U ¢, (convez hull{0, 72}'"™),
= convez hull{0, To}*™ U {@2} U cr, (convez hull{0, 72}*™),
convez hull{0, 203}"™ = convex hull{0, 73} U {U3} U c,, (convez hull{0,7a}"™),
& conver hull{0, 73}™ U {33} U cr, (convez hull{0, U3}*").

We can calculate by hands the spectral pairs above in evaluating the monomials [i},1 < ¢ < 94
modulo Jacobian ideal of f; by means of a piecewise linear function,

hi,j) = &+4 for(i,j)€Bn
= g+ Jfor(ij)€Bn
& +35% for(i,5) € Br,

according to their classification into B.,, B
For example

]
oo

s (closures of parallelepipeds introduced in (6.17)).

3,2 ,.8,2 ,__1

12 8 6 12 2’

which gives the spectral pair ((~3,2),1). Here the weight filtration index 2 indicates that [69]' €
cone(tz N 73). In a similar way

h([69)) = 1=

L

, 1
B(T) - 1= + =

-1 =

wib

1=

[ <18 ]

-+

Bl



36

S. TANABE

that gives the spectral pair ((—£,2),1).
7.2 Let us treat the case studied by [3] as an example.

fao=xzd+yd+ 28+ 222 + y222.

The ring A(f2) with rank 31 has the following basis,

[1]= z4y2 , [2]= zy223 , [3]= 28 , [4]= 27, [5|=26 , [6]=25 ,([7]=yz4 , [8]=xz4 , [9]=24 , [10]=y3z2
,[11]=x3y2, [12]=23, [13]=y222 , [14]=xyz2, [15]=yz2, [16]=x22, [17]=22 , [18]=y2z, [19]=xyz , [20]=yz
,[21]=xz , [22)=2 , [23]=x2y2 , [24]=xy2, [25]=y2 , [26]=x2y , [27]=xy , [28]=y , [29]=x2, [30]=x, [31]
= 1.

This result is slightly different from what SINGULAR gives us due to the reason mentioned in
Remark 2.

SINGULAR calculates the spectral pairs as follows,
((-=1/4,2),1),((0,3),1),((0,2),2),((1/8,2),1),((1/4,2),6),((3/8,2),1),((1/2,2),7), ((5/8,2
1),((3/4,2),6),((7/8,2),1),((1,2),2),((1,1),1),((5/4,2),1 ).

Let us denote by I'; the convex hull of {(0,0,0), (0,0,8),(2,0,2),(0,2,2)}, I's that of {(0,0,0),
(2,0,2), (0,2,2), (0,4,0)}, T'5 that of {(0,0,0),(2,0,2),(4,0,0),(0,4,0)}. The piecewise linear func-
tion h{iy, i3, 13) is given by the following,

fl

h(i1,i2,i3) Ltietls  for (i),4s,43) € Br, U Br,

1
3(3 ] . N N 5
il't;—’hz—a for (i1,42,13) € Br,.

We remark that [1)) = z5y3z € FO/F1(Ar,), while [31}' = zyz € F?(Ar,). The point [1]’ is the
canonical copy of {31)' with respect to I';. The point [2] € H,lc’._fl is located on cone(I'; NT'y) with
spectral pair (1, 1) which is the canonical copy of [22]’ € H:fl with respect to Iy whose spectral pair

is (0, 3). The points [10]', [11])’ € H,lcf are located on the 2-dimensional open skeleton of 21 and

they give spectral pairs ((1,2), 2). They are the canonical copies of [28]’, (30}’ € H:il with spectral
pairs ((0,2),2). All other integer points are located in the interior of cone(I';) U cone(l'y U T'3)
with weight filtration w = 2 and they correspond to H,lc';l & H;’;zl @ HZ‘:I. Here we recall that
x = e~ 2h(1)V=1 for each basis element, [i].

7.3 Next we consider the case that B.Malgrange (in a letter to the editor of Inventiones Math-
ematicae) used to demonstrate that a maximum size Jordan cell (=the dimension n) of the mon-
odromy T (or equivalently that of T},) really appears,

fa =8 + y8 + 28 + x2y222.

