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Abstract
In modern biology, the correct identification of cell types is required for the developmental study of tissues and organs
and the production of functional cells for cell therapies and disease modeling. For decades, cell types have been
defined on the basis of morphological and physiological markers and, more recently, immunological markers and
molecular properties. Recent advances in single-cell RNA sequencing have opened new doors for the characterization
of cells at the individual and spatiotemporal levels on the basis of their RNA profiles, vastly transforming our
understanding of cell types. The objective of this review is to survey the current progress in the field of cell-type
identification, starting with the Human Cell Atlas project, which aims to sequence every cell in the human body, to
molecular marker databases for individual cell types and other sources that address cell-type identification for
regenerative medicine based on cell data guidelines.

The Human Cell Atlas
The Human Cell Atlas (HCA) project aims to char-

acterize all cells by single-cell analytical techniques, spe-
cifically single-cell RNA sequencing (scRNA-seq) and
assay for transposase accessible chromatin sequencing
(scATAC-seq) and to link this information to classic
knowledge, namely, location, lineage, and type, as well as
cell states, state transitions, and cell−cell interactions.
The HCA was initiated to unify scRNA-seq data in a
manner similar to the data compilation achieved in the
Human Genome Project1. As of February 2020, the HCA
project has participation from 1027 institutes in 71
countries, from which 81 laboratories have already posted
scRNA-seq data for 34 organs and tissues, including the
liver2, lung3, blood and immune systems4, plasma cells5,
human cortex6, colon7, and retina8, with the total number
of sequenced cells reaching 4.5 million. The HCA is an
open science project, and its standard operating protocols

(SOPs) are available on the Web. A standardized data
analysis service called the Data Coordination Platform
(DCP) is provided to the community. In the long term, the
HCA project aims to define not only normal cells but also
cells in specific disease states1,9.
The HCA project is generating tremendous amounts of

data. For example, there are currently 148 members in the
immune system group, which is conducting approxi-
mately 100 projects and is expected to include more than
1000 projects over time. One project10 has produced
scRNA-seq data for 530,000 cells. The challenge for the
HCA project is to create a universal classification system
for all of these projects. Adding to this challenge are
regional HCAs, such as HCA Asia, that focus on regional
diseases. To assign cell types to all these cells, exhaustive
analysis methods are needed. Once this goal is accom-
plished, the HCA can shift to its second goal, which is to
understand how normal cell states transition into disease
states11.

Challenge of human cell-type classifications in the
HCA
A typical scheme for assigning cell types to scRNA-seq

data requires computational analysis and a workflow
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consisting of preprocessing and downstream analysis
steps. Preprocessing is necessary to correct biological and
technical noise caused by experimental errors and sample
variabilities, thus contributing to quality control and
normalization, whereas downstream analysis aims to
cluster single-cell data on the basis of similarities in
profiles and assign cell types using various computational
tools depending on the data type12,13. Each cell type can
be identified by a uniquely characteristic transcript pat-
tern of gene expressions (i.e., RNA signature) or a
uniquely characteristic transcript profile14. However,
because the number of clusters depends on the algorithms
and parameters, the results are not generally optimized
for separating subtypes or states of the same cell type (e.g.,
cell cycle phase differences)15.
In this regard, several clustering approaches have been

developed, including partition type (such as k-means and
self-organizing maps), hierarchical clustering, graph-
based (such as spectral clustering or clique detection),
mixture model (such as Seurat), density-based, neural
network type, ensemble, and affinity propagation
type16–18. However, most of these approaches require
parameter settings, and to complicate matters, some
depend on random values. Consequently, the resulting
clusters could vary in number and cluster members.
Detailed reviews of these approaches can be found in
recent papers15,19. In addition, a variety of software tools
are available for clustering approaches, and the number is
constantly growing.
Alternatively, the identification of a known cell type by

its RNA signature can be performed using a cell−cell
similarity search. In this case, researchers can identify
known cell types and find similar or related unknown cell
types by using hitherto unknown relationships. Software
programs for cell−cell similarity search analyses include
CellAtlasSearch20, CellSim21, and Cell BLAST22, all of
which are tailored to different needs. For example, Cell
BLAST has a “special tuning” mode for handling batch
effects between a query and reference. CellSim calculates
the similarity of different cells on the basis of cell ontology
and molecular networks and has a feature that allows
users to identify the cell type by entering a list of genes.
Finally, CellAtlasSearch is tailored for handling ultra-large
RNA-seq data through parallel screening of tens of
thousands of single cells using efficient clustering meth-
ods. However, these methods are typically dependent on
existing cell data and thus are effective for cell-type
identification that demands large amounts of annotated
cell-type entries.
Another approach for assigning cell types is the inte-

