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Abstract

The stable isotope ratio of W is a new tracer in oceanographic studies and a new proxy in
paleoceanographic studies; however, precise data for modern seawater have not been reported
to date. Because the concentration of W in seawater is as low as 49 pmol kg™, an ~3000-fold
preconcentration is necessary prior to measurement by multicollector inductivity coupled
plasma mass spectrometry (MC-ICP-MS). For the preconcentration, we investigated
solid-phase extraction using chelating resins, namely, NOBIAS Chelate-PA1 with
ethylenediaminetriacetic acid groups and TSK-8HQ with 8-hydroxyquinolie groups. We
report that TSK-8HQ is useful because the effects of the seawater matrix are minor
thermodynamically and kinetically. We present a novel method for analysis of the
concentrations and isotope ratios of W and Mo in seawater, consisting of solid phase
extraction, chromatographic separation using anion exchange resin AGl X8, and
measurement by MC-ICP-MS. Both W and Mo are quantitatively recovered by this method,
which was applied to seawater samples collected from the North Pacific Ocean. The measured
concentration of W and the concentration and isotope ratio of Mo are consistent with those in

the literature. The isotope ratio of W is found to be uniform throughout the water column in
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the western North Pacific Ocean; 8'%#W is 0.55 + 0.12%o (ave + 2sd, n = 7) using NIST
SRM 3163 as a reference for W. On the basis of this data, we determined that the isotopic
difference in 5'%#W is ~0.49%, between seawater and oxic sediments in the modern ocean.
This value accords with the reported experimental data for the isotope fractionation of W
during adsorption on manganese and iron (oxyhydr)oxides, suggesting the validity of our

data.

Keywords: Tungsten isotope; Molybdenum isotope; Seawater; Chemical separation;

MC-ICP-MS; North Pacific Ocean

1. Introduction

Stable isotope ratios of heavy metals are emerging as new tracers in oceanography
and new proxies in paleoceanography owing to the development of analytical techniques
using multicollector inductivity coupled plasma mass spectrometry (MC-ICP-MS) (Anbar and
Rouxel, 2007; Boyle et al., 2012; Homoky et al., 2016). However, our knowledge on the
distribution of stable isotope ratios of heavy metals in the modern ocean is still limited for
certain elements, such as V (Wu et al., 2019), Cr (Moos and Boyle, 2019), Fe (Conway and
John, 2014), Ni (Takano et al., 2017), Cu (Takano et al., 2014), Zn (Sieber et al., 2020), Ge
(Guillermic et al., 2017), Mo (Nakagawa et al., 2012), Cd (Schmitt et al., 2009), Ba (Horner
et al., 2015), Nd (Lacan et al., 2012), Hf (Zimmermann et al., 2009), and Pb (Zurbrick et al.,
2018).

Tungsten and Mo are Group 6 elements. The upper crustal abundance of W is 1.9
ppm, which is close to that of Mo at 1.1 ppm (Rudnick and Gao, 2005). In oxic seawater, W
and Mo dissolve as oxyanions WO,*" and MoO4?", respectively; however, the concentration of

W is 49 pmol kg™, which is 2000 times lower than that of Mo at 107 nmol kg™ (Collier,
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1985; Firdaus et al., 2008; Nakagawa et al., 2012; Sohrin et al., 1987). This difference is
ascribed to the fact that the sinks for W and Mo in the oxic ocean are Mn and Fe
(oxyhydr)oxides (Shimmield and Price, 1986) and that the distribution ratio of W between the
(oxyhydr)oxides and seawater is several hundred times higher than that of Mo (Kashiwabara
et al., 2017; Kashiwabara et al., 2013; Kashiwabara et al., 2011; Sohrin et al., 1987). In
sulfidic seawater, MoO,* is transformed into particle-reactive thiomolybdate anions
M00O,S4,> (0 < x < 3) and removed from solution at a H,S concentration above 11 pmol kg
(Erickson and Helz, 2000). However, thiotungstate is formed at a H,S concentration above 60
umol kg and is not particle reactive (Mohajerin et al., 2016), resulting in W enrichment in
anoxic hydrothermal fluids (Kishida et al., 2004). Recently, a laboratory experiment has
shown that WO,*" converts to WS,* around 1.0 mmol kg * H,S at equilibrium (Cui et al.,
2020). This substantial fractionation of W and Mo in the hydrosphere is quite unique among
twin elements in the same group. Tungsten has five stable isotopes: **W (natural abundance
0.12%), #2W (26.50%), W (14.31%), ®*W (30.64%), and ‘*°W (28.43%) (de Laeter et al.,
2003). Molybdenum has seven stable isotopes: Mo (14.77%), **Mo (9.23%), *Mo (15.90%),
%Mo (16.68%), “’"Mo (9.56%), ®*Mo (24.19%), and *®*Mo (9.67%) (de Laeter et al., 2003).
Although Mo stable isotopes have been actively studied, especially as proxies for redox
conditions in paleoceanography (Négler et al., 2011; Neubert et al., 2008; Ostrander et al.,
2019; Scholz et al., 2018; Thoby et al., 2019; Wang et al., 2019), the study of W stable
isotopes is still in the early stages. Several studies reported analytical methods and data of
geological reference materials for W (Abraham et al., 2015; Breton and Quitte, 2014; Krabbe
et al., 2017; Kurzweil et al., 2018; Tsujisaka et al., 2019; Zhang et al., 2019). Only a few
studies reported stable W isotope data for geological samples (Kurzweil et al., 2019; Kurzweil
et al., 2020; Mazza et al., 2020).

