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ABSTRACT:
The second-harmonic generation of the fundamental antisymmetric Lamb wave at a closed parallel crack in an elas-

tic plate is studied by numerical analysis. The closed crack is modeled as a spring-type interface with quadratic non-

linearity. Based on a perturbation method, the problem of nonlinear Lamb wave scattering is decomposed into two

linearized problems, i.e., for the linear reflection/transmission of the incident Lamb wave at the crack and for the

generation/radiation of the second-harmonic Lamb waves due to the contact nonlinearity. The reduced problems are

solved by the finite element method in the frequency domain. Numerical results demonstrate significant effects of

the crack resonance on the linear and nonlinear Lamb wave scattering responses, which appear as sharp peaks/dips

in the reflection/transmission spectra and enhanced second-harmonic amplitudes at some frequencies. Two simple

frequency selection rules are established which explain the enhanced generation of the second-harmonic Lamb

waves. The time-domain analysis is also carried out to supplement the frequency-domain analysis, which confirms

that the incident Lamb wave interacts with the crack at some specific frequencies in its bandwidth in a selective

manner and enhances the generation of the second-harmonic components. VC 2020 Acoustical Society of America.
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I. INTRODUCTION

Elastic waves propagate as guided modes in thin-walled

structures such as plates and shells. Guided waves in plates

are known as Lamb waves and have long been applied to

nondestructive testing of plate-like structures.1,2 The scatter-

ing characteristics of Lamb waves by different types of

defects in plates have been studied by a number of investi-

gators.3–11 Among others, Rokhlin3,4 analyzed the Lamb

wave scattering by a finite crack parallel to the surfaces of

an elastic plate and the associated resonant behavior due to

the multiple reflection at two ends of the crack. The Lamb

wave scattering characteristics of perpendicular cracks

as well as notches were analyzed by Castaings et al.,7

Lowe and Diligent,8 Lowe et al.,9 and Flores-L�opez and

Gregory.11

In actual structures, crack-type defects can be closed with

their faces in mutual contact due to external loads or tempera-

ture variations. Closed cracks show different interaction

characteristics with Lamb waves from those of open cracks

and can be more difficult to detect or characterize.12–15 For

example, Kundu et al.12 have shown both theoretically and

experimentally that the phase velocities of most Lamb modes

are insensitive to the presence of a tightly closed interface in a

plate except for a certain antisymmetric mode (A1 mode).

Other studies13–15 have shown that the closure of a crack tends

to reduce its wave-scattering magnitude and makes it more

difficult to detect by Lamb waves.

While closed cracks can be difficult to characterize

using conventional ultrasonic methods, they are known to

generate the spectral components that differ from the inci-

dent wave frequency, such as higher harmonics and mixed

frequency components, due to the nonlinear behavior of

contacting crack surfaces, the so-called contact acoustic

nonlinearity.16 Nonlinear features of the Lamb wave interac-

tion with closed cracks are thus expected to provide a prom-

ising supplementary means to detect them in a sensitive

manner. Recently, Yelve et al.17–19 studied the feasibility of

Lamb-wave based nonlinear ultrasonic techniques for detec-

tion and localization of closed delamination-type defects in

bonded metallic plates as well as composite laminates.

Higher harmonic generation characteristics of Lamb waves

at closed delaminations in composite laminates were also

investigated by other investigators.20,21

In order to exploit the applicability of Lamb-wave-

based nonlinear ultrasonic techniques for closed cracks, a

number of theoretical and numerical studies have also been

carried out. Shkerdin and Glorieux22,23 analyzed the nonlin-

ear interaction of a low-frequency pumping Lamb wave and

a high-frequency probing Lamb wave at a contacting delam-

ination in bilayer structures. Delrue and Van Den

Abeele24,25 and Singh et al.26 analyzed the higher harmonic

and subharmonic generation at a closed delamination in

composite laminates using the finite element method.a)Electronic mail: biwa@kuaero.kyoto-u.ac.jp
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In these studies, the cracks (delaminations) are modeled as

