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AN INTRODUCTION TO ARC SPACES

R TERERZERE T 2H5ER
AHEHELRT (Shihoko Ishii)

ABsTRACT. This paper is an introduction to the structure of the
arc space of an algebraic variety.
Keywords: arc space, valuation, toric variety, Nash problem

1. INTRODUCTION

The concept jet space and arc space over an algebraic variety or an
analytic space is introduced by Nash in his preprint in 1968 which is
later published as [20]. The study of these spaces was further developed
by Kontsevich, Denef and Loeser as the theory of motivic integration,
see [14, 5]. These spaces are considered as something to represent the
nature of the singularities of the base space. In fact, papers [7], [18],
[19] by Mustat3, Ein and Yasuda show that geometric properties of the
jet schemes determine certain properties of the singularities of the base
space.

In this paper, we provide the beginners with the basic knowledge
of these spaces. One of the most powerful arms to work on these
space is the motivic integration. But this paper does not step into
this theory, as there are already very good introduction papers on the
motivic integration by A. Craw [4] and W. Veys [24]. We devote into
the basic study of geometric structure of arc spaces. We also give the
introduction to the Nash problem which was posed in [20]

Throughout this paper the base field & is algebraically close field of
arbitrary characteristic and a variety is an irreducible reduced scheme
of finite type over k.

2. CONSTRUCTION OF JET SPACES AND ARC SPACES

Definition 2.1. Let X be a scheme of finite type over k and K D k a
field extension. A morphism Spec K[t]/(t™*!) — X is called an m-jet
of X and Spec K{[[t]] — X is called an arc of X. We denote the closed
point of Spec K{[t]] by 0 and the generic point by 7.
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AN INTRODUCTION TO ARC SPACES

Proposition 2.2. Let X be a scheme of finite type over k. Let Sch/k
be the category of k-schemes and Set the category of sets. Define a
contravariant functor FX : Sch/k — Set by

FX(Y) = Homy(Y Xspecs Spec k[t]/(t™11), X).

Then, EX is representable by a scheme X,, of finite type over k, that
18
Homy (Y, Xom) ~ Homg(Y Xspec i Speck[t]/(t™11), X).

This X, is called the space of m-jets of X.
Proof. This proposition is proved in [3, p. 276]. In this paper, we prove
this by a concrete construction for affine X first and then patching them
together for a general X.

Let X be SpecR, R = k[z1,...,z.)/(f1,., fr). It is sufficient to

prove the representability for an affine variety Z = Spec A. Then, we
obtain that

(2.2.1)  Hom(Z x Speck[t]/(t™*"), X) ~ Hom(R, A[ t]/(E™1))

~ {¢ € Hom(k[z1, ., Zn), []/(tm+1)) | o(fi) =0 for i=1,.., r}.
If we write p(z;) = a§°) + a§1)t + a§-2)t2 + ..+ a§ ™¢m it follows that

o(£) = FO@P) + FO @)t + .+ F™ (0

for polynomials F}(S) in a(-l) ’s. Then the above set (2.2.1) is as follows:

= {p € Hom(k[z;, =", ., 2™ | j = 1, ,n}, A) | p(z?) = o, FP(a{?) = 0}

J”J

= Hom(k[z;, 23", ., ™|/ (F (z{)), 4).

J”J

If we write X,, = Speck[z;, g), Y §m)]/(F(s)(x(l )), the above set
(2.2.1) is

Hom(Z, X,,,).
For a general X, cover it by affine open subsets U; (¢ € I). Then, we
can patch (U;)y,’s together by the following lemma. O

Lemma 2.3. Assume the functor FX is representable by X, for a
k-scheme X. Let wp : X, — X be the morphism induced from
the canonical surjection k[t]/(t™!) — k. Then for an open subset
U C X, FU is representable by X |y := m;,2(U).

This lemma follows immediately from a more general statement Propo-

sition 3.3.
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Remark 2.4. The defining equations Es(x§l) )'s of X, are obtained as

follows: Let D be a derivation of k[z;, x§1), y :cgm)] defined by D(x§-l)) =
m§-l+1), where we define xgl) = 0 for I > m. Then, it follows that

Fp(2l) = D*(fy).