To the best of our knowledge, stable isotope data for dissolved W in seawater have
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not been reported to date. High precision is necessary to detect isotope fractionation for such a
heavy element. For precise determination by MC-ICP-MS, W in seawater should be
preconcentrated more than one thousand-fold and separated from coexisting elements.
Additionally, the recovery of W through chemical separation should be quantitative to avoid
an isotope fractionation. In previous studies, we developed precise analytical methods to
determine isotopic ratios of Mo in seawater (Nakagawa et al., 2008) and those of W and Mo
in sediments (Tsujisaka et al., 2019). In this study, we compare chelating resins, namely,
NOBIAS Chelate-PA1 with ethylenediaminetriacetic acid groups and TSK-8HQ with
8-hydroxyquinolie groups, for preconcentration of W from a large volume of seawater. Then,
we present a novel analytical method for determining the isotopic ratios of W in seawater.
Finally, we report the first vertical profile of the isotopic ratio of W in the western North
Pacific Ocean and the first estimate of isotopic difference in §*%*®*W between seawater and

oxic sediments in the ocean.

2. Material and methods
2.1. Reagents and materials

Reagent-grade HCI, HF, HNO3;, H,SO4, H0,, NHj;, and tetramethylammonium
hydroxide (TMAH) (FUJIFILM Wako Pure Chemical, Japan) were used for material cleaning
and analysis. Metal standard solutions (FUJIFILM Wako Pure Chemical) were used to
prepare working standard solutions for concentration measurements. NIST SRM 3163 and
3134 standards (National Institute of Standards and Technology, USA) were used as the
isotopic standards for W and Mo, respectively (Irisawa and Hirata, 2006; Nagler et al., 2014).
Standard solutions of Re (FUJIFILM Wako Pure Chemical) and Ru (Thermo Fisher Scientific,
USA) were diluted and added to sample solutions as external element correction for W and

Mo, respectively. Ultrapure water prepared with a Milli-Q Integral MT system (Merck
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Millipore, Germany) was used throughout the experiments.

Seawater samples and all solutions were stored in low-density polyethylene (LDPE)
containers (SEKISUI SEIKEI, Japan) or bottles (Nalge Nunc Int., USA). Perfluoroalkoxy
alkane (PFA) vials (Savillex, USA) were used for sample digestion. These bottles and vials
were cleaned as follows: first, they were soaked in an alkaline detergent solution of ~5% Scat
20X-PF (Nacalai Tesque, Japan) overnight and rinsed with tap water and Milli-Q water, and
then, they were soaked in 3 M HCI overnight and rinsed with Milli-Q water. Finally, the
bottles were soaked in 2 M NHj3 overnight and rinsed with Milli-Q water. Other materials,
such as micropipette tips, columns, and tubes, were cleaned in a similar manner.

We prepared TSK-8HQ in accordance with methods used in previous studies
(Dierssen et al., 2001; Firdaus et al., 2007). The 8HQ group was immobilized onto vinyl
polymer resin via a single step synthesis; 6.0 g 5-amino-8-hydroxyquinoline dihydrochloride
(Tokyo Kasei Kogyo, Japan) and 3.0 g Toyopearl AF-Epoxy-650M (40-90 um bead size;
Tosoh, Japan) were mixed in ~40 mL of aqueous solution at pH 11.5 in a PFA bottle and
shaken at 45°C for 6 h using a constant temperature incubator shaker (TAITEC, Japan). The
previous trade name of Toyopearl was TSK-Gel, which was incorporated into the name of
TSK-8HQ according to previous studies (Dierssen et al., 2001; Firdaus et al., 2007). The
TSK-8HQ resin was sieved with a Teflon screen of 230 mesh to remove small particles. The
TSK-8HQ resin was cleaned by passing 50 mL 0.5 M NaOH, 75 mL ultrapure water, 50 mL
1.0 M HCI, and 75 mL ultrapure water, successively. This cleaning procedure was repeated
until the filtrate became colorless. The cleaned TSK-8HQ resin was kept in ultrapure water in
a LDPE bottle. The TSK-8HQ resin (~200 mg dry weight) was packed in an empty cartridge
(Type L, TOMOE, Japan), of which the body was polypropylene, frits were polyethylene,
inner diameter was 12 mm, and bed height was 6.5 mm.