clapping surfaces that open during the tensile phase of the

wave and hit each other and get in contact during the com-

pressive phase. On the other hand, tightly closed cracks may

remain in contact even in the tensile phase, but the stiffness

of their contacting surfaces varies depending on the instanta-

neous pressure acting on them. Such behavior can be simu-

lated by using nonlinear spring-type interface models27–29

which give the interfacial stresses as nonlinear functions of

the relative displacements of both surfaces. Foregoing works

have shown that nonlinear spring-type interface models are

capable of describing the linear (reflection and transmission)

as well as nonlinear (harmonic generation) characteristics of

such contacting interfaces subjected to bulk ultrasonic

waves.30–32 For Lamb waves, the reflection and transmission

at an imperfect joint of plates33–35 and a closed crack in a

plate15 have been studied based on linear spring-type inter-

face models. Recently, Mori et al.36 analyzed the second-

harmonic generation of the fundamental symmetric Lamb

wave at a nonlinear spring-type joint between two plates

both in frequency and time domains. For closed cracks in

plates, however, it still remains as an intriguing issue to ana-

lyze the nonlinear behavior of Lamb waves based on such

models.

In this paper, the scattering and the second-harmonic

generation of the fundamental antisymmetric Lamb wave at

a closed parallel crack in an elastic plate is investigated by

numerical analysis based on a nonlinear spring-type inter-

face model. Although this model has been proven to repro-

duce the second-harmonic generation at contacting

interfaces very well, its application to the analysis of nonlin-

ear Lamb wave scattering by a closed crack is a new feature

addressed in the present study. The analysis can be facili-

tated by assuming weak nonlinearity and using a perturba-

tion method, which enables us to decompose the analysis

into two parts for the linear and the second-harmonic

responses. A preliminary analysis of this problem has been

reported by Biwa and Ito,37 but more detailed formulations

and numerical results are presented in this paper. The corre-

sponding problem for an open parallel crack, hence without

nonlinear effects, was analyzed earlier by Rokhlin3,4 who

showed a significant effect of crack resonance on the Lamb

wave scattering characteristics. The present study incorpo-

rates a closed crack and the associated nonlinear effect in

the Lamb wave scattering analysis based on the nonlinear

spring-type interface model, and the role of crack resonance

in the second-harmonic generation of Lamb waves is dis-

cussed. Examination of this issue is of great interest as the

enhancement of contact acoustic nonlinearity by the defect

resonance is attracting much attention in current nonlinear

ultrasonic nondestructive evaluation techniques.26,38,39

This paper is structured as follows. In Sec. II, the scat-

tering problem of the fundamental antisymmetric Lamb

wave by a closed parallel crack in an elastic plate is formu-

lated by modeling the crack as a nonlinear spring-type inter-

face. Based on the perturbation analysis assuming weak

nonlinearity of the crack, the nonlinear problem is

decomposed into two linear problems describing the linear

scattering response and the perturbation corresponding to

the nonlinear response, respectively. In Sec. III, these prob-

lems are described in the frequency domain, and the finite

element method is employed to solve them. In the numerical

analysis, the spring-type interface is replaced by a thin elas-

tic layer with equivalent elastic constants, for which the

validity is discussed in the Appendix. In Sec. IV, the numer-

ical results of the linear as well as second-harmonic

responses of the closed crack to the Lamb wave are pre-

sented, and the effects of the incident-wave frequency as

well as the crack length are discussed. In Sec. V, the analy-

sis is supplemented by the time-domain analysis and the

spectral components arising from the nonlinear Lamb wave

scattering are discussed. In Sec. VI, the summary of the pre-

sent analysis is provided.

II. FORMULATION OF THE PROBLEM

Consider an infinitely extended thin isotropic and linear

elastic plate (density q, longitudinal wave velocity cL, shear

wave velocity cT) of thickness d, which has a parallel

straight crack of length a lying at the distance b from the

lower surface as shown in Fig. 1. The x1–x2 coordinate sys-

tem is set with the mid-plane of the plate at x2 ¼ 0 and the

normal to the plate surfaces in the x2-axis. The crack lies at

x2 ¼ g ¼ –d/2 þ b and is centered at x1 ¼ 0, extending over

–a/2 < x1 < a/2. The crack is assumed to be closed with its

surfaces being in contact with each other. In the present

study, the closed crack is modeled as a nonlinear spring-

type interface where the stress components are assumed

continuous, but the displacements can have finite jumps.