gration of gene expression information and spatial infor-
mation of the individual cells to provide a molecular
description of each cell type in the context of the tissue
microenvironment. Recently, developed computational

methods allow, in principle, the reconstruction of a spatial
map of tissues using scRNA-seq data23–25. scRNA-seq-
based maps have revealed cell-type-specific functions in
the liver26, blastocyst27, and growth plate28. The expres-
sion of cell adhesion genes and specific gene functions
defined by Gene Ontology (GO) terms is being used to
develop new tools for single-cell 3D transcriptome ana-
lysis that enhance spatial prediction29,30. Although the
identification of cell types in a spatial context is expected
to yield more information relevant to the in vivo envir-
onment, these cutting-edge approaches are still at the
elementary stage and need further improvement before
they can be widely used.
To expedite methods for cell-type identification, the

HCA project has multiple committees and working
groups that coordinate the efforts of independent research
groups and unify the results of scRNA-seq. Typically, the
research groups perform all the data preparation, acqui-
sition, and analysis, and the HCA committees provide the
general framework, guidelines, and data repository space.
The DCP team supplies vetted algorithms for data pro-
cessing on the portal, and the research groups choose the
algorithms for data processing, depositing the data into
the HCA database under controlled pipelines. Hence, the
cell-type classification, which is part of the RNA-seq data
analysis, is performed separately by various groups, with
the results processed by the cooperating DCP team
according to HCA guidelines to ensure consistency in
cell-type assignment and authentication.

History of cell-type classification
With the advances in stem cell research that have made

it possible to engineer cells for cell therapies and drug
discovery, the identification and authentication of cell
types have become emerging priorities in the biological
community31. The greatest problem in the authentication
of human cells lies in the lack of integrated standard
metrics for cell morphology, gene expression, and mole-
cular markers32. Considering that scRNA-seq data are
usually confounded by a high degree of noise33 and that
current scientific communities use highly variable meth-
odologies for scRNA-seq data analysis34, it is very difficult
to standardize the data and harmonize it with classical
morphology and marker maps. Accordingly, the HCA
project has invested both time and resources to study
ways of handling technical and biological noise affecting
data reproducibility and the degradation of biopsy
samples35.
Historically, the characterization of cell types was based

on histological, i.e., anatomical, morphological, and
functional, criteria36. For example, the earliest attempt to
classify cells in the nervous system was based on histo-
logical characteristics, such as the locations from which
the cells were obtained, cell morphology, and the presence
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of certain molecular markers37. Since then, the location
(i.e., cerebral cortex, cardiac muscle, or stomach), cell
morphology (i.e., fibroblast-like or epithelial-like), and
molecular markers (such as CD75-positive cells, etc.) have
been accepted by the scientific community as the three
main pillars for defining cell types38–41. To accelerate cell-
type identification, several cell marker databases are
available (Table 1).
Labome provides a list of 226 markers for epithelial,

dendritic, glial, bone marrow, natural killer, and other cell
types42. CellFinder was the first database website of
molecular markers and now features information on 3394
cell types, 50,951 cell lines, and 553,905 protein expres-
sions43. However, CellFinder data are diverse for species
(mammals, fish, invertebrates, bacteria, viruses, plants,
etc.), and the site includes other data, such as microscopic
and anatomical images, whole-genome expression profiles
from RNA-seq and microarrays, etc. In other words, it is
not a cell marker database per se but a collection of
various data of different cell types, which makes looking
for markers relatively difficult compared to the search in
other databases.
The first database compiled exclusively with markers of

human and mouse cells was CellMarker44, which cur-
rently features 13,605 cell markers for 467 cell types in
158 human tissue and 9148 cell markers for 389 cell types
in 81 mouse tissues. The gene expression data in Cell-
Marker originate from scRNA-seq studies, experimental
studies, and microarrays. At approximately the same time,
PanglaoDB was published45, providing data on 8230
markers collected from human and mouse scRNA-seq
experiments, along with other types of data. The markers
are grouped by cell type (178 cell types, 4644 genes, and
29 tissues), and the cell types are subsequently grouped
into 26 organs and 3 germ layers. A typical cell type has 28
(median) gene markers, but some, such as fibroblasts,
have more than 100 markers. The major drawback of this
database is that it lacks the source from which the marker
information was obtained and information on how the
marker was originally found and used, thus making
information verification impossible.