The other chelating resin column used in this study was Nobias Chelate-PA-1W
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(Hitachi High-Technologies, Japan). In the column, approximately 600 mg of the resin was
sandwiched between frits of high-density polyethylene and sealed in a cartridge of
polypropylene. Prior to use, the column was successively cleaned with 100 mL each of
acetone (reagent grade), ultrapure water, 3 M HNOjs, ultrapure water, 2 M NHj3, and ultrapure
water by injecting the solutions at a flow rate of ~5 mL min* using a polypropylene syringe.
Anion exchange resin AG1 X8 (200-400 mesh, Bio Rad, USA) was used to separate
W and Mo from the remaining matrix elements. The resin was soaked in 1 M HNOj3 in a PFA
bottle and shaken for 30 min. Then, the acid solution was replaced with a new solution. After
five repetitions of this cleaning method, the resin was rinsed with ultrapure water. A
polypropylene column (Muromac Mini-column S, Muromachi Chemicals, Japan) was

charged with ~0.4 g AG1 X8 resin (5 mm internal diameter and 30 mm bed height).

2.2. Seawater samples

Seawater samples were collected from the Pacific Ocean using a clean sampling
system (Sohrin and Bruland, 2011) during the cruises of R/V Hakuho Maru, JASMSTEC. The
seawater samples collected in sampling bottles were filtered through an AcroPak capsule filter
with a pore size of 0.2 um (Pall, USA), collected in a precleaned 5 L LDPE container, added
with HCI (Ultrapur-100, Kanto Chemical, Japan) to a final concentration of 0.01 M, and
stored at an ambient temperature. For method-development experiments, seawater samples
were mixed in a precleaned 60 L polypropylene tank (Nalge Nunc Int.). For analysis of
vertical profiles, seawater samples were collected from several depths at station CL-2
(47°00'N, 160°00'E; bottom depth of 5195 m; sampling depths from 10-5186 m with an
interval of approximately 500 m) in the western North Pacific Ocean during the KH-17-3

cruise in June 2017.
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2.3. Chemical separation
2.3.1. Solid-phase extraction using chelating resin

Two serial-coupled columns of TSK-8HQ were used for seawater analysis. The
preconcentration system (Fig. 1) was constructed with chelating resin columns, PFA tubes
with a 2 mm internal diameter, PharMed tubes (06508-14, SAINT-GOBAIN, France) with a
1.6 mm internal diameter, Tygon tubes (LMT-55, SAINT-GOBAIN) with a 4 mm internal
diameter, and a Masterflex pump (7520-40, Cole-Parmer, USA). Every step of the chemical
analysis was carried out in a clean hood. First, the chelating resin columns were cleaned by
passing 100 mL each of 3 M HNOj3, ultrapure water, 2 M NHj3, and ultrapure water. The flow
rates of the solutions were maintained at 4 mL min™*. Then, the columns were conditioned
using a flow of 50 mL 0.04 M HCI (pH 1.4). Approximately 3 kg of the seawater sample was
adjusted to pH 1.4 with HCI and then introduced into the columns. Finally, 70 mL 0.04 M
HCI (pH 1.4) was passed through the columns to remove remaining matrix elements from the
columns.

The chelating resin columns were detached from the preconcentration system and
connected with a polypropylene syringe for elution of the elements. An eluate of 40 mL 5 M
HF was passed through the columns in the direction opposite to that for sample loading by
gravity flow at a flow rate of 0.3 mL min™. The eluates were collected in PFA vials. The
chelating resin columns were again mounted to the preconcentration system and cleaned with
125 mL ultrapure water for the next use. One cycle of the solid-phase extraction took
approximately 15 h to complete.

The eluate in a PFA vial was heated to dryness at 160°C on a hot plate (Analab,
France). The residual organic matter from the chelating resin was decomposed by adding 2
mL 13 M HNOj3, 0.2 mL 10 M H,0,, and 0.1 mL 0.3 M H,SQ,; capping the vial loosely; and

heating the sample at 160°C for 8 h. The sample was then uncapped, heated to near dryness,
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and redissolved in a 2 mL mixture of 0.5 M HF and 0.4 M HCI by heating at 80°C for 3 h.