The MHS and essentially the spectral pairs of Spp(f3) are described in detail in [16], (3.15).
The ring A(fs) with rank 215 has the following basis,

[1]= 216, [2]= 215, [3]= 214, [4]= 213, [5]= 212, [6]= 211, [7]= 210, [8]= zyz9, [9)= yz9, [10]= x29,
[11]= 29, [12]= y7=8, [13]= y628, [14]= y528, [15]= 12, [16]= y328, [17]= y228, [18]= zyz8,
[19]= yz8, [20]= z728, [21]= 628, [22)= 2528, [23]= y12, [24]= 2328, [25]= 2228, [26]= z28,
[27]= 28, [28]= y727, [29]= y627, [30]= y527, [31l]|= y4z7, [32]= y327, [33]= Y227, [34]= wxy2T,
[85]= y27, [36]= 2727, [37]= =627, [38)= =527, [39)= x427, [40]= z327, [41]= 227, [42]= x=27,
[43]= 27, [44]= y726, [45]= y626, [46]= Y526, [47|= y426, [48]= y326, [49]= Y226, [50]= zyz6,
[51]= y26, [62]= z726, [53]= 2626, [54]= x526, [65]= z426, [56]= 326, [567]= £226, [58]= 26,
[69)= =6, [60]= y725, [61]= y625, [62]= Y525, [63]= yd25, [64]= y325, [65]= y225, [66]= zyz5,
[67]= yz5, [68]= z7z5, [69]= z625, [T0]= x525, [T1)= z425, [72]= 28325, [13]= 2225, [T4]= x25,
[75]= 25, [76]= yTz4, {T7]= y624, [78]= y5z4, [T9]= ydz4, [80]= y324, [81]= y224, [82]= zyz4,
[83]= yz4, [84]= zT24, [85]= z624, [86]= z524, [87]= z424, [88]= 2324, [89]= 2224, [90]= z24,
[91}= 24, [92]= Y723, [93]= y623, [94]= y523, [95]= y423, [96]= 323, [97}= y223, [98]= zy23, [99]=
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yz3, (100]= z723, [101]= z623, [102]= 2523, [103]= z423, [104]= 2323, (105|= x2z3, [106]= xz3,
[107]= 23, [108]= y722, [109]= y622, [110]= y522, [111}= y422, [112]= y322, [113]= 222, [114]=
zy22, [115]= yz2, [116]= z722, [117}= 2622, [118]= x522, [119]= z422, [120]= %322, [121]= %222,
[122]= z22, [123]= 22, {124]= zy7z, [125]= y7z, [126]= zy6z, [127])= y6z, [128]= zy5z, [129]= y52,
[130]= zy4dz, [131]= y4z, [132]= zy3z, [133]= y3z, [134]= zy2z, [135|= y2z, [136]= zTyz, [137]=
x6yz, [138]= z5yz, [139)= zdyz, [140]= z3yz, [141}= z2yz, [142]= zyz, [143]= yz, [144]= xT7z,
[145]= z6z, [146]= x5z, [147|= x4z, [148]= x3z, (149]= 222z, (150}= zz, [151]= %z, [152]= z7y7,
[153]= z6y7, [154]= z5y7, [155]= zdy7, [156]= z3y7, [157|= z2y7, [158]= zy7, [159]= y7, [160]=
zTy6, [161]= z6y6, [162)= z5y6, [163]= zdy6, [164]= z3y6, [165]= x2y6, [166]= xy6, [167]= y6,
(168]= z7y5, [169]= 26y5, [170|= z5y5, [171)= z4y5, [172]= 3y5, (173]= 2245, (174]= zy5, [175]=
y5, [176]= zTy4, [177)= z6y4, [178]= z5y4, [179]= z4y4, [180]= z3y4, [181]= z2y4, [182]= xy4,
[183]= y4, [184]= z7y3, [185]= 26y3, [186]= z5y3, [187)= z4y3, [188)= z3y3, [189]= z2y3, [190]=
zy3, (191]= y3, [192]= z7y2, [193]= z6y2, (194]= z5y2, [195]= x4y2, [196]= z3y2, [197]= =22,
(198]= zy2, [199]= y2, [200]= zTy, [201)= 26y, [202]= z5y, [203]= x4y, [204]= z3y, [205]= 22y,
[206]= zy, [207]= y, [208]= 7, [209]= 26, [210]= 25, [211]= x4, [212]= z3, [213]= 22, [214]= =,
[215]= 1. Here we have chosen [15], [23] differently from the computation given by SINGULAR due
to the reason mentioned in Remark 2.