Specifically, the normal and shear stresses, r22 and r12,

respectively, on the crack surfaces are given by quadratic

functions of the relative displacements therein, i.e.,

r22ðx1; g
þ; tÞ¼r22ðx1; g

�; tÞ

¼KN y2ðx1; tÞ�by2ðx1; tÞ2�cy1ðx1; tÞ2
h i

;

�a

2
< x1 <

a

2
; (1)

r12ðx1; gþ; tÞ ¼ r12ðx1; g�; tÞ ¼ KT y1ðx1; tÞ½

� vy1ðx1; tÞy2ðx1; tÞ�; � a

2
< x1 <

a

2
;

(2)

where KN and KT are the normal and tangential interfacial

stiffnesses, respectively, and b, c and v are the parameters

representing the nonlinearity of the crack surfaces.32 The

relative displacements of the crack surfaces are defined by

FIG. 1. (Color online) An elastic plate with a parallel crack.
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y1ðx1; tÞ ¼ u1ðx1; gþ; tÞ � u1ðx1; g�; tÞ;
y2ðx1; tÞ ¼ u2ðx1; gþ; tÞ � u2ðx1; g�; tÞ;

(3)

where u1 and u2 are the horizontal and vertical displacement

components. This model can be interpreted as the Taylor

expansion of the interfacial stresses with respect to the rela-

tive displacements, taken up to the second-order terms and

restricted to the symmetric response with respect to the

shear direction (for more details, see Ref. 32). It can also be

obtained as a limiting case of a thin nonlinear elastic inter-

phase layer, as discussed by An et al.40 and Zhang et al.41 It

has been used in the analysis of the second-harmonic gener-

ation at contacting interfaces for normally incident

waves28,30 and for more general situations.36,42 Similar

models can be found in other works27,29,31 on the contact

acoustic nonlinearity. For the sake of brevity, the nonlinear

effects of the closed crack are solely represented by the term

by2ðx1; tÞ2 on the right-hand side of Eq. (1) in the present

analysis, so the parameters c and v are set as zero hereafter.

The upper and lower surfaces of the plate are assumed to be

traction-free, i.e.,

r22 x1;6
d

2
; t

� �
¼ r12 x1;6

d

2
; t

� �
¼ 0: (4)

The plate is subjected to the incidence of the fundamen-

tal antisymmetric Lamb wave (A0 mode) with the frequency

f0 (the angular frequency x0 ¼ 2pf0) propagating in the posi-

tive x1-direction, which has the following displacement

components in a homogeneous plate:

uInc
a ðx1; x2; tÞ ¼ Re UA0

a ðx2Þ exp i kA0ðx0Þx1 � x0t
� �� �� �

;

(5)

where kA0ðx0Þ is the wavenumber of the A0 mode at the

angular frequency x0 and UA0
a ðx2Þ denotes the through-

thickness displacement profile of that mode, which can be

found in ordinary textbooks.43 The incidence of the A0

mode is studied here since its displacement is dominated by

the vertical component, which is perpendicular to the crack

surfaces and expected to cause significant nonlinear

response. The incident A0 Lamb wave is scattered by the

crack. This phenomenon is governed by the following two-

dimensional, plane-strain Navier equation:

ðc2
L � c2

TÞ
@2uc

@xa@xc
þ c2

T

@2ua

@xc@xc
¼ @

2ua

@t2
; a ¼ 1; 2: (6)

Here and hereafter, the two-dimensional summation conven-

tion is adopted, i.e., an index repeated twice in a term implies

the sum of that term with this index for 1 and 2.