2.3.2. Anion exchange separation

Chromatographic separation using anion exchange resin AG1 X8 was applied to the
preconcentrated sample to separate W and Mo from the remaining matrix elements. The
procedure was in accordance with that of our previous study (Tsujisaka et al., 2019). Every
solution was sent through the column by gravity at a flow rate of 0.15 mL min . The column
was first cleaned by flowing 4 mL 6 M HNOj three times, 3 mL ultrapure water, and 1 mL 0.5
M HF-0.4 M HCI three times. The sample solution that has been preconcentrated was then
loaded onto the resin. Matrix elements, such as Fe and Mn, were eluted using a flow of 1 mL
1 M HF three times. Subsequently, high field strength elements, such as Ti, Zr, and Hf, were
eluted using a flow of 1 mL 0.05 M HF-9 M HCI three times. Tungsten was eluted using 3
mL 5 M HCI five times and collected in a PFA vial. Molybdenum was finally eluted using 3
mL 1 M HNOg three times and collected in another PFA vial. One cycle of anion exchange
separation took approximately 5 h to complete.

The purified solutions of Mo and W were evaporated at 160°C on a hot plate. The
residual organic materials from the anion exchange resin were decomposed in a manner
similar to that in the last section but without addition of H,SO,4. After evaporation of the acids,
the residues were redissolved with 1.2 g 0.0055 M TMAH for W and 20 g 0.15 M HNO; for
Mo by heating at ~80°C for 3 h. An accurate concentration factor was calculated on a weight

basis.

2.4. Measurement of element concentrations and isotope ratios
The element concentrations were determined by a calibration curve method using a

NexION 350D quadrupole ICP mass spectrometer (Perkin Elmer, USA). The isotopic



201

N
o
N

O©CoO~NOOTA~AWNE
N
o
w

25 211

28
9 212

30
31 213
32
33 214
34

35
36 215
37

38 216
39
40
41
42
43 218
44

45

46 219
47
48
49
cg 220
51
52 221
53

217

54
o 222
56

57 223
58

59
60 224
61
62
63

64
65

compositions of W and Mo were measured using a Neptune Plus MC-ICP mass spectrometer
(Thermo Fisher Scientific) at the Research Institute for Humanity and Nature (RIHN), Japan.
The measurements were in accordance with those in a previous study (Tsujisaka et al., 2019).
Seven faraday cups were used for W: L3 (***W), L2 (***w), L2 (***W + #0s), C (**Re), H1
(*8W + 18%0s), H2 (*'Re + '¥70s), and H3 (**30s). The isotope **W was not monitored in
this study because of its low natural abundance (0.12%). Isobaric isotopes of **Os, *¥0s, and
8705 on 8w, %W, and ®'Re were corrected by monitoring *%80s. Then, the instrumental
mass bias was corrected by standard-sample bracketing combined with external mass bias
correction using Re. The isotope ratio of W is presented as a delta value (%o) relative to that of
the NIST SRM 3163 standard (Irisawa and Hirata, 2006):

(186W/184—W)
(186W/184W)

8186/184W _ ( sample 1> x 1000 1)

NIST SRM 3163

Nine faraday cups were used for Mo: L4 (**Zr), L3 (*Mo + %zr), L2 (**Mo + *Zr),
L1 (*Mo), C (*'Mo), H1 (*Mo + *Ru), H2 (**Ru), H3 (**'Ru), and H4 (**’Ru). Isobaric
interferences from “?Zr and **Zr on **Mo and **Mo were corrected by monitoring **Zr. Then,
the instrumental mass bias was corrected by standard-sample bracketing combined with
external mass bias correction using Ru. The isotope ratio of Mo is presented as a delta value
(%o) relative to that of the NIST SRM 3134 standard with a correction of +0.25%. for easy
comparison with the literature (Nagler et al., 2014):

(°®Mo/°5Mo)
(°®Mo/°Mo)

S%Nﬁwo=< sample —1)x]000+025 )

NIST SRM 3134

In this study, 8°***Mo was not directly measured because *Mo has an isobaric
isotope (®°Ru). We measured 8°"**Mo and converted the value to §°***Mo via multiplication
by a factor of 3/2 based on mass-dependent fractionation. The concentrations of W and Mo
were also calculated by using Re and Ru, respectively, as internal standards. The long-term

instrumental reproducibility was evaluated using repeated measurements of the NIST SRM

9
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3163 (W) and NIST SRM 3134 (Mo) standard solutions over a nine-month period; the
average and 2 standard deviation was 5'%8*W = 0.00 + 0.02%. (n = 82) and 5§****Mo = 0.00

+ 0.04%o0 (n = 94) (Tsujisaka et al., 2019).