The spectral pairs are calculated by SINGULAR ss follows, ((-1/2,4),1), ((-3/8,3),3), (
('1/4’3)'»3)’(('1/4’2)33)a(('1/873)’3)s((‘1/872)rG)a((0a3))4)a((0a2)’9)7(
(1/8,3),3), ((1/8,2),15), ((1/4,3),3), ((1/4,2),18), ((3/8,3),3), ((3/8,2),21),
((1/2,2),25), ((5/8,2),21), ((5/8,1),3), ((3/4,2),18), ((3/4,1),3),((7/8,9),
15), ((7/8,1),83),((1,2),9),((1,1),4),((9/8,2),6),((9/8,1),3),((5/4,2),3),
((6/4,1),3),((11/8,1),3),((3/2,0),1).

Let us denote by I'; the convex hull of {73 = (0,0,8),7 = (2,2,2),%1 = (8,0,0)}, I'z that of
{¥o, D1, B2 = (0,8,0)}, 'y that of {¥y, J2,73}. The most interesting monomials with spectral pairs
(0,3),(0,2) are the following

[91], [142], [183], [211] € H22, with spp(fs) = (0,3),

[99], [106], [112], [121], {132}, [148], [190], [197), [204] € H 2L, with spp(fs) = (0,2).

Monomials of H;ﬁl (with spectral pairs ((0,2),9)) are obtained as the canonical copies of H ;;1 (
with spectral pairs ((1,2),9) ) with respect to properly chosen 2-faces. Namely,

(30}, [38], [45], [53], [60}, [68], [154], [161], [168] € H 12, with spp(f3) = (1,2).

We see also,
(51, (8], [15], (23] € HL2, with spp(fs) = (1,1).

We see also H22_; = {[215]} and H)C_, = {[1]}. All other monomisls are located in Bfi*U Bfi*U
B,

- 8 Complete intersections

It is quite natural to extend the above approaches (to describe MHS of the cohomology group)
to the case of complete intersections (CI). The research on CI is also divided into the global study
(Clin a torus ) and the local study (the Milnor fibre of CI).

We remember that one can find the calculus of the Hodge numbers of an IC in a torus already in
{4]. Danilov and Khovanski made use of so called Cayley trick to reduce the computation of Hodge
numbers for an IC to that for an hypersurface.

In [21], I made use of the isomorphism based on the Cayley trick to get concrete expressions of
the fibre integrals associated to the non-degenerate affine CI variety. Further as an application, [20]
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verified that the fibre integral of certain Givental’ type CI coincides with the Fourier transform of
the quantum cohomology to the projective space and calculated the monodromy of the fibre integral
in question. )

As for the local Milnor fibre case, after studies initiated by [7] and [1], [8] which describe the MHS
of quasihomogeneous isolated CI singularities, [6] gives a tentative description of MHS to isolated
CI singularities (ICIS) not necessarily quasihomogeneous. In[19], I established an alogorithm to
calculate Gauss-Manin system associated to the quasihomogeneous ICIS and described the poles of
the Mellin transform of their fibre integrals in terms of the MHS of the Milnor fibre.

Though [6] succeeded to fabricate finite dimensional vector space of differential forms associated
to each ICIS that possesses symmetry property similar to that for spectral pairs {6.12) in hypersur-
face case, still their method carries ad hoc character dependent on each type of singularity and it
is still distant from a combinatorially universal description given by (3] for simplicial hypersurface
singularities.
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