
1. INTRODUCTION 

Maintaining and improving civil infrastructures 
including bridge structures are keen technical issues 
in many countries. Developing an effective 
maintenance strategy relies on a timely decision on 
the health condition of the structure. Structural 
health monitoring (SHM) using vibration data thus 
has been recognized as one of the promising 
technologies for providing a timely decision on the 
bridge health condition. Most precedent studies on 
SHM specifically examine changes in modal 
properties of structures (e.g. Doebling et al. 1996). 
The fundamental concept of this technology is that 
modal parameters are functions of structures’ 
physical properties. Therefore, changes in physical 
properties, such as reduced stiffness resulting from 
damage, will detectably change these modal 
properties.  
   In fact, many techniques to identify the hidden 
information of structural integrity in the vibration 
data have been proposed to diagnose bridge 
structures (Deraemaeker et al. 2007, Dilena and 
Morassi 2011 and Kim et al. 2012). However, real 
bridge structures are subject to changing 
environmental and operational conditions that affect 
structural integrity information during the long in-

service period. Some components in the signals 
affected by those environmental and operational 
effects lurk in the measured vibration data and 
disguise themselves as structural responses (Sohn et 
al. 2003, and Deraemaeker et al. 2007).  
   As in-service effects on vibration monitoring of 
bridges, temperature, wind and traffic-induced 
vibrations and traffic mass effects are factors to be 
considered. Focusing on short and medium span 
bridges, however, temperature and traffics are 
dominant factors affecting the vibration of bridges 
(Peeters and De Roeck 2001, and Cunha et al. 
2013). Therefore, how to consider those 
environmental and operational effects is a crucial 
issue in long-term bridge health monitoring. 

This study is intended to investigate a way to 
consider time-varying temperature and vehicle 
weight as environmental and operational factors for 
long-term vibration-based bridge health monitoring 
(BHM) by means of a Bayesian approach, which is 
an improvement from previous researches 
considering only temperature as an environmental 
factor by Kim et al. (2011 and 2013a).   

The proposed Bayesian approach consists of three 
steps. Step 1 is to identify damage indicators (DIs) 
from coefficients of the auto-regressive (AR) model 
utilizing bridge accelerations (Nair et al. 2006, Kim 
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et al. 2012 and 2013b). Since AR coefficients are 
closely linked with features of bridge vibrations, 
changes in DI are not only caused by changes in the 
bridge health condition but also by changes of 
environmental and operational conditions during 
monitoring. Step 2 is to perform a regression 
analysis of the DIs identified in Step 1 (observed DI 
(DIob)) to consider environmental and operational 
changes by means of the Bayesian regression 
(Kitagawa and Gersch 1984) to examine long-term 
monitoring data effectively by an online updating. 
Step 3 is the step for decision making on the bridge 
health condition by means of the Bayesian 
hypothesis test (Sankararaman and Mahadevan 
2011) in which residuals estimated from differences 
between the DIob and the predicted DI (DIpr) 
estimated by the Bayesian regression in Step 2. 

The Bayesian approach is applied to investigate 
monitoring data of an in-service seven-span plate-
Gerber bridge. This study considers time-varying 
temperature and vehicle weight as environmental 
and operational factors respectively. Vehicle 
weights are identified utilizing a bridge weigh-in-
motion (BWIM) system (Moses 1979 and Heng et 
al. 2011) installed on the bridge. All the data is 
taken from the healthy bridge, since no damage and 
deterioration was reported during the monitoring 
period. The influences of those environmental and 
operational factors on regression are also 
investigated by comparing the following three cases: 
consider both temperature and vehicle weight, 
consider only temperature, and consider only vehicle 
weight. 