3. Results and discussion
3.1. Comparison of chelating resins
3.1.1. Optimizing pH for NOBIAS Chelate-PA1 and TSK-8HQ columns

The dependency of recovery (%) of W on pH was investigated for chelating resins
NOBIAS Chelate-PA1 and TSK-8HQ by column extraction using a single column. For
NOBIAS Chelate-PA1, the sample solution was 500 g Milli-Q water with 500 pmol kg™ W.
The pH was adjusted with HNO3 below pH 2.5 and ammonium acetate buffer above pH 2.5.
The flow rate of the sample solution was 5 mL min*. For TSK-8HQ, the sample solution was
100 g mixed seawater with 20 nmol kg™ W. The pH was adjusted with HCI below pH 2.2 and
ammonium acetate buffer above pH 2.6. The flow rate of the sample solution was 9 mL min*.
The results are presented in Fig. 2. For NOBIAS Chelate-PA1, the recovery was ~100%
between pH 1.4 and pH 5.0. However, we found that a small amount of W passed through the
column at pH 1.7-3.5. Thus, the optimum pH is 4.7. For TSK-8HQ, the recovery was highest
at pH 1.2 and gradually decreased with increasing pH. Because the added amount of HCI is
two times larger at pH 1.2 than at pH 1.4, we adopted 1.4 as the optimum pH to reduce the

amount of HCI.

3.1.2. Adsorption capacity for each resin
The adsorption capacity (mol g™) is defined as the maximum amount of an element
adsorbed on a unit dry weight of chelating resin. The adsorption capacity of W on NOBIAS

Chelate-PA1 and TSK-8HQ was investigated via batch experiments. For NOBIAS

10
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Chelate-PA1, the sample solutions were Milli-Q water and mixed seawater adjusted to pH 4.7
with 50 mM ammonium acetate buffer. For TSK-8HQ, the sample solutions were Milli-Q
water and mixed seawater adjusted to pH 1.4 with HCI. A 100 g sample solution with 325
umol kg* W and a chelating resin of 0.01 g in dry weight were shaken at 25°C for 2 h using a
constant temperature incubator shaker. Then, the equilibrium concentration of W in solution
was determined by ICP-MS after dilution to calculate the adsorption capacity. The results are
listed in Table 1. There is no significant difference for each resin between the capacities in
Milli-Q water and mixed seawater. The capacity of TSK-8HQ is approximately two times
higher than that of NOBIAS Chelate-PAl. The adsorption capacity of W in seawater per
column is 0.43 mmol for NOBIAS Chelate-PA1 (with ~600 mg resin) and 0.29 mmol for
TSK-8HQ (with ~200 mg resin). Assuming that the capacity of Mo is as high as that of W,
these values are 1000 times the amount of Mo in 3 kg of seawater. Thus, a single column of
NOBIAS Chelate-PA1 and TSK-8HQ has enough capacity for quantitative recovery of W and

Mo from seawater.

3.1.3. Distribution coefficient for each resin

The distribution coefficient (D) is defined by the following equation:

D — Csolid (3)

Csolution

where Cyoiq @nd Coonuion FePresent the concentration (mol kg™) in solid and solution phases,
respectively. We measured D of W for the chelating resins in Milli-Q water and mixed
seawater in a manner similar to that of the adsorption capacity but changing the initial
concentration of W. The adsorption capacity was measured at a high concentration of W to
determine the maximum amount of W that was complexed with the resin. The distribution
coefficient was measured to determine a thermodynamic parameter at a low concentration of

W that was used for practical preconcentration. The value of D substantially increased as the

11
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initial concentration of W decreased (Fig. 3). The results for 5.5 umol kg™ W in the initial
concentration are listed in Table 1. The values of D are significantly higher in Milli-Q water
than in mixed seawater for both the chelating resins; the difference is much higher for
NOBIAS Chelate-PA1 than for TSK-8HQ. These results suggest that the major components in
seawater interfere with the surface complexation of W on the chelating resins at equilibrium,

and the interference is more severe for NOBIAS Chelate-PA1 than for TSK-8HQ.