Example 2.5. For X = AZ, it follows X, = AZ(mH) from the proof
of Proposition 2.2.
Example 2.6. Let X be a hypersurface in A} defined by f = 0. Then,
X,, is defined in AX™ by f = D(f) = ... = D™(f) = 0. For
example, if f = zy + 2% and m = 2, we obtain that X, is defined by
oy + 22 = 20y + zy® + 2220 = £@y 4 220y @ 4 2y@ 4 220D 4
2229 = 0. One can see that X, is irreducible and not normal.
2.7. The canonical surjection k[t]/(t™+!) — k[t]/(t™) induces a mor-
phism @, : X;n — Xpm_1. Define 7, = 100 : Xy — X. A
point of X,, gives an m-jet « : Spec K[t]/(t™*!) — X. We denote the
point of X, corresponding to a : Spec K[t]/(t™*!) — X by the same
symbol a. Then, 7,(a) = a(0),

Let X = lim » X and call it the space of arcs of X. Xoo 18 not of
finite type over k but it is a scheme, see [5].

Using the representability of F;, we obtain the following universal
property of Xoo:
Proposition 2.8. Let X be a scheme of finite type over k. Then

Homy (Y, Xoo) =~ Homg(Y Xspec kSpec k([t]], X)

for an arbitrary k-scheme Y, where Y XspeckSpec k|[[t]] means the for-

mal completion of Y Xspec k. Spec k[[t]] along the subscheme Y Xspec {0}
Corollary 2.9. There is a universal family of arcs

X oo X spec kSpEC K[[t]] — X.

2.10. Denote the canonical projection X, — X,, by 7, and the
composite 7, © Ny, by 7. When we need to specify the base space X,
we write it by mx. A point z € X, gives an arc oy : Spec K[[t]] — X
and 7(z) = a,(0), where K is the residue field at z. As an m-jet we
denote z € X and o, by the same symbol a.

Example 2.11. If X = A}, then X, = Speck[z;, 2 P .] which

3 %]
we denote by A°. Here, we note that the set of closed points of AR° is

not necessarily in the set
k® :={(a1, a9,...) | a; € k},

see the following theorem.
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Theorem 2.12 ([11]). Every closed point of AL is a k-valued point if
and only if #k s not countable.

3. MISCELLANEOUS PROPERTIES OF JET SPACES AND ARC SPACES

Proposition 3.1. Let f : X — Y be a morphism of k-schemes of
finite type. Then the canonical morphism fn, : X;m — Ym 15 induced
for every m € NU {oo}.

Proof. For an m-jet (or arc ) o € X,, of X, the composite f o  is an
m-jet (or arc) of Y. This map X,, — Y, a — f o« is our required
morphism. O

Proposition 3.2. Let f : X — Y be a proper birational morphism
of k-schemes such that flx\w : X \W >~ Y \V, where W C X and
V CY are closed. Then fy, gives a bijection

Proof. Let a € Yoo \ Vo, then a(n) € X \ V. As X \W Y \ V. We
obtain the following commutative diagram:

Spec K((t)) — X

! 1.

SpecK|[t]] = Y
Then, as f is a proper morphism, there is a unique morphism & :
Spec K[[t]] — X such that f o @ = a. This shows the bijectivity as
required. U

The following is the generalization of Lemma 2.3.
Proposition 3.3. If f : X — Y s an étale morphism, then X,, ~
Y xy X, for everym € NU {co}.

Proof. As lim (Y xy X) = (im ,Y;) Xy X, it is sufficient to prove
the assertion for m € N. By the commutative diagram: ’

Xp I Y,
l 1,
x L v

we obtain a morphism ¢ : X,, — Y;, Xy X. On the other hand, the
projection Y;, xy X — Y,,, corresponds to a morphism Y;, Xy X Xspec k
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Speckl[t]/(t™*') — Y which completes the following commutative
diagram:
Y Xy X Yy Xy X Xspeck Spec k[t]/(t™)

J !

x L Y
As f is formally étale, there is a morphism
Yim Xy X Xspeck Speck(t] /(™) — X which make the diagram com-
mutative. The corresponding morphism Y,, xy X — X, is the inverse
morphism of ¢. O

Proposition 3.4. There is a canonical isomorphism:
(X XY)m = Xy X Y,
for every m € NU {o0}.
Proof. For an arbitrary k-scheme Z,
Homy(Z, X X Ym) =~ Homi(Z, X,) X Homg(Z, V),
and the right hand side is isomorphic to

Homk(szpec kSpec k[t]/(tm+1), X) >(Horﬂk:(ZXSpec kSpeC k[t]/(tm+1)’ Y)

~ Homk(Z X Speck Spec k[t]/(tm+1),X X Y)
~ Homg(Z, (X X Y)n,).