The problem to be analyzed thus consists of Eq. (6)

with the boundary conditions of Eqs. (1)–(4) for the incident

wave of Eq. (5). Due to the nonlinearity of the crack surfa-

ces, it is not possible to obtain an exact solution of the prob-

lem analytically. In the present analysis, the nonlinear effect

of the closed crack is assumed sufficiently weak, and a

perturbation method is used to obtain an approximate solu-

tion.32 Namely, the solution uaðx1; x2; tÞ is decomposed into

two parts as

uaðx1; x2; tÞ ¼ �uaðx1; x2; tÞ þ ûaðx1; x2; tÞ; (7)

where �ua represents the linear response obtained by neglecting

the nonlinear term in the boundary conditions of the crack and

ûa represents the small perturbation from the linear response.

The other associated quantities (relative displacements and

stresses) are likewise defined with a superposed bar for the lin-

ear response and with a hat for the perturbation.

The linear response is governed by Eqs. (5) and (6)

with �ua in place of ua, together with Eq. (4) with �rac in place

of rac, and

�r22ðx1; gþ; tÞ ¼ �r22ðx1; g�; tÞ ¼ KN�y2ðx1; tÞ;

� a

2
< x1 <

a

2
;

(8)

�r12ðx1; gþ; tÞ ¼ �r12ðx1; g�; tÞ ¼ KT�y1ðx1; tÞ;

� a

2
< x1 <

a

2
;

(9)

�y1ðx1; tÞ ¼ �u1ðx1; gþ; tÞ � �u1ðx1; g�; tÞ;
�y2ðx1; tÞ ¼ �u2ðx1; gþ; tÞ � �u2ðx1; g�; tÞ;

(10)

as the boundary conditions at the crack. It is convenient to

introduce the complex-value expression

�uaðx1; x2; tÞ ¼ Re �Uaðx1; x2Þ exp ð�ix0tÞ
� �

; (11)

�yaðx1; x2; tÞ ¼ Re �Yaðx1; x2Þ exp ð�ix0tÞ
� �

; (12)

�rabðx1; x2; tÞ ¼ Re �Rabðx1; x2Þ exp ð�ix0tÞ
� �

; (13)

and formulate the problem in the frequency domain as

ðc2
L � c2

TÞ
@2 �Uc

@xa@xc
þ c2

T

@2 �Ua

@xc@xc
þ x2

0
�Ua ¼ 0; (14)

�R22 x1;6
d

2

� �
¼ �R12 x1;6

d

2

� �
¼ 0; (15)

�R22ðx1; gþÞ ¼ �R22ðx1; g�Þ ¼ KN
�Y 2ðx1Þ;

� a

2
< x1 <

a

2
;

(16)

�R12ðx1; gþÞ ¼ �R12ðx1; g�Þ ¼ KT
�Y1ðx1Þ;

� a

2
< x1 <

a

2
;

(17)

for the incident wave given by

�U
Inc
a ðx1; x2Þ ¼ UA0

a ðx2Þ exp ikA0ðx0Þx1

� �
: (18)

The linear response describes the scattering of the inci-

dent A0-mode Lamb wave by a closed crack modeled as a

linear spring-type interface. After the linear response is
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obtained, the next step is to determine the perturbation,

which is governed by Eq. (6) with ûa in place of ua, Eq. (4)

with r̂ac in place of rac, and the following conditions at the

crack,

r̂22ðx1; gþ; tÞ ¼ r̂22ðx1; g�; tÞ

¼ KN ŷ2ðx1; tÞ � b�y2ðx1; tÞ2
h i

;

� a

2
< x1 <

a

2
; (19)

r̂12ðx1; gþ; tÞ ¼ r̂12ðx1; g�; tÞ ¼ KTŷ1ðx1; tÞ;

� a

2
< x1 <

a

2
; (20)

ŷ1ðx1; tÞ ¼ û1ðx1; gþ; tÞ � û1ðx1; g�; tÞ;
ŷ2ðx1; tÞ ¼ û2ðx1; gþ; tÞ � û2ðx1; g�; tÞ:

(21)