3.1.4. Comparison of columns for W recovery

The recovery of W from a large volume of solution was investigated via column
extraction. For NOBIAS Chelate-PA1, 6 kg Milli-Q water with 500 pmol kg* W was adjusted
to pH 4.7 and was passed through a column at a flow rate of 5 mL min*. The recovery of W
was 93-107% (n = 2). We found, however, that this condition is not sufficient to recover W
from seawater. Five kg of mixed seawater containing 50 pmol kg™ W and adjusted to pH 4.7
was passed through 6 serial-coupled columns of NOBIAS Chelate-PALl at a flow rate of 1 mL
min". The recovery of W by each column is shown in Fig. 4. The results are best fitted by the
following exponential curve:

y = 116.6exp(—0.732x) (r*=0.958, n = 6) (4)
where y represents recovery (%) of each column and x represents the number of the xth
column. The results indicate that 6 serial-coupled columns of NOBIAS Chelate-PA1 and a
slow flow rate are necessary to recover a sufficient amount of W from seawater.

For TSK-8HQ, 5 kg Milli-Q water added with 200 pmol kg™ W and 100 nmol kg™
Mo and adjusted to pH 1.4 was passed through 2 serial-coupled columns at a flow rate of 8
mL min. The recovery of W was 106 + 8% (ave + 2sd; n = 6), and that of Mo was 94 + 10%
(n = 6). Three kilograms of mixed seawater containing 50 pmol kg™ W and adjusted to pH 1.4

was passed through 2 serial-coupled columns at a flow rate of 4 mL min. The recovery of W

12



300

w
o
—

O©CoO~NOOTA~AWNE
w
o
N

34 314

36
37 315
38
39 316

40
4l 317
42

43
44 318
45
46 319

48
49 320
50

51 321
52

53
5q 322
55

56 323
57
58
o 324
60
61
62
63

64
65

by each column is shown in Fig. 4. The results are best fitted by the following exponential
curve:

y = 420.6exp(—1.62x) (n=2) (5)

The results indicate that 2 serial-coupled columns of TSK-8HQ are sufficient to recover an
adequate amount of W from seawater. To confirm this conclusion, 5 kg mixed seawater with
and without spiking of 37 pmol kg® W adjusted to pH 1.4 was passed through 2
serial-coupled columns at a flow rate of 8 mL min . The recovery from the solution spiked
with W was 98-108% (n = 2). In addition, the concentration of Mo was 105 + 18 nmol kg™ (n
= 4), which is consistent with the reported average concentration of Mo in seawater, implying
quantitative recovery of Mo.

These results suggest that the major components in seawater strongly interfere with
the surface complexation of W on NOBIAS Chelate-PAl Kkinetically as well as
thermodynamically. Thus, we decided to use 2 serial-coupled columns of TSK-8HQ for
preconcentration of W from seawater. A disadvantage of TSK-8HQ is gradual dissociation of
8HQ groups during usage. However, the 2 serial-coupled columns did not show a significant
deterioration in efficiency after five cycles of the preconcentration procedure for 3 kg

seawater.

3.2. Optimization of the analytical procedure for seawater

We first used a HNOj solution to elute W and Mo from TSK-8HQ, but the recovery
was not sufficient. A sufficient elution was attained by flowing a HNOj3 solution, Milli-Q
water, and a NHs solution successively. In this case, each eluate has to be collected separately,
and W in each eluate has to be combined after evaporation of the eluents to prevent remnant
NH4NO;. To avoid this, we instead used 5 M HF as the eluent, because we determined that W

and Mo were quantitatively recovered with only 5 M HF.
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Eluates from the columns of TSK-8HQ and AG1 X8 contained organic matter, which
interfere with measurement by ICP-MS. Thus, acid decomposition of organic matter in the
eluates was necessary. When we used HNO3s—H,0, for decomposition, evaporated the acids to
dryness, and redissolved W in 0.4 M HCI, the recovery was 82-84% (n = 2). This result is
probably caused by the formation of passive-state W oxides. To prevent this issue, we added a
small amount of H,SO,4 to keep W in small drops of H,SO, solution after the evaporation of
HNO3;-H,0, in a manner similar to that adopted for the determination of Zr, Nb, Hf, and Ta
(Tanaka et al., 2019). When 0.1 mL 0.3 M H,SO,4 was added to HNO3;-H,O, the recovery of
W was 98-102% (n = 2). Because W was highly soluble in the TMAH solution, H,SO,4 was
not added to decompose the eluate from AG1 X8. In addition, H,SO, was not added to
decompose the eluate of Mo from AG1 X8, since Mo was readily redissolved in the HNO;
solution.

Hence, we established the optimum procedure for seawater analysis, by which W is
concentrated from 3 kg seawater to 1.2 g 0.0055 M TMAH, as described in the method
section. The whole chemical separation procedure takes approximately 50 h. Samples of
Milli-Q water added with the NIST SRM 3163 standard to a final concentration of 259 pmol
kg™ were analyzed by this optimum procedure. The recovery of W was 99-100% (n = 2), and
588N was 0.025-0.035%. (n = 2). These results confirm that the recovery of W is
quantitative and that the mass fractionation of W during the procedure is negligible.

