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Nanoparticles have advantageous small-size and surface effects that impart them with unique mechan-
ical properties. To evaluate these properties, a constant-volume shear tester that can precisely measure
stresses on the shear plane was used. Six samples, namely, hydrophilic and hydrophobic silica, alumina,
and titania nanoparticles, were prepared for the shear tests. For each sample, a single shear test provided
the void fraction, stress relaxation ratio, stress transmission ratio, powder yield locus, consolidation yield
locus, critical state line, shear cohesion, and flow function. All the tests were conducted under ambient
conditions using powder beds, in which the void fractions were in the range of 0.89–0.96. A series of anal-
yses demonstrated that the hydrophilic nanoparticles have lower flowability than the hydrophobic
nanoparticles, indicating that moisture on the surface increases the cohesion and inhibits the flow.
� 2019 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder
Technology Japan. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction to external mechanical forces on powders under high stresses,
Nanoparticles have attracted attention as functional materials
in various industries, including the chemical, pharmaceutical, and
food industries. Owing to small-size and surface effects, nanoparti-
cles exhibit unique mechanical properties. Commonly, nanoparti-
cles are applied to impart fluidity to powders [1–4] and to
increase material strength by kneading them into soft materials
such as plastics and rubbers. However, to utilize nanoparticles
effectively, a deeper understanding of their mechanical properties
is necessary.

Powder manufacturing processes require several unit opera-
tions, e.g., storage, supply, and transportation of the powders.
These operations change the void fractions and stresses in pow-
ders. High stresses lead to the failure of powder beds, thus initiat-
ing particle motion. This behavior depends on external factors such
as vibration [5–8], electric field [9], temperature [10,11], humidity
[12], moisture [13–15], and particle morphology [16–18]. There-
fore, knowledge about the mechanical properties is extremely use-
ful for achieving smooth performance of these operations.

Test methods for evaluating the mechanical properties of pow-
ders differ between low- and high-stress conditions. Under low-
stress conditions, methods relying on measurements of the angle
of repose, compressibility, angle of spatula, cohesion (or unifor-
mity) [19], and flow behavior [6–8,20] are used. However, owing
methods that evaluate the relationship between the stresses and
the flow behavior are more desirable. In particular, the shear test
is suitable because it allows evaluation of the phenomena associ-
ated with the failure of powder beds under compression. Two test
types, i.e., the constant-load shear test and the constant-volume
shear test, are available. The Jenike shear tester [21,22], which is
a representative tester for the former, uses weights to apply a nor-
mal stress to the powder bed for compression. However, as this
test must be performed several times under various weights to
obtain the powder yield locus (PYL), the procedure is complex. In
addition to the Jenike shear tester, other shear testers that use par-
allel plates, rotational cells, etc. are available [23–28]. As an alter-
native to the constant-load shear test, the constant-volume
shear test was proposed as a simple and easy-to-operate method
[29–33]. This method is characterized by a constant volume
throughout the shear operation. Therefore, the void fraction of
the powder bed remains constant during shearing and the contin-
uous changes in the normal and shear stresses can be simultane-
ously measured. As a result, the PYL can be acquired using a
single shear test.

Specifications for shear tests have been stipulated in American
Society for Testing and Materials Standards [34,35] and Japanese
Industrial Standards [36]. The measurement methods have been
compared [37–39], and the difference in the preconsolidation
stresses has been examined [40]. These methods have also been
applied to pharmaceutical prescriptions [41–43].
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Nomenclature

C shear cohesion (Pa)
F force (N)
fc unconfined yield strength (Pa)
ffc = r1/fc (–)
t time (s)
Dp nominal particle diameter (m)
cRS stress relaxation ratio (–)
cT1 stress transmission ratio between the top and shear

planes at steady-state shear (–)
e void fraction (–)
qp particle density (kg/m3)
r normal stress (Pa)

r1 major consolidation stress, i.e., major principal stress gi-
ven by the Mohr stress circle of steady state flow (Pa)

s shear stress (Pa)
uCSL angle of critical state line (�)

Subscripts
H horizontal
L lower
P powder
S shear plane
U upper
V vertical
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Recently, the measurement accuracy of shear tests has been
remarkably improved. An apparatus based on the constant-
volume shear test was developed to include both a load cell that
measures the normal stress for powder compression and a load cell
that measures the normal stress working on the shear plane
[32,33]. Using this apparatus, the effects of stress relaxation and
transmission were examined and a method was proposed to obtain
both the PYL related to expansion failure and the consolidation
yield locus (CYL) related to consolidation failure [32]. Based on
the stress balance, a method was reported for measuring the nor-
mal stress on the shear plane and the effect of the structural prop-
erties of the apparatus, including the powder bed height and cell
diameter [33].