Limitations of the current methods of cell-type
classification
Despite the abovementioned databases, the new era of

single-cell sequencing, which has revealed that markers
can be expressed in different cells or at varying levels
when cells are cultured in vitro, demands the reconsi-
deration of marker-based cell-type classification methods.
For example, the identification of mesenchymal stromal
cells (MSCs) and the results of fate mapping in vivo have
been problematic46. In addition, many markers often
correspond to several cell types rather than a unique one,
which may be related to the fact that MSCs encompass a

number of different tissue-specific progenitor or stem
cells. In other words, some markers are of mixed cell
types47,48. Moreover, the expression levels of some mar-
kers make it difficult to discriminate among cell types49.
For example, mature monocytes are usually characterized
by the expression of CD33, CD11b, CD14, HLA-DR, and
CD16, whereas granulocytes are characterized by the
expression of CD33, CD11b, CD15, and CD66b. However,
CD15 is expressed at low levels on monocytes in some
anti-CD15 clones. Conversely, in disease states, CD14 can
be variably expressed in neutrophils50. Notably, current
markers all share the common feature that they are
expressed on the cell surface. Intracellular markers such
as microRNA (miRNA) could enhance the specific marker
profile of a given cell type51. The combination of surface
and intracellular markers for cell-type classification has
yet to be fully developed in any database.
Another problem is the heterogeneity of cell states. In

some cases, heterogeneity, such as that during states of
immaturity or senescence, blurs discrete states, leaving a
continuous spectrum that greatly complicates cell-type
classification (Fig. 1). In such cases, cell types may seem to
have hundreds of variants52,53. This lack of clarity is a
major issue in clinical applications using cell therapies, for
which cells are cultured in vitro to generate and stabilize a
specific cell type. For example, for Parkinson’s disease, the
differentiation of pluripotent stem cells (PSCs) into spe-
cific neural cell types for cell therapies demands extremely
precise markers54. As with their use as intercellular
markers, the application of miRNA would be helpful.
Another important problem involves changes in cell
behavior and cell composition under different conditions
or even within the same culture. These changes com-
promise stable cell phenotypes across cell populations
over the course of an experiment, leading to confusing
experimental interpretations55.

Emerging concepts for cell-type classification
Accordingly, several new concepts for cell-type

authentication have been proposed. Evolutionary biolo-
gists have developed a classification on the basis of the
evolution of gene expression states56. In this proposition,
the cell type is defined by a set of changes in the “core
regulatory complex” (CoRC) of transcription factors that
regulate cell-type-specific traits. From this point of view,
cell types are defined by evolutionary units that differ
according to their evolutionary lineages rather than their
phenotypic similarities and are characterized by their
ability to evolve gene expression states independently of
each other. Thus, a gene regulatory network that defines
the cell type would include “master” transcription factors
that control downstream effector genes57–59. A classic
example is the transformation of fibroblasts into skeletal
muscle cells by the forced expression of the myoblast
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determination protein (MYOD) transcription factor60.
The discovery of induced pluripotent stem cells (iPSCs)
cemented the notion that master transcription factors can
determine cell type because, through reprogramming to
iPSCs and their subsequent differentiation, nearly any cell
type can be converted into any other cell type61,62. Later
works in neuronal lineages63, the transcription factor
competition observed in embryonic stem cells64, and
pancreatic cell transdifferentiation65 support this idea.
Another evolutionary approach for cell-type classifica-

tion is the construction of a hierarchy to describe the
relationships between cells, which is analogous to how
taxonomy hierarchies are created to describe the rela-
tionships between species66. Based on this approach, we
proposed a “periodic table” for cell types67. This proposal
aims to distinguish cell types from cell states, in which the
periods and groups correspond to developmental trajec-
tories and stages of differentiation68. scRNA-seq has
paved the way for new interpretations of cell states. For
example, in the epigenetic landscapes described by
Waddington69, it was originally assumed that cell states
follow continuous trajectories that branch at cell-fate
decision points, but these decision points have since been
refined into transition states70. Whereas Waddington
assumed that the decision points were deterministic, the
transition states in the modernized version are stochastic
and the related signaling networks are probabilistic. This