Samples of mixed seawater with and without spiking of the W isotope standard to a
final spike concentration of 54 pmol kg™ were also analyzed using this optimum procedure.
The recovery of W from the spiked seawater was 89-106% (n = 2). 58w of the unspiked
seawater was 0.47-0.53%o (n = 2). §*%" 8w is plotted against the inverse W concentration in
Fig. 5. The linear regression line has an intercept close to the origin, again suggesting that

there is no significant mass fractionation of W during the procedure.
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To investigate the reagent blank, we evaporated each reagent used in the optimized
procedure, redissolved the residue in TMAH, and measured the concentration of W by
ICP-MS. We found that the total reagent blank was 5.2 x 10 g W, which is 1.9% of the
amount of W in 3 kg seawater.

The optimized procedure was applied to 5 kg seawater, and the amounts of
coexisting elements (Ms) in the W and Mo fractions were investigated. The results are listed
in Table 2. The M/W mole ratio is less than 18, and the M/Mo ratio is less than 5 x 1072,
indicating that this procedure is efficient for separating W and Mo from coexisting elements

in seawater.

3.3. Vertical profiles in the western North Pacific Ocean

The analytical results of seawater samples collected at station CL-2 (47°00'N,
160°00'E; bottom depth of 5195 m) are listed in Table 3. The vertical profiles of 523w and
8%%Mo are shown in Fig. 6. The concentrations and isotopic ratios of W and Mo are uniform
from the surface to the bottom. The concentrations of W and Mo normalized to a salinity of
35 are 53 + 4 pmol kg™ (ave + 2sd, n = 7) and 104 + 6 nmol kg™ (n = 10), respectively, for
samples throughout the water column. §**Mo is 2.37 + 0.02%. (n = 10). These values are
consistent with the reported values in the literature (Firdaus et al., 2008; Nakagawa et al.,
2012). The relative standard deviations for these values are 0.4-3.7%. 5'%°*®*W in seawater is
0.55 £ 0.12%o (n = 7), of which relative standard deviation is 11%. The uniform concentration
of W in the modern ocean has been shown in previous studies (Firdaus et al., 2007; Sohrin et
al., 1987). The data in this study suggest that the stable isotope composition of W is also
uniform in the modern ocean as a first approximation. At present, we think the relatively high
variations in 8'%'®W are caused by analytical errors.

Assuming W is uniform throughout the water column, the average 8™®W values for
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all samples at station CL-2 are plotted against the mass number (m) of the W stable isotopes
in Fig. 7. All points are located on a straight line passing through the coordinate (184, 0),
suggesting that W in the ocean follows mass-dependent isotope effects and that there is no
significant interference for any measured isotopes. The 8™*Mo vs m plot also shows a
straight line passing through the coordinate (95, 0), confirming the validity of estimating
8% Mo from 5°"**Mo on the basis of mass-dependent fractionation.

The vertical profile of 58 in seawater is reported here for the first time as far as
we know. To assess the accuracy of 58\ in seawater, we compared it with literature data
for 8*®W in manganese nodules and oxic marine sediments (Fig. 8). Tungsten is highly
enriched in hydrothermal fluids (Kishida et al., 2004). It is possible that also 8'%#w is
affected by hydrothermal activity. Here we focus on the fractionation of W isotopes during
adsorption from modern oxic seawater. Thus, we do not include the data for samples that were
collected from a deep depth of a sediment core and from near hydrothermal sites and
volcanoes. As shown in Fig. 8, 5'%¢8W in seawater is significantly higher than 5w in
manganese nodules and oxic sediments. Although there are moderate variations in §*%#*w in
manganese nodules and oxic sediments, the difference in average 5'%%*®*W between seawater
and the solid phase is 0.49 + 0.16%.. Similarly, the difference in average 8°***Mo between
seawater and the solid phase is 2.39 + 0.86%.. Manganese nodules and oxic sediments are
assumed to be major sinks of W and Mo in the oxic ocean (Sohrin et al., 1987). Mass

fractionation of W during adsorption (A*%®%*W) is defined as follows:

A186/184y,, _ £186/184

solution —

8186/184Wso]id (6)
The laboratory experimental data have been reported for mass fractionation of W during
adsorption on Mn and Fe (oxyhydr)oxides (Kashiwabara et al., 2017). The authors used 0.70

M NaCl solution at pH 8 instead of seawater. A™®*3*W was 0.59 + 0.14%o for ferrihydrite and
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0.51 + 0.06%o for 8-MnO,. Mass fractionation of Mo has been reported as follows: A****Mo
IS 1.0-1.3%o for ferrihydrite (Goldberg et al., 2009) and 2.4-2.9%o for 6-MnQO; (Barling and
Anbar, 2004). Thus, the observed differences in §*%®wW and §°***Mo between modern
seawater and the manganese nodules and oxic sediments are comparable with the literature
data of AW and A®*°*Mo, respectively. These results imply that both §¢*8*w and
8% %Mo in oxic seawater are generally controlled via adsorption on Mn and Fe

(oxyhydr)oxides and that the 5% values in this work are accurate.