2. A BAYESIAN APPROACH FOR LONG-TERM 
BHM 

2.1 Identification of damage-sensitive features from 
AR coefficients: Step 1 

Many studies focus on changes in system 
frequencies and structural damping constants for the 
structural diagnosis of bridges utilizing a linear time 
series model such as the AR model. However, there 
exist drawbacks in modal parameter–based bridge 
diagnosis using time series models; e.g., the optimal 
time series model for vibration responses of bridge 
structures usually comprises a higher-order term, 
and as a result the optimal model identifies even 
spurious modal parameters, which causes false 
system frequencies and damping constants. Those 
false modal parameters make it difficult to choose 
the proper modal parameters affected by structural 
damage. The drawback of the existing method is the 
driving force behind this study. This study 
considered an alternative parameter based on AR 
coefficients as a damage-sensitive feature for the 
vibration-based BHM because both system 

frequency and damping constant are related to AR 
coefficients (Nair et al. 2006). 

Step 1 is to identify the DIob from coefficients of 
the AR model of bridge acceleration responses. This 
paper includes only a brief description about the DI 
without covering details, since theoretical 
backgrounds of utilizing AR coefficients as a 
damage-sensitive feature have already investigated 
by Nair et al. (2006) for a model building structure 
and by Kim et al. (2013b) for a model bridge and 
thus details can be fully accessed in the studies.  

The linear dynamic system can be idealized using 
the AR model shown in Equation 1, 

 (1) 

where zk denotes the k-th output of a system, ai is the 
i-th AR coefficient, p is the optimal AR order and ek 
indicates the k-th error. The optimal AR order, 
which is obtainable by means of Akaike Information 
Criteria (AIC) (Akaike 1974), is used in this study. 
AIC is given by Equation 2. 

 (2) 

where n indicates the number of data, m represents 
AR order, and E2 means square of prediction error. 
The AIC consists of two terms; the first term is a 
log-likelihood function and the second term is a 
penalty function for the number of the AR order.  
   The DIob is defined by Equation 3. (Nair et al. 
2006 and Kim et al. 2013b) 

DIob =
a1

a1
2 + a2

2 + a3
2  

(3) 

where a1, a2 and a3 indicate the first, second and 
third AR coefficients respectively.  
   Nair et al. (2006) showed that the first three AR 
coefficients are the most significant among all the 
coefficients of the AR model utilizing data from the 
laboratory experiment on a model building. Kim et 
al. (2013b) also observed that the DIob, considering 
up to the third order of the AR coefficients, is a 
promising parameter in bridge health monitoring 
through a bridge-moving vehicle laboratory 
experiment. 

2.2 Consideration of environmental and operational 
changes: Step 2 

In a long-term bridge monitoring, the DIob varies 
due to time-varying environmental and operational 
conditions. Influences of environmental and 
operational factors on DIob are treated as exterior 
disturbances in the ARX model. This study adopts 
the Kalman filter to estimate the model parameters 
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with ARX model that provides relationship between 
DI and external disturbances caused by 
environmental and operational factors. The idea is to 
perform a regression analysis with the Kalman filter 
to estimate model parameters of the ARX model. 
The Kalman filter is adopted to realize online 
updating and therefore makes it possible to utilize 
long-term monitoring data more efficiently. The 
converged model parameters after updating were 
considered as the optimal model parameters. 

2.2.1 Kalman filter 
The state space model for the Bayesian regression is 
given by Equation 4 and Equation 5. 

 (4) 

 (5) 

where xt and yt are the state matrix and observation 
at a time t respectively. vt and wt denote noise at t. 
For any particular models of the time series, F, G 
and Ht are known. The future state can be predicted 
in terms of the Kalman filter as follows. (Kitagawa 
and Gersch 1984) 

1|11|  = tttt xFx
 (6) 

TT
1|11| GQGFFVV +=  tttt  (7) 

 

where 1| ttx
 and 1| ttV

 denote the predicted 
conditional mean matrix and covariance matrix at t 
under the condition of the state at t-1 respectively. Q 
stands for the covariance matrix of vt. The filtered 
state also can be estimated as follows. 

 1|1||  += ttttttttt y xHKxx
 (8) 

  1|| = tttttt VHKIV
 (9) 

where Kt is the Kalman gain defined by Equation 10. 
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where R denotes the variance of wt.  