The above problem contains �y2ðx1; tÞ2 on the right-hand

side of Eq. (19) from the linear solution, which can be calcu-

lated as

�y2ðx1; tÞ2 ¼ Re �Y2ðx1Þ exp ð�ix0tÞ
� �� 	2

¼ 1

2
Re �Y2ðx1Þ
� �� 	2 þ Im �Y2ðx1Þ

� �� 	2
n o
þ 1

2
Re �Y 2ðx1Þ
� �� 	2 þ Im �Y 2ðx1Þ

� �� 	2
n o

� cos ð2x0tþ /ðx1ÞÞ; (22)

where the variable /ðx1Þ is defined by

cos /ðx1Þ ¼
Re �Y 2ðx1Þ
� �� 	2 � Im �Y2ðx1Þ

� �� 	2

Re �Y 2ðx1Þ
� �� 	2 þ Im �Y2ðx1Þ

� �� 	2
;

sin /ðx1Þ ¼ �
2Re �Y2ðx1Þ

� �
Im �Y2ðx1Þ
� �

Re �Y2ðx1Þ
� �� 	2 þ Im �Y2ðx1Þ

� �� 	2
: (23)

The term KNb�y2ðx1; tÞ2 on the right-hand side of Eq. (19) is

a source to generate the perturbed wave field, which is given

by the superposition of the static (x ¼ 0) component

u0
aðx1; x2; tÞ and the second-harmonic (x ¼ 2x0) component

~uaðx1; x2; tÞ, i.e., ûa ¼ u0
a þ ~ua. Our attention in this study is

focused on the second-harmonic generation. The second-

harmonic part can also be obtained in the frequency domain,

i.e.,

~uaðx1; x2; tÞ ¼ Re ~Uaðx1; x2Þ exp ð�2ix0tÞ
� �

; (24)

~yaðx1; x2; tÞ ¼ Re ~Yaðx1; x2Þ exp ð�2ix0tÞ
� �

; (25)

~rabðx1; x2; tÞ ¼ Re ~Rabðx1; x2Þ exp ð�2ix0tÞ
h i

; (26)

by solving the problem

ðc2
L � c2

TÞ
@2 ~Uc

@xa@xc
þ c2

T

@2 ~Ua

@xc@xc
þ ð2x0Þ2 ~Ua ¼ 0; (27)

~R22 x1;6
d

2

� �
¼ ~R12 x1;6

d

2

� �
¼ 0; (28)

~R22ðx1;g
þÞ¼ ~R22ðx1;g

�Þ¼KN
~Y2ðx1Þ�bFðx1Þ
� �

;

�a

2
<x1<

a

2
;

(29)

~R12ðx1; gþÞ ¼ ~R12ðx1; g�Þ ¼ KT
~Y1ðx1Þ;

� a

2
< x1 <

a

2
;

(30)

where

Fðx1Þ ¼
1

2
Re �Y2ðx1Þ
� �� 	2 þ Im �Y2ðx1Þ

� �� 	2
n o
� exp �i/ðx1Þ½ �: (31)

III. NUMERICAL ANALYSIS

A. Finite element modeling

Based on the formulation given above, the scattering of

the A0-mode Lamb wave by a closed parallel crack is now

analyzed for a low-frequency range below the cut-off fre-

quency of the A1 mode, fA1 ¼ cT/(2d). Specifically, the lin-

ear response is analyzed for the normalized range of the

incident-wave frequency 0 < f0d/cT < 0.2 to elucidate the

linear scattering behavior of the A0-mode Lamb wave by

the crack. Then, the second-harmonic response is analyzed

for the normalized incident-wave frequency 0 < f0d/cT

< 0.1, which corresponds to the frequency range of the

second-harmonics of 0 < 2f0d/cT < 0.2. In both analyses,

the A0 and S0 modes are the only propagating Lamb modes

in the homogeneous plate. Based on the perturbation analy-

sis introduced in Sec. II, the linear and the second-harmonic

responses are analyzed by utilizing the commercial finite

element analysis software Comsol Multiphysics Ver. 5.4.

All the computations are carried out in the frequency

domain within the two-dimensional plane-strain framework.