4. Conclusions

A simple and precise analytical method has been developed to determine the
concentration and isotopic ratio of W and Mo in seawater. A quantitative and ~3000-fold
preconcentration of W is attained by column extraction using TSK-8HQ chelating resin. Thus,
precise data for §'%®*W in seawater are presented here for the first time. This novel method
and the data collected are expected to contribute to further development of the stable isotope
marine chemistry and geochemistry of W.

The data in this study suggest that the stable isotope composition of W is uniform as
well as the concentration of W in the modern ocean as a first approximation. Since the
hydrothermal activity and anthropogenic contamination substantially increase the W
concentration (Kishida et al., 2004; Sohrin et al., 1999), their effects on the isotope
composition will be investigated in forthcoming studies. It is expected that the combination of
the concentration and isotope composition would be useful to advance the marine
geochemistry of W. In addition, the observed difference in §'%®W between modern
seawater and the manganese nodules and oxic sediments will be a useful constrain for

paleoceanographic study.
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2006; Kurzweil et al., 2019; Tsujisaka et al., 2019; Zhao et al., 2016) and oxic sediments from
the Mediterranean Sea (Kurzweil et al., 2019) and the Japan Sea (Tsujisaka et al., in press).
The error bars represent +2 times the standard error of individual measurements. The dotted

lines represent the averages for seawater and solid phases.
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Table 1

Adsorption capacity and distribution ratio of W for NOBIAS Chelate-PA1 and TSK-8HQ.

Adsorption capacity

Distribution ratio

Sample
solution (mmol g% n=2) (n=2)

NOBIAS® TSK-8HQ" NOBIAS® TSK-8HQ"
Milli-Q water 0.625-0.655 1.51-1.60 20689-34030  21884-28722
Seawater 0.525-0.895 1.43-1.52 8305-9014  20917-24408
“pH = 4.7.
"pH =1.4.

° pH = 4.7, initial concentration of 5.5 pmol kg™ W.
9 pH = 1.4, initial concentration of 5.5 pmol kg * W.
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Table 2
Coexisting elements in W and Mo fractions after chemical separation from 5 kg seawater.

Na Mg K Ca Fe Cu Sr Zr Ru Ba Hf Re Os

W fraction Ng 105 28 2.6 154 11 1.8 09 5x10° 15 1.4  3x10° 9x10° 1x10°

(5MHCI)  M/W mole ratio 18 4.6 0.26 15 0.81 012 4x10? 2x10°% 6x107% 4x102% 6x10° 2x10* 2x10°

Mo fraction pg 66 17 59 41 134 0.71 017 010 037 046 5x10° 5x102 3x10°?

SN“(/ID3) M/Mo mole ratio  5x10° 1x10° 3x10° 2x10° 4x10° 2x10° 4x10° 2x10° 7x10° 6x10° 5x10° 5x10’ 3x10°
28
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Table 3

Analytical data of seawater samples collected at station CL-2 (47°00'N, 160°00'E; bottom depth of 5195 m).

Depth (m) Salinity W (pmol kg ) 518684y 2se® Mo (nmol kg ™*)? 5%%Mo 2se°

10 32.853 99.1 2.38 0.02

990 34.434 54.2 0.60 0.07 104.3 2.39 0.03

1481 34.434 53.0 0.57 0.05 108.6 2.37 0.03

1974 34.615 53.7 0.64 0.04 106.6 2.37 0.03

2465 34.649 52.2 0.55 0.04 104.3 2.37 0.03

2954 34.667 48.8 0.56 0.05 103.1 2.37 0.03

3443 34.806 107.2 2.35 0.04

3930 34.882 100.9 2.36 0.04

4417 34.690 54.7 0.48 0.04 105.8 2.39 0.03

5169 34.706 53.2 0.47 0.04 103.7 2.37 0.03
ave 52.8 0.55 104.4 2.37
2sd 3.9 0.12 5.8 0.02

 normalized to salinity = 35.
b standard error of 5184w,
¢ standard error of §°®*Mo.
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