Although shear tests have been used to measure the mechanical
properties of nanoparticles, a limited number of reports are avail-
able [44]. In the present work, we quantitatively analyzed the
mechanical properties of nanoparticles using the constant-
volume shear tester with a focus on the differences in the surface
characteristics, i.e., hydrophilicity and hydrophobicity, of silica,
alumina, and titania nanoparticles.
Fig. 1. Structure of the constant-volume shear tester.
2. Materials and methods

2.1. Shear tester

Fig. 1 shows the structure of the constant-volume shear tester.
The shear cell consists of an upper stainless-steel cylinder of
40 mm in height with an inner diameter of 30 mm and a lower
base with a recessed section of 5 mm in depth and the same diam-
eter. A vertical servo motor compresses the powder bed by verti-
cally moving a piston (0.2 mm/s), and the load cell on the piston
measures the upper vertical force (FVU). The lower section of the
shear cell and the sides contain two load cells that measure the
lower vertical force (FVL) and the horizontal shear force (FH). These
three forces are converted into the upper normal stress on the
powder bed (rU), the normal stress on the shear plane (rS), and
the shear stress (s). Although the upper section of the shear cell is
fixed to the body of the apparatus, the lower section is installed on
a two-axis stage. The powder bed is sheared by moving this stage
using a horizontal servo motor at a constant speed (10 lm/s). The
height of the powder bed and the horizontal shear displacement
are measured using two non-contact laser displacement sensors.
Owing to the presence of a 0.05 mm gap, the upper and lower sec-
tions of the shear cell are independent of each other.When the shear
cell is not filled with powder, the mechanical friction in the lower
section during horizontal movement is <0.3 kPa, which is negligible
compared with the shear stress. During experiments, we adjusted
the initial vertical force conditions so that rS = 20, 30, and 40 kPa.
The height of the powder bed was 20 ± 1 mm.
2.2. Samples

Table 1 summarizes the properties of the samples, namely,
hydrophilic and hydrophobic silica, alumina, and titania nanoparti-
cles (Evonik Japan). As the nanoparticles, which were manufac-
tured via gas-phase reactions, were in an agglomerated state, the
nominal particle diameters provided by the manufacturer are
given. The samples were kept at a temperature of 18 ± 4 �C and a
relative humidity of 40% ± 10%. All the experiments were con-
ducted under the same ambient conditions.
2.3. Experimental procedure

Fig. 2 shows the time sequence of the shear test for a represen-
tative sample. As the details are described in a previous report [33],
we only provide a summary here. From top to bottom, Fig. 2 shows
the temporal changes in the upper vertical force (FVU), the lower
vertical force (FVL), and the horizontal shear force (FH). The values
of FVU and FVL increase during the compression process (i). The fric-
tion between the powder and the upper side wall of the shear cell
results in different values for FVU and FVL. After compression, the
sample is left for a period of 150 s, and FVU and FVL decrease during



Table 1
Powder properties.

Surface modification Material Dp (nm)* qp (kg/m3) Moisture (mass%)**

Hydrophilic SiO2 16 2200 �1.5
Al2O3 13 3900 �5.0
TiO2 21 4200 �1.5

Hydrophobic SiO2 16 2200 �0.5
Al2O3 13 3900 �2.0
TiO2 21 4200 �1.0

* Nominal particle diameter.
** Loss on drying after 2 h at 105 �C.
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Fig. 2. Time sequence of the shear test.
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the stress-relieving process (ii). After the shearing process begins,
FH increases and then approaches a constant value, whereas the
normal stress further decreases, as indicated by the consolidation
failure process (iii). The two-axis stage is slowly lowered during
the shearing process; consequently, FVL decreases to zero and FH
decreases to a certain value, as indicated by the expansion failure
process (iv). The values of rS and s are obtained from the values
of FVL and FH. Subsequently, CYL and PYL are obtained from rS

and s in processes (iii) and (iv) of the single shear test.
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2.4. Parameters for evaluating powder flowability

When the powder bed is compressed in the vertical direction,
an internal stress gradient is formed. The particles change their
position and orientation to reduce the stress gradient, thus reliev-
ing the stress [32,33]. To evaluate the mechanical properties asso-
ciated with the stress relaxation, we defined a stress-relaxation
ratio (cRS) using the maximum normal stress on the shear plane
(rS0) and the normal stress after stress relaxation (rS1), as follows:

cRS ¼ 1� rS1

rS0
ð1Þ

Another mechanical property is the stress transmission in the
powder bed. The stress transmission ratio cT1 after stress relax-
ation was defined based on the normal stress on the shear plane
(rS1) and the upper normal stress (rU1), as follows:

cT1 ¼ rS1

rU1
ð2Þ

The constant-volume shear tester allows the PYL to be easily
obtained and is thus suitable for evaluating the shear cohesion
(C) and the flow function (FF). C, which corresponds to the
y-intercept of the PYL, depends on the void fraction of the powder
bed and is correlated to the unconfined yield strength (fc).