For m = oo, the proof is similar. 7 a

Proposition 3.5. Let f : X — Y is an open immersion (resp. closed
immersion) of k-schemes of finite type. Then the induced morphism
fm : X — Y, is also an open immersion (resp. closed immersion)
for every m € NU {oo}.

Proof. The open case follows from Lemma 2.3. For the closed case, we
may assume that Y is affine. If YV is defined by f; (i = 1,.,7) in an
affine space, then X is defined by f; (i =1, .,7,.,u) in the same affine
space. Then, Y;, is defined by D*(f;) (i = 1,.,r, s < m) and X,, is
defined by D*(f;) (i = 1,.,7,.,u, s < m) in the corresponding affine
space. This shows that X,, is a closed subscheme of Y;,. O

Remark 3.6. In the above proposition we see that the property open
or closed immersion of the base spaces is inherited by the morphism of
the space of jets and arcs. But some properties are not inherited. For
example, surjectivity and closedness are not inherited.
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Example 3.7. There is an example that f : X — Y is surjective
(resp. closed) but fo : Xoo — Yoo is not surjective (resp. closed). Let

X =A% and G = ( 6 €n0—1 )) be a finite cyclic subgroup in GL(2, C)

acting on X, where n > 2 and ¢ is a primitive n-th root of unity. Let
Y = X/G be the quotient of X by the action of G. Then, it is well
known that the singularity appeared in Y is A, _;-singularity. Then
the canonical projection f: X — Y is closed and surjective. We will
see that these two properties are not inherited by fo : Xoo — Yoo
Let p be the image f(0) € Y. Then, by the commutativity

X = Y,
L mx %
x L v

we obtain 73 (0) = fz! o myt(p). Here, m%'(0) is irreducible, since
X is non-singular. On the other hand 7' (p) has (n — 1)-irreducible
components by [20], [12]. Therefore the morphism f,, is not surjective.
As X\ {0} — Y\ {p} is étale, Proposition 3.3 yields the surjectivity
of the morphism (X \ {0})oo — (Y \ {P})oo- Since Y, is irreducible,
foo 18 dominant. Therefore, f., is not closed.

Next we discuss about the irreducibility of the arc space or jet spaces.

Theorem 3.8. If characteristic of k is zero, then the space of arcs of
a variety X 1is irreducible.

Proof. This is proved in [13]. The lemma [12, 2.12] also gives a proof of
this statement. It proves that every arc a € (Sing X ) is in the closure
of an arc § € Xy \ (Sing X)e. We can see that Xy \ (Sing X)wo
is irreducible, since this is the image of Y, \ (¢ !(Sing X)) by a
morphism ¢, where ¢ : Y — X is a resolution of the singularities of
X. (cf., Proposition 3.2). As Y, \ (¢7}(Sing X))w is an open subset
of an irreducible Yy, it follows the irreducibility of X. |

Example 3.9 ([12]). If the characteristic of k is p > 0, X is not
necessarily irreducible. For example, the hypersurface X defined by
xf — yPz = 0 has an irredicible component in (Sing X )., which is not
in the closure of X, \ (Sing X )eo.

Example 3.10 ([11]). Let X be a toric variety over an algebraically
closed field of arbitrary characterictic. Then, X, is irreducible.

A space of m-jets is not necessarily irreducible even if the character-
istic of k is zero.
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Theorem 3.11 ([18]). If X s locally a complete intersection variety
over an algebraically closed field of characteristic zero, then Xy 18 17-
reducible for all m > 1 if and only if X has rational singularities.

Another story in which a geometric property of space of jets deter-
mines the singularities on the base space is as follows:

Theorem 3.12 ([7]). Let X be a reduced divisor on a nonsingular
variety over C. X has terminal singularities if and only if X, is normal
for every m € N.