concept is meant to accommodate the gene expression
heterogeneity encountered in real-world single-cell data.
Indeed, the identification and characterization of cell
transition states is one of the biggest challenges in single-
cell transcriptomics71. Dimension reduction techniques,
such as principal components analysis (PCA)72 and t-
distributed stochastic neighbor embedding (tSNE)73, and
graph and community detection algorithms, such as
consensus clustering74, SNN-Cliq75, and Seurat18, have
been developed and utilized to identify cell transition
states. Fully comprehending the influence of cell transi-
tion states on cell types at the single-cell level will require
both new tools and parameters76. Finally, although the
results are still in the rudimentary stage, recent research
has made automated cluster annotation available for
unbiased cell-type identification. This type of annotation
is rapid and allows investigators to forgo the manual
clustering step by combining annotation and clustering.
Numerous tools based on various algorithms have been
developed to facilitate automated cell identification
methods (for a detailed review, see Abdelaal et al.77).

Proposing a data-driven cell-type definition
To help consolidate the many opinions about cell-type

classification and provide data-related guidelines for cell-
type authentication for clinical application, the Interna-
tional Cell Type Authentication Committee (ICTAC) was

Fig. 1 Renewed concept of cell types that takes into account the cell state continuum and diversity, as well as the state stability, of a cell
type. Classically, the continuum was thought to be unidirectional, but cell reprogramming induces cells to regress to a previous state and/or take a
different trajectory.
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created (https://cell-type.org/). The ICTAC was launched
to establish criteria and processes for defining, deter-
mining, and authenticating all human cell types. Its mis-
sion is to help scientific communities identify cell types
and provide systematic information on cell classifications.
The ICTAC originated from the International Stem Cell
Banking Initiative (ISCBI) (https://www.iscbi.org/)78, an
organization that focuses on practical issues in cell
banking and regenerative medicine. More than 300 stem
cell and policy professionals from 28 countries are part of
the ISCBI community and are working together to
advance stem cell research and biobanking along with
developing regulations and public policy. The ISCBI is
managed by an executive board, with delegates and
steering group members of the community closely colla-
borating with the International Human Pluripotent Stem
Cell Registry (hPSCreg)79,80. The first task of the ICTAC
is to integrate existing cell databases, such as SHOGoiN81,
CellFinder43, and Cell Ontology82, to comprehend infor-
mation on existing cell-type definitions. One of the key
functions of the ICTAC is to provide a tool that can
process the massive amount of accumulating single-cell
data to classify new cell types that do not fit into existing
definitions or cannot be identified by cell-matching soft-
ware, such as CellSim, CellAtlasSearch, or Cell BLAST.
The ICTAC proposed the concept of reference cell

types (RCTs), which are defined by an integrative
examination of core properties (species, physiological
system, source age, and markers) and additional attri-
butes (functions including potency, morphology, devel-
opmental origin, omics, and environmental conditions)
and are constantly updated by experts of relevant tissues
and organs. RCTs provide a framework for identifying
and authenticating new and known cell types. Ulti-
mately, RCTs are designed to support cell-type classi-
fications in various communities, including stem cell
banking initiatives and massive-scale single-cell
sequencing projects.

Cell type authentication for regenerative
medicine
In the field of regenerative medicine, PSCs such as the

aforementioned iPSCs have tremendous potential because
of their capacity to differentiate into most cell types in the
human body. Moreover, recent technological progress has
made it possible to produce PSCs on a large scale83 and
generate significant resources for a large number of well-
characterized and documented PSCs (e.g., https://
fujifilmcdi.com/the-cirm-ipsc-bank, https://ebisc.org84).
However, in addition to scalability, the clinical translation
of PSCs depends on fast and reliable ways to assess quality
and safety in terms of three important properties: cellular
identification, differentiation potency, and malignant
potential85.

For example, the establishment of PSC-derived platelets
as a substitute for primary donor cells can compensate for
anticipated donor shortages and are useful against platelet
transfusion refractoriness86. In this system, PSCs need to
be differentiated into megakaryocytes, which are then
cultured in bioreactors to shed platelets87. However, pla-
telet production by iPSC-derived megakaryocytes is het-
erogeneous, and many biochemical and biophysical
approaches have been attempted to enhance and homo-
genize their production88. Ultimately, the characterization
of the best megakaryocytes is lacking. In other words, the
existing classification of the megakaryocytes is too broad
to identify the cells that are optimal for platelet produc-
tion, thereby resulting in inefficient platelet production.
This problem could be solved by identifying markers
associated with platelet-producing megakaryocytes and
developing differentiation protocols aimed at the selection
of the relevant cell types.
Differentiation efficacy depends on PSC quality. There