The FF obtained from the PYL is also widely used to evaluate
powder flowability. The FF describes the relationship between fc
and the major consolidation stress (r1) and can be evaluated using
ffc, as defined by the following equation:
ff c ¼
r1

f c
ð3Þ

The guidelines for flowability can be summarized as follows:
1 < ffc < 2: very cohesive; 2 < ffc < 4: cohesive; 4 < ffc < 10: easy
flowing; and ffc > 10: free flowing [26].
3. Results and discussion

3.1. Stress relaxation ratio

Fig. 3 shows the relationship between the stress relaxation ratio
(cRS) and the normal stress (rS1). The stress relaxation ratios are in
the range of 0.1–0.4. When rS1 increases, cRS decreases because the
stress gradient in the powder bed increases with the increase in
rS1, resulting in rapid rearrangement of the particles. Thus, stress
relaxation begins during compression of the powder bed, causing
a relative decrease in the stress relaxation ratio with over time.
The decrease in cRS associated with the increase in rS1 is more
notable at high cRS values. In other words, the rS1 dependence
tends to decrease with a decrease in cRS. This behavior occurs
because the degree of freedom associated with particle rearrange-
ment is small in powders with low cRS values.

The hydrophilic nanoparticles (open symbols, Fig. 3) clearly
have lower cRS values than the hydrophobic nanoparticles (closed
symbols, Fig. 3). Water molecules adsorbed on the surfaces of
hydrophilic nanoparticles strengthen the interactions among parti-
cles, increasing the cohesion and inhibiting particle rearrangement.



Fig. 5. Shear test results (sS–rS plots) at various void fractions (e): (a) hydrophilic
SiO2 and (b) hydrophobic SiO2.
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3.2. Stress transmission ratio

Fig. 4 shows the relationship between the stress transmission
ratio (cT1) and the normal stress (rS1). The normal stresses on
the shear plane are 40–70% of the upper normal stress. Some of
the vertical stress is converted into horizontal stress; subsequently,
friction between the particles and the upper side wall of the shear
cell decreases the stress transmission ratio. For all the samples, cT1
increases with an increase in rS1. This behavior occurs because an
increase of the normal stress causes the void fraction of the powder
bed to decrease; consequently, the rigidity of the powder bed
increases. Although there was a clear difference in cRS between
the hydrophilic and hydrophobic particles (Fig. 3), no significant
difference in cT1 was observed between the hydrophilic (open sym-
bols, Fig. 4) and hydrophobic (closed symbols, Fig. 4) nanoparticles.
The result indicates that the effect of the nanoparticle diameter
was notable and that the ratio of the effect on the sidewall of water
molecules adsorbed on the nanoparticle surface was small. Thus,
the hydrophobic and hydrophilic effects were not clearly observed.

3.3. PYL, CYL, CSL, and shear cohesion

Shear tests were conducted for the hydrophilic and hydropho-
bic silica, alumina, and titania nanoparticles (Figs. 5–7), and the
major results determined for all the samples, i.e., normal stress
rS1, void fraction e, shear cohesion C, critical state line (CSL) angle
uCSL, unconfined yield strength fc, major consolidation stress r1,
and ffc (ratio between fc and r1), are summarized in Table 2.

Fig. 5 shows the shear test results for the silica nanoparticles.
Although the void fraction (e) is larger than 0.92, strong friction
exists between the particles. In addition, it is worth noting that
the shear stress increases significantly with a slight decrease in e
because of the strong cohesive properties of the nanoparticles.
The e values of the hydrophilic particles are larger than those of
the hydrophobic particles. In addition, the CSL angles (uCSL) of
the hydrophilic and hydrophobic particles are 44� and 38�, respec-
tively, indicating that the hydrophilic particles have lower flowa-
bility. Furthermore, for the hydrophilic particles, the shear
cohesion (C) values are approximately twice as high as those of
the hydrophobic particles, i.e., C = 18–20 for hydrophilic particles
and C = 7–10 for hydrophobic particles. This result clearly demon-
strates the difference in interparticle cohesion caused by moisture.

Fig. 6 shows the shear test results for the alumina nanoparticles.
Similar to the silica nanoparticles, the hydrophilic particles exhibit
lower flowability than the hydrophobic particles, and the two uCSL

values are different, i.e., 48� and 31� for hydrophilic and hydropho-
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bic particles, respectively. In addition, the C values of the hydrophi-
lic particles are approximately twice as high as those of the
hydrophobic particles.