4. INTRODUCTION TO THE NASH PROBLEM

The Nash problem is a question about the Nash components and the
essential divisors. First we introduce the concept of essential divisors.

Definition 4.1. Let X be a variety, g : X; — X a proper bira-
tional morphism from a normal variety X; and £ C X; an irreducible
exceptional divisor of g. Let f : X; — X be another proper bi-
rational morphism from a normal variety X;. The birational map
flog: X, --» X, is defined on a (nonempty) open subset E° of
E. The closure of (f~! o g)(E®) is well defined. It is called the center
of F on Xj.

We say that E appears in f (or in Xy), if the center of E on X is also
a divisor. In this case the birational map f~*og: X; --+ X3 is a local
isomorphism at the generic point of F and we denote the birational
transform of E on X, again by E. For our purposes E C X is identified
with E C X,. (Strictly speaking, we should be talking about the
corresponding divisorial valuation instead.) Such an equivalence class
is called an ezceptional divisor over X.
Definition 4.2. Let X be a variety over k. In this paper, by a resolu-
tion of the singularities of X we mean a proper, birational morphism
f:Y — X with Y non-singular such that ¥ \ f~!(Sing X) —
X \ Sing X is an isomorphism.
Definition 4.3. An exceptional divisor E over X is called an essential
divisor over X if for every resolution f : Y — X the center of £ on
Y is an irreducible component of f~*(Sing X).

For a given resolution f : Y — X, the set

£ v = ‘irreducible components of f~}(Sing X)

— “Y/X = Y which are centers of essential divisors over X

corresponds bijectively to the set of all essential divisors over X.
Therefore we call an element of £ an essential componenton Y.

C. Bourvier and G. Gonzalez-Sprinberg also work on “essential divi-
sors” and “essential components” in [1] and [2], but we should note that



AN INTRODUCTION TO ARC SPACES

the definitions are different from ours. In order to distinguish them we
give different names to their “essential divisors” and “essential compo-
nents”.

Definition 4.4 ([1}, [2]). An exceptional divisor E over X is called
a BGS-essential divisor over X if E appears in every resolution. An
exceptional divisor F over X is called a BGS-essential component over
X if the center of E on every resolution f of the singularity of X is an
irreducible component of f~!(E’), where E' is the center of E on X.

Proposition 4.5. If X is a surface, then each set of “essential divi-
sors”, “BGS-essential divisors” and “BGS-essential components” are
bijective to the set of the components of the fiber f~1(Sing X), where
f:Y — X is the minimal resolution.

» o«

Remark 4.6. Four concepts “essential divisor”, “essential component”,
“BGS-essential divisor” and “BGS-essential component” are mutually
different in general.

First, our essential componet is different from the others, because
it is a closed subset on a specific resolution and the others are all
equivalence class of divisors.

Next, a BGS-essential divisor is different from a BGS-essential com-
ponent or a essential divisor. Indeed, for X = (zy —zw = 0) C A}, the
exceptional divisor obtained by a blow-up at the origin is the unique
essential divisor and also the unique BGS-essential component, while
there is no BGS-essential divisor, since X has a small resolution whose
exceptional set is Pj.

Finally a BGS-essential component and an essential divisor are dif-
ferent. Indeed, consider a cone generated by (0,0,1),(2,0,1),(1,1,1),
(0,1,1) in Ng = Z3. Let X be the affine toric variety defined by this
cone. Then the canonical subdivision adding a one dimensional cone
R>0(1,0, 1) is a resolution of X. As the singular locus of X is of dimen-
sion one, there is no small resolution. Therefore, the divisor D(;,0,1) is
the unique essential divisor, while D12y and D(s,1,2) are BGS-essential
components by the criterion [1, Theorem 2.3].

Definition 4.7. Let X be a variety. An irreducible component C of
7~ 1(Sing X) is called a Nash component if it contains an arc o such
that a(n) & Sing X. This is equivalent to that C' ¢ (Sing X) .

The following lemma is already quoted for the irreducibility of the
space of arcs (Theorem 3.8).