2.2.2 ARX model 
In this study, environmental and operational factors 
are treated as exterior disturbances in the ARX 
model, which can be expressed discretely as shown 
in Equation 11. (Kim et al. 2015) 

DIob
(t ) = aiDIob

(t-i)

i=1

q

 + biu
(ti) +wt

i=1

r

  (11) 

where q and r stand for model orders. αi and βi are 
model parameters. u(t) denote environmental and 

operational factors at t and wt is noise at t 
respectively. In other words, this study assumes the 
following relationships for the parameters and 
matrixes in Equations 4 and 5. 

yt = DIob
(t )  (12) 

F=I (Identity matrix) (13) 

G=0 (Null matrix) (14) 

xt = a1,...,aq,b1,...,br
éë ùû

T
 (15) 

Ht = DIob
(t1),...,DIob

(tq),u(t1),...,u(tr)éë ùû (16) 

R=1 (17) 

   Moreover the initial mean and covariance 
matrixes were assumed as follows, 

(Null matrix) (18) 

(Identity matrix) (19) 

   The optimal model parameters are obtained by 
satisfying Equation 20. 

 (20) 

2.3 Anomaly detection utilizing the Bayesian 
hypothesis test: Step 3 

Step 3 is for anomaly detection by means of the 
Bayesian hypothesis test based on residuals 
estimated by Equation 21.  

)()( tDItDIr probt =  (21) 

where opt)( xHtpr tDI = . 

2.3.1 Bayes factor 
In Bayesian statistics, it is possible to estimate the 
probability of a hypothesis conditionally on 
observed data. If the null hypothesis (H0) is defined 
as ‘healthy’ and the alternate hypothesis (H1) is 
defined as ‘damage’, the posterior odds are obtained 
by utilizing priors and marginal likelihoods as 
follows. 
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where D refers to the data obtained during 
monitoring, )H()H( 01 pp indicates the prior odds, 

)H|( 1Dp  and )H|( 0Dp  are called the marginal 
likelihoods. 
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We call the ratio of the marginal likelihoods as 
Bayes factor (B), which is defined as the ratio of 
likelihood of the two scenarios ‘damage’ and 
‘healthy’ as follows (e.g. Kass and Raftery 1995). 

B = p(D | H1)

p(D | H0 )
=

p(D |q1, H1)p(q1 | H1)dq1ò
p(D |q0, H0 )p(q0 | H0 )dq0ò

 (23) 

where θ0 and θ1 are parameters under H0 and H1 .  
   If the Bayes factor is greater than 1, it implies 
that the data favor the hypothesis H1 and hence 
suggests that there is damage. If the Bayes factor is 
less than 1, then there is no damage. According to 
Jeffreys (1998), a Bayes factor such that 1<B<3 is 
‘barely worth mentioning’, 3<B<10 is ‘substantial’, 
10<B<30 is ‘strong’, 30<B<100 is ‘very strong’, and 
B>100 is ‘decisive’. In other words, B<1 is ‘nothing 
(no damage)’, 1<B<3 is ‘very small’, 3<B<10 is 
‘small’, 10<B<30 is ‘strong’, 30<B<100 is ‘very 
strong’ and B>100 is ‘decisive (damage)’. In 
practical applications, it might provide a threshold to 
decide an inspection, e.g. an emergency inspection if 
the Bayes factor gets more than 100 continuously, 
although more comprehensive studies are needed.  

The flowchart of Bayesian approach for long-term 
bridge health monitoring is shown in Figure 1. 

2.3.2 Hypothesis test 
The DIob and DIpr can be expressed as follows. 

DIob = DItr +eob  (24) 

DI pr = DItr +e pr
 (25) 

where DItr indicates the true DI, εob and εpr are 
normally distributed errors of DIob and DIpr 
respectively. The residual can be expressed, then, as 
follows. 

r = DIob DIpr =eob epr =e  (26) 

where e ~ N m,s 2  . 
As an example of applying the Bayesian 

hypothesis test, this study assumes that the null 
hypothesis is defined by Equation 27 and the 
alternate hypothesis is defined by Equation 28. 