are several methods for ensuring high PSC quality that are
based on assessing the potency of PSC differentiation into
cells of the three germ layers. The gold standard is the
teratoma assay89,90, in which the differentiation capacity
of a PSC line in vivo is assessed by grafting the cells into
immunodeficient mice. In addition to differentiation
capacity, this assay enables the assessment of viability,
histotypic organization, and carcinogenicity at the same
time. However, the assay is lengthy and laborious, and it
requires experts in pathological assessment and the use of
experimental animals91,92. Furthermore, in a comparison
of the methods used for and the results obtained from
teratoma assays performed at 18 centers worldwide, the
ISCBI found that both the test methods and test results
varied substantially among expert centers93. Another
quality check method is the embryoid body (EB) assay,
which enables the monitoring of differentiation capacity
in vitro. EBs are cell aggregates that spontaneously dif-
ferentiate into three developmental germ layers when
cultured in suspension94. This approach is more stan-
dardized than the teratoma assay and considered more
robust by some researchers95. Contributing to its favor-
ability, an EB assay can be combined relatively easily with
a bioinformatics analysis of gene expression profiles96–98.
Finally, the detection of pluripotency-specific markers,

such as alkaline phosphatase99, Nanog, and Oct4, as well
as other mRNAs and proteins, is another way to perform a
quality check of PSC characteristics. The detection of
these markers is usually performed using flow cytometry,
RT-qPCR, and cell-staining techniques100. A number of
markers can be used to identify PSC types, such as
the naive PSC state or the high-yield expansion PSC
state101–104, and to measure the quality of the PSCs105. At
the single-cell level, pluripotency can be assessed with
scRNA-seq and bioinformatics tools. For example, a
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PluriTest® assay is used to distinguish typical PSCs from
other PSC-like populations through machine learning that
is based on the transcriptomes of ideal cell lines and
control PSC lines106. However, functional differentiation
assays are still required to exclude false-positive results.
Other tools, such as SLICE107, SCENT108, and Epi-Pluri-
Score109, allow researchers to quantify cell potency and
cellular differentiation by entropy analysis. However, a
recent multinational study of a range of pluripotency
assays concluded that the demonstration of at least some
capacity for in vitro or in vivo differentiation was
important for the veracity of the results85.

Guidelines for big data generation, storage, and
management
As described above, numerous groups are working

internationally to generate human omics data not only for
tissues and bulk cells but also for millions of individual
cells. The gathered data have the potential to greatly
advance experimentation practices and quality checks for
cells intended for clinical applications. However, for this
goal to be realized, the data must be structured, and new
algorithms that can efficiently curate the data are needed.
Accordingly, members of the ISCBI have proposed
Minimum Information About a Cellular Assay for
Regenerative Medicine (MIACARM) guidelines, which
are directed first and foremost at stem cell banks,
although MIACARM can also be used to structure data
formats of cellular assays in general110. MIACARM is
based on the Minimum Information About a Cellular
Assay (MIACA), the first attempt at creating a reporting
format for describing functional research on cell lines111.
Unlike MIACA, MIACARM sets guidelines for human
cells used in medical applications or single-cell analysis,
including omics. The proposed guidelines have the
potential to enhance information flow in stem cell
research that aims to produce clinical-grade cells for
therapies. As an extension of MIACARM, which currently
targets source cell characterization (MIACARM-I) and
stem cell characterization (MIACARM-II), the ISCBI
community is engaged in plans to provide guidelines for
characterizing differentiated cells (MIACARM-III) using
ICTAC proposals for cell authentication based on the
framework developed for RCTs.

Conclusion
It is obvious that the body constitutes a myriad of dif-

ferent cell types that have specific functions. Advances in
microscopy, histology, and, now, omics technologies have
made it clear that the list of cell types is much longer than
originally imagined and that our understanding of mole-
cular expressions in systems both in vitro and in vivo is
still at the nascent stage. Moreover, the concept of cell
reprogramming has taught us that cells can be in constant

flux, oscillating between cell types. The ability to define
these different cell types is crucial for understanding
natural development, including the development of dis-
eased states, and for producing cells for clinical therapies.
Critical points are a consensus definition of cell types and
the data required for their authentication. In addition, it is
vital to ensure accurate and traceable links between pre-
cious resources of biological materials and the associated
data sets to make full use of both biological and electronic
resources and promote reproducibility in scientific data.
The many existing databases and the massive data already
accumulated affirm the need for the scientific community
to work together in creating a universal standard.
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