The schematic of the computational model used for the anal-

ysis is shown in Fig. 2. In Fig. 2, the region of the plate of

length 120d is divided into finite elements and connected to

the perfectly matched layers (PMLs) of length 40d on both

sides to simulate the infinitely extended plate. Quadrilateral

elements are used for mesh division with the maximum ele-

ment size d/20, which ensures that the elements are smaller

than 1/100 of the shear wave length in the frequency range

0 < f0d/cT < 0.2. The crack length is varied as a ¼ 2d, 4d,

and 6d to examine its influence on the linear and nonlinear

scattering behavior, while the crack location (distance from

the lower surface of the plate) is fixed as b ¼ 0.1d. In the

present analysis, the material constants of aluminum alloy

are used for the plate (q ¼ 2700 kg/m3, cL ¼ 6400 m/s, cT

¼ 3170 m/s). The value of d is set as unity (d ¼ 1 mm) in

the actual computations, but the results will be shown in the

normalized form so that they are valid for other dimensions

of the plate if the normalized variables are the same. In the

analysis for the linear response, a pair of the point forces

2076 J. Acoust. Soc. Am. 148 (4), October 2020 Ye et al.
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with the same magnitude is applied in the vertical direction

far away from the crack, at x1 ¼ –55d. This is effective to

simulate the incidence of the A0-mode Lamb wave to the

crack since the A0 mode is the only antisymmetric Lamb

mode that can propagate in the plate in the assumed fre-

quency range. The choice of the force magnitude is arbi-

trary, owing to the linearized nature of the problem.

The interfacial stiffnesses KN and KT represent the

degree of crack closure. For contacting interfaces of solid

bodies, the ratio of these stiffnesses KT/KN is known to take

different values, varying roughly between 0.2 and 0.6

depending on the material, surface topography, and applied

pressure.44–48 In the present analysis, the fixed value of KN,

i.e., KNd/(qcT
2) ¼ 0.01 and the fixed ratio of KT/KN ¼ 0.4

are used. Furthermore, the spring-type interface is replaced

by a very thin elastic layer (thickness d) having zero mass

density and elastic constants kC and lC, which are deter-

mined by the relations

KN ¼
kC þ 2lC

d
; KT ¼

lC

d
(32)

in accordance with the interfacial stiffnesses.49 The thick-

ness of this layer is set as d ¼ 10�6d. The validity of simu-

lating the spring-type interface by a thin elastic layer is

demonstrated in the Appendix by examining the dispersion

relations of a bilayer plate structure with a spring-type inter-

face and a three-layer plate with a thin elastic layer.

As explained above, the nonlinear Lamb wave scatter-

ing by the closed crack is analyzed in two steps in this study,

first for the linear scattering and then for the second-

harmonic generation. In each step, the problem is a linear

one and solved in the frequency domain with the closed

crack modeled as a linear spring-type interface.

Furthermore, the spring-type interface is simulated by a thin

elastic layer with equivalent elastic constants in the finite

element analysis. It is, however, worth noting here that the

nonlinear spring-type interface similar to Eqs. (1) and (2)

has been directly modeled in the time domain by Zhang

et al.41 using Comsol Multiphysics in their analysis of non-

collinear mixing of bulk shear waves.

B. Evaluation of linear response

The finite element analysis for the linear response

described by Eqs. (14)–(18) yields the displacement field

with the incident-wave frequency in the plate. It gives the

transmitted wave ahead of the crack (x1� 0), while it gives

the superposition of the incident wave and the reflected

wave behind the crack (x1 � 0). In order to separate the

reflected wave from the incident wave, a similar analysis is

performed for the homogeneous plate without the crack, and

the resulting wave field is assumed to be the incident wave

field: the reflected wave field is then obtained by subtracting

the incident wave field from the displacement field for the

plate with the crack. In the frequency range analyzed here,

the A0 and S0 modes are the only modes that propagate far

away from the crack. At the position x1 ¼ 50d ahead of the

crack and at x1 ¼ –50d behind the crack, the displacements

and stresses are decomposed into those of the A0 and S0

modes by

�U
A0
1 ðx1; x2Þ ¼

1

2
�U1ðx1; x2Þ � �U1ðx1;�x2Þ

� �
;

�U
A0
2 ðx1; x2Þ ¼

1

2
�U2ðx1; x2Þ þ �U2ðx1;�x2Þ

� �
; (33a)