Lemma 4.8 ([12]). If the characterisitic of the base field k is zero,
then every irreducible component of = (Sing X) is a Nash component.
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Example 4.9 ([12]). Let the characteristic of the base field k be p > 0.
Let X be a hypersurface defined by z? — 4z = 0. Then, X has an
irredicible component in 7~!(Sing X) contained in (Sing X ).

Let f : Y — X be a resolution of the singularities of X and E;
(I = 1,..,7) the irreducible components of f~!(Sing X). Now we are
going to introduce a map N which is called the Nash map

Nash components essential essential
of the space of arcs AR components » ~ ¢ divisors .
through Sing X onY over X

4.10 (construction of the Nash map). The resolution f : ¥ — X
induces a morphism fo : Yoo — Xoo Of schemes. Let 7y : Yoo —
Y be the canonical projection. As Y is non-singular, (my) '(E;) is
irreducible for every l. Denote by (my)*(E;)° the open subset of

(my)~'(E};) consisting of the points corresponding to arcs 3 : Spec K [[t]] —

Y such that 8(n) € U, E;. Let C; (i € I) be the Nash components of
X. Denote by C? the open subset of C; consisting of the points corre-
sponding to arcs a : Spec K|[[t]] — X such that o(n) ¢ Sing X. By
restriction foo gives f. : Ul_;(my ) H(EL)° — U;er C?. By Proposition
3.2, f! is surjective. Hence, for each 7 € I thereis 1 <[; < rsuch that
the generic point B, of (my)~!(E;,)° is mapped to the generic point o;
of C?. By this correspondence C; — Ej; we obtain a map

Nash components irreducible
N : { of the space of arcs } — components
through Sing X of f~!(Sing X)

Lemma 4.11. The map N is an injective map to the subset { essential
components on Y'}.

Proof. Let N(C;) = E,,. Denote the generic point of C; by «; and
the generic point of (7y) (E;) by 6. If Ey, = Ey, for i # j, then
o; = fio(Bi) = foo(Bi;) = cj, & contradiction.

To prove that the {E), : i € I} are essential components on Y, let
Y’ — X be another resolution and ¥ — X a divisorial resolution
which factors through both Y and Y’. Let Ej, C Y’ and E;, C Y be
the irreducible components of the exceptional sets corresponding to C;.
Then, we can see that F;, and E;, are the image of Ej,. This shows
that F, is an essential divisor over X and therefore Ej, is an essential
component on Y. O
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Problem 4.12. Is the Nash map

Nash components [ essential essential
of the space of arcs y — { components ; =~ divisors
through Sing X onY over X

bijective?

After Nash’s preprint which posed this problem was circulated in
1968, Bouvier, Gonzalez-Sprinberg, Hickel, Lejeune-Jalabert, Nobile,
Reguera-Lopez and others (see, [1], [9], [10], [15], [16], [17], [21], [22])
worked on the arc space of a singular variety related to this problem.

Recently for a toric variety of arbitrary dimension the Nash problem
is affirmatively answered but is negatively answered in general in [12].

Here, we introduce a brief history of this problem.

Theorem 4.13 ([20]). The Nash problem holds true for an Ap-singularity
(n € N), where a A,-singularity is the hypersurface singularity defined
by zy — 2" =0 in A3,

Theorem 4.14 ([22]). The Nash problem holds true for a minimal sur-
face singularity. Here, a minimal surface singularity means a rational
surface singularity with the reduced fundamental cycle.

Theorem 4.15 ([17], [23]). The Nash problem holds true for a sand-
wiched surface singularity. Here, a sandwichted surface singularity
means the formal neighborhood of a singular point on a surface 0b-
tained by blowing up a complete ideal in the local ring of a closed point
on a non-singular algebraic surface.

Theorem 4.16 ([12]). The Nash problem holds true for a toric singu-
larity of arbitrary dimension.

So far we have seen the affirmative answers. The last year, negative
examples are given in [12].
Example 4.17. Let X be a hypersurface defined by z3 + z3 + z3 +
z3 + 28 = 0 in AL. Then the number of the Nash components is one,

while the number of the essential divisors is two. Therefore the Nash
map is not bijective.

By the above example we can construct counter examples to the
Nash problem for dimension greater than 3. At this moment the Nash
problem is still open for two and three dimensional variety.
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