H0 :m = m0 = 0  (27) 

H1 :m = m1 ¹ 0  (28) 

Also, the standard deviation was assumed to be 
constant as follows. 

s =s 0
 (29) 

This study adopts the equation for B proposed by 
Jiang and Mahadevan (2008) shown in Equation 30 
in which the prior probability of the mean m is 
assumed following the normal distribution with 
mean of  and standard deviation of . 
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Figure. 1 Flowchart of the Bayesian approach for long-

term bridge health monitoring. 
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and n denotes the number of the data and ri 

represents the i-th residual.  

3. LONG-TERM MONITORING ON AN IN-
SERVICE PLATE-GERBER BRIDGE 

This study utilizes data monitored at the seven-span 
plate-Gerber bridge as shown in Figure 2, which is 
located on a busy national road in Japan.  

The bridge properties are summarized in Table 1. 
The plan view with sensor locations on the 
observation span is shown in Figure 3. Therein, UA-
1, UA-2, DA-1 and DA-2 stand for accelerometers 
to measure acceleration responses of steel girders on 
up (UA) and down (DA) lanes. The sampling rate 
was 200 Hz for acceleration measurements. 
Thermometers  were denoted by T-5 and T-6. 
Temperature was measured once every hour. A 
BWIM system (Moses 1979 and Heng et al. 2011) is 
installed in the bridge, and this study utilizes the 
vehicle’s whole weight estimated by the BWIM 
system. 

 

 
Figure 2. Observed bridge. 
 

 
Figure 3. Sensor locations on the observation span. 
 
Table 1. Properties of the observation bridge 

Construction year 1960 

Bridge length (m) 186.4 

Span length (m) 
Hanging girder 16.0 

Anchorage 
girder 

6.2+28.4+6.2 

Width (m) 8.0 

 
Table 2. Training and test data sets. 
Name (n: 
number of 

data) 
Monitoring period Monitored data 

Data 0 
(n=1512) 

5 August 2008- 
17 August 2009 

Accelerations, 
temperatures & 
vehicle weight 

Data 1 
(n=700) 

6 October 2009- 
29 March 2010 

Accelerations & 
temperatures 

Data 2 
(n=1484) 

2 July 2013- 
7 July 2014 

Accelerations & 
temperatures 

Data 0: training data, Data1 & Data 2: test data. 

 
Figure 4. Time windows to identify the DIob from 
acceleration measured at UA-1. 

 

  

  

 

 

 
Figure 5. DIob, DIpr and residual of DIob and DIpr identified 
at the sensor of UA-1, temperature measured at the sensor 
of T-6 and vehicle weight estimated by the BWIM system 
on up lane. 



This study focuses on the effects of time-varying 
temperature and vehicle weight measured at 1:00, 
7:00, 13:00 and 19:00 on every Wednesday and 
Sunday for about one year (6th August 2008 to 21st 
June 2009) as a training data. It is noteworthy that 
all the data is taken from the healthy bridge since no 
damage and deterioration was reported during the 
monitoring period. Two other data sets are 
considered as test data. These one training data set 
and other two test data sets are shown in Table 2, 
where Data0 is the training data set and Data1 and 
Data2 are the test data sets.  

4. APPLICATION AND DISCUSSION 

The proposed approach was applied to the long-term 
monitoring data and artificially made damage data.  

4.1 Regression analysis to consider environmental 
and operational changes 

This study identifies 100 DIob’s from blocks of 
acceleration data obtaining by means of moving 
time windows as shown in Figure 4. This study 
adopted 40.96s as the moving window following 
preliminary investigations considering different 
width of moving windows such as 20.48s, 40.96s 
and 81.92s which showed similar trends with each 
other. For the overlap window, 70% overlap (28.67s, 
in other words 12.29s for un-overlap window length) 
was adopted in this study. 

The DIob of Data 0 are shown in Figure 5 with 
predicted DIpr, residuals, temperature and vehicle 
weight. With Data 0, comparison was made between 
the linear regression and ARX considering only 
temperature. The AIC was also used as the index of 
regression accuracy since the smaller AIC is, the 
better the regression accuracy is. The results are 
shown in Figure 6. Therein the ARX model clearly 
showed better regression accuracy than that of the 
linear regression.  