�U
S0
1 ðx1; x2Þ ¼

1

2
�U1ðx1; x2Þ þ �U1ðx1;�x2Þ

� �
;

�U
S0
2 ðx1; x2Þ ¼

1

2
�U2ðx1; x2Þ � �U2ðx1;�x2Þ

� �
; (33b)

�R
A0

11 ðx1; x2Þ ¼
1

2
�R11ðx1; x2Þ � �R11ðx1;�x2Þ

� �
;

�R
A0

12 ðx1; x2Þ ¼
1

2
�R12ðx1; x2Þ þ �R12ðx1;�x2Þ

� �
; (33c)

�R
S0

11ðx1; x2Þ ¼
1

2
�R11ðx1; x2Þ þ �R11ðx1;�x2Þ

� �
;

�R
S0

12ðx1; x2Þ ¼
1

2
�R12ðx1; x2Þ � �R12ðx1;�x2Þ

� �
: (33d)

In the complex-value representation, the energy flux across

a cross-section of the plate is given by

P ¼ ix
4

ðd=2

�d=2

ð �U1
�R
�
11 þ �U2

�R
�
12 � �U

�
1
�R11 � �U

�
2
�R12Þdx2;

(34)

where * denotes a complex conjugate. Using the above

expression, the energy flux is calculated for the reflected and

transmitted A0 and S0 modes (PRA0, PRS0, PTA0, PTS0) and

normalized in the following way to obtain the reflection and

transmission coefficients of two modes, i.e.,

RA0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PRA0

PIA0

����
����

s
; RS0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PRS0

PIA0

����
����

s
;

TA0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PTA0

PIA0

����
����

s
; TS0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
PTS0

PIA0

����
����

s
; (35)

where PIA0 represents the energy flux of the incident A0

mode. In this analysis, PIA0 is determined for the

FIG. 2. (Color online) The numerical model of the plate with a crack.
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homogeneous plate with no crack, at x1 ¼ 0 corresponding

to the center of the crack.

C. Evaluation of second-harmonic response

The second-harmonic wave field is also solved by the

finite element method in the absence of incident wave but

with the wave source given by the quadratic nonlinearity of

the defect as described by Eqs. (27)–(31). The relative dis-

placements of the upper and lower surfaces of the crack

(modeled as a thin layer) are extracted from the linear-

response analysis, and the normal stress �KNbFðx1Þ with

F(x1) given in Eq. (31) is applied on the crack surfaces, i.e.,

on the upper and lower boundaries of the thin layer.

The second-harmonic response analysis gives the wave

field with the double frequency 2f0 radiated from the crack

into both directions along the plate. Then, the displacements

and stresses are evaluated at the same cross-sections as in

the linear-response analysis, and the energy flux of the back-

scattered and forward-scattered second-harmonic A0 and S0

modes, denoted by ~PRA0; ~PRS0; ~PTA0; ~PTS0, respectively,

are obtained at x1 ¼ –50d and x1 ¼ 50d using Eq. (34) with

the second-harmonic displacements ~Ua and stresses ~Rac for

x ¼ 2x0. For the demonstration in Sec. IV, they are normal-

ized as

~RA0 ¼
1

bA0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~PRA0

PIA0

����
����

s
; ~RS0 ¼

1

bA0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~PRS0

PIA0

����
����

s
;

~TA0 ¼
1

bA0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~PTA0

PIA0

����
����

s
; ~TS0 ¼

1

bA0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~PTS0

PIA0

����
����

s
; (36)

where the reference displacement magnitude A0 is chosen as

the absolute value of the vertical displacement of the inci-

dent A0 mode at x1 ¼ 0, x2 ¼ 0 for each frequency.