Fig. 7 shows the shear test results for the titania nanoparticles.
Similar to the other nanoparticles, the hydrophilic particles have
higher C values than the hydrophobic particles. However, the uCSL
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values of the hydrophilic and hydrophobic titania nanoparticles are
similar (38� and 36�). As no clear difference was observed, the
effect of hydrophilicity and hydrophobicity on uCSL is minor. As
the void fraction of the hydrophobic titania nanoparticles was
rather small (e � 0.89), the agglomeration structure might be dif-
ferent from that of the other nanoparticles.

Fig. 8 shows a comparison of all the samples in terms of the
shear cohesion. The C values increase with an increase in the nor-
mal stress. Notably, the C values of the hydrophilic nanoparticles
are higher than those of the hydrophobic nanoparticles, decreasing
in the order of silica, alumina, and titania. As discussed earlier,
moisture can increase particle cohesion, and this effect is reflected
in the C values.

3.4. Flow function

From the results shown in Figs. 5–7, we obtained the uncon-
fined yield strength (fc) and the major consolidation stress (r1),
the value of which were used to determine the FFs, as presented
in Fig. 9. As all the values fall between ffc = 1 and 2, all the
nanoparticle samples can be considered ‘‘very cohesive”. However,
Table 2
Summary of experimental results.

Surface modification Material rS1 (kPa) e (–)

Hydrophilic SiO2 21.2 0.934
32.5 0.933
43.9 0.930

Al2O3 21.2 0.955
34.0 0.953
43.9 0.951

TiO2 19.8 0.937
32.5 0.934
42.4 0.932

Hydrophobic SiO2 18.4 0.929
29.7 0.924
41.0 0.923

Al2O3 19.8 0.951
31.1 0.948
41.0 0.947

TiO2 17.0 0.893
26.9 0.888
36.8 0.885
FF results also indicate that the flowability of the hydrophilic
nanoparticles tends to be lower than that of the hydrophobic
nanoparticles. Powder flowability is often evaluated by the FF
obtained from the PYL. Using the present apparatus, the PYL and
FF can be easily obtained in a single shear test.
C (kPa) uCSL (�) fc (kPa) r1 (kPa) ffc (–)

17.5 44 40.2 42.9 1.0
18.2 52.0 56.0 1.0
20.0 60.8 66.4 1.1
12.1 48 26.9 27.2 1.0
17.4 41.1 43.3 1.0
19.9 51.8 54.7 1.0
8.9 38 22.7 23.8 1.1
10.2 30.5 35.9 1.3
12.6 33.9 46.9 1.5

7.4 38 27.3 28.4 1.0
8.3 34.3 37.5 1.2
10.4 46.1 50.4 1.2
5.1 31 17.4 22.6 1.1
6.6 23.9 36.8 1.3
8.5 34.2 45.8 1.4
3.7 36 13.4 19.1 1.7
4.7 16.1 26.8 1.5
5.8 20.7 36.7 1.6
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4. Conclusions

We used a constant-volume shear tester that can precisely mea-
sure the normal stress on the shear plane to examine the effect of
surface characteristics on the mechanical properties of silica, alu-
mina, and titania nanoparticles. The results obtained can be sum-
marized as follows:

(1) The void fractions of the powders after compression were in
the range of 0.89–0.96, with the hydrophilic nanoparticles
exhibiting larger void fractions than the hydrophobic
nanoparticles.

(2) The stress relaxation ratios (cRS) were in the range of 0.1–0.4
and decreased with an increase in normal stress. Moreover,
the hydrophilic nanoparticles demonstrated lower cRS values
than the hydrophobic nanoparticles because water mole-
cules adsorbed on the surface strengthened the interactions
among particles, thus increasing cohesion and inhibiting
particle rearrangement.

(3) The stress transmission ratios (cT1) were in the range of 0.4–
0.7 and increased with an increase in the normal stress.
However, no significant difference in cT1 was observed
between the hydrophilic and hydrophobic nanoparticles.

(4) The PYL, CYL, and CSL results indicated that the hydrophilic
nanoparticles have lower flowability than the hydrophobic
nanoparticles.

(5) The shear cohesion (C) of the hydrophilic nanoparticles was
approximately twice as high as that of the hydrophobic
nanoparticles.

(6) The ratios of the major consolidation stress to the uncon-
fined yield strength (ffc) were between 1 and 2, indicating
that the examined nanoparticle samples were ‘‘very cohe-
sive”. However, the FFs indicated that the flowability of the
hydrophilic nanoparticles tends to be lower than that of
the hydrophobic nanoparticles.

(7) This series of experiments verified the effectiveness of the
constant-volume shear tester for evaluating the flowability
of nanoparticles.
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