The AIC of four other cases considering 
different environmental and operational inputs 
shown in Table 3 were estimated and summarized in 
Figure 7, which implies that considering both 
temperature and vehicle weight resulted in better 
accuracy than consider only temperature. It is 
expected that considering both temperature and 
vehicle weight will have better accuracy than 
considering only vehicle weight although it was not 
demonstrated in this study. 

Table 3. Different exogenous inputs. 

Name 
Regression 

model 
Considered 

factors 
Utilized data 

ARX-T ARX Temperature 
Acceleration & 

temperature 
AR AR Not considered Acceleration 

ARX-TW ARX 
Temperature & 
vehicle weight 

Acceleration, 
temperature 

& vehicle weight 

ARX-W ARX Vehicle weight 
Acceleration & 
vehicle weight 

 

 
Figure 6. AIC utilizing ARX model and linear regression 
considering temperature at the sensors of UA-1, UA-2, DA-
1 and DA-2 in Data 0. 
 

 
Figure 7. AIC utilizing ARX model in other cases at the 
sensors of UA-1, UA-2, DA-1 and DA-2 in Data 0. 
 

 
Figure 8. Bayes factors (B) at the sensors of UA-1, UA-2, 
DA-1 and DA-2 utilizing data from October to March in 
Data 0, Data 1 and Data 2. 



4.2 Bayes factor for damage detection 

4.2.1 With healthy data 
Data from October to March of Data 0, Data 1 and 
Data2 were utilized to calculate the Bayes factor (B). 
Only temperature was considered with the ARX 
model. The Bayes factors are summarized in Figure 
8, where r0, r1 and r2 stand for the residuals of DI 
of Data 0, Data 1 and Data 2 respectively.  
   In all cases, possibility of damage turned out to 
be very low. However, in all three other cases except 
UA-1, Bayes factor more or less shows increasing 
trend.  

Those three sets of the monitored data at UA-1 
and updated Bayes factors are shown in Figure 9, 
which also demonstrated that little possibility of 
damage. An interesting observation is that relatively 
larger changes of Bayes were observed at beginning 
of January of 2010 and 2014 because of the 
drastically reduced heavy traffics during new-year 
holidays. However after new-year holidays those 
changes were disappeared. It demonstrates that if 
increased Bayes factor will not decrease for a long 
time it indicates possibility of damage in the bridge.   

4.2.2 With artificially made damaged data 
Since data of a damaged bridge are not available, 
300 random residuals were artificially generated by 
means of the Monte Carlo simulation and treated as 
damaged data. The residual were assumed as 
normally distributed with average of 0.01 (not 0 
deliberately) and standard deviation of 0.02. They 
were then connected with Data 0 as shown in Figure 
10. These data were treated as continued data and 
the Bayes Factor was estimated and also plotted in 
Figure 10. It shows that the Bayes factor 
substantially increased in the area of damaged data, 
which implies possibility of the Bayes factor for 
damage detection.  

5. CONCLUSIONS 

This study investigated a way to consider changes in 
temperature and vehicle weight as environmental 
and operational factors for long-term vibration-
based BHM by applying the Bayesian approach to 
long-term monitoring data taken from an in-service 
plate-Gerber bridge. The Bayesian approach consists 
of three steps: Step 1 is to identify damage-sensitive 
features from coefficients of the AR model utilizing 
bridge accelerations; Step 2 is to consider 
environmental and operational changes by means of 
the Kalman filter; Step 3 is to make a decision based 
on the residuals utilizing the Bayesian hypothesis 
test. 

Observations through this study could be 
summarized as follows.  
(1) The adoption of ARX model to consider 

environmental and operational changes led to 
better regression accuracy than linear regression. 

(2) Observations demonstrated that possibility of 
damage is very low. 

 
 

 
Figure 9. Three sets of acceleration data and updated Bayes 
factor w.r.t. time. 
 
 

  
Figure 10. Three sets of acceleration data and updated 
Bayes factor w.r.t. time. 
 



(3) Gradual deterioration of the bridge might be 
progressing. 

(4) Bayes factor might be a useful indicator for 
damage detection, but a definite conclusion still 
requires further investigations. 
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