IV. RESULTS AND DISCUSSION

A. Linear response

The results for the plate with the crack length a ¼ 4d
are first shown as the reference case. In Fig. 3, the reflection

and transmission coefficients of the A0 and S0 modes are

shown for the normalized incident-wave frequency range

0 < f0d/cT < 0.2. In Fig. 3, it is seen that the magnitude of

the reflected A0 mode (RA0) has sharp peaks at several fre-

quencies, accompanying sharp dips of the transmitted A0

mode (TA0) at almost the same frequencies. On the other

hand, the magnitudes of reflected and transmitted S0 modes

(RS0 and TS0) remain negligibly small except at the frequen-

cies where RA0 shows sharp peaks. For the three lowest

peak frequencies of RA0, f0d/cT ¼ 0.0536, 0.0574, and

0.0754, the distributions of the normal displacements of the

crack, i.e., Re[U2] on the upper and lower surfaces of the

thin layer, are shown in Fig. 4, where the lower surface

exhibits larger displacements since the sub-plate below the

layer is relatively thin (b ¼ 0.1d). The corresponding prob-

lem for a plate with a traction-free crack located on the mid-

plane has been analyzed by Rokhlin,3,4 who demonstrated

sharp peaks and dips in the reflection/transmission responses

due to the resonance at the crack. This interpretation is

expected to be valid for the present case of the closed crack

modeled as a spring-type interface. To confirm this, the

eigenfrequency analysis is performed using Comsol

Multiphysics for a segment of plate of the length 4d contain-

ing the thin layer as shown in Fig. 5. The left and right

boundaries of this segment are fixed while the upper and

lower boundaries are traction-free. The displacement modes

of the upper and lower surfaces of the thin layer are shown

FIG. 3. (Color online) The reflection and transmission coefficients of the

A0 and S0 modes against the normalized incident-wave frequency when a
¼ 4d.

FIG. 4. (Color online) The displacement distribution of the upper and lower

surfaces of the thin layer (closed crack) for f0d/cT ¼ (a) 0.0536, (b) 0.0574,

and (c) 0.0754 when a ¼ 4d.
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in Fig. 6 for the three lowest eigenfrequencies. The eigenfre-

quencies and the associated displacement profiles in Fig. 6

are in reasonable conformity with the peak frequencies and

the displacement profiles in Fig. 4. The discrepancies

between them should first come from the fact that the struc-

ture in Fig. 5 is fixed at both ends and each mode corre-

sponds to free vibration, while the crack (thin layer) in our

original problem of Fig. 2 is subjected to the incoming wave

and radiates the scattered waves. Since it is embedded in the

infinite plate, there is an open-end effect as discussed by

Rokhlin.4 In spite of these discrepancies, the agreement

shown here indicates that the sharp peaks and dips in Fig. 3

are brought about by the resonant interaction of the A0-

mode Lamb wave with the crack.

In the frequency range 0 < f0d/cT < 0.2, the magnitude

of F(x1) in Eq. (31) is averaged over the crack and normal-

ized to define the following parameter, which can be used as

a measure of the opening displacement of the crack,

�F ¼ 1

2A2
0a

ða=2

�a=2

Re �Y2ðx1Þ
� �� 	2 þ Im �Y2ðx1Þ

� �� 	2
n o

dx1;

(37)

where A0 is the aforementioned displacement amplitude of

the incident A0 mode. This value is shown against f0d/cT in

Fig. 7, which shows sharp peaks at the frequencies very

close to the resonance frequencies found above. This indi-

cates the dramatic increase of the relative displacements of

crack surfaces by the resonance, which will give high driv-

ing force for the second-harmonic generation.

B. Second-harmonic response

For the reference case with a ¼ 4d, the normalized

magnitudes of the scattered second-harmonic A0 and S0

modes defined in Eq. (36) are shown in Fig. 8 against the

normalized incident-wave frequency in the range 0 < f0d/cT

< 0.1. These magnitudes are shown in the logarithmic scale

to examine their variation in a wider range. In Fig. 8, the

back- and the forward-scattered second-harmonic A0 modes

show sharp peaks at the incident-wave frequencies f0d/cT

¼ 0.0268, 0.0290, 0.0375, etc. The magnitudes of the scat-

tered S0 modes also show peaks at these frequencies, but as

a general trend, they are relatively small as compared to

those of the scattered A0 modes.

By comparing the incident-wave frequencies which

give sharp peaks (or dips) in the linear response and the

peak frequencies in the second-harmonic response, one can

find the following two simple relations between them. First,

at the resonance frequencies in the linear response (f0d/cT

¼ 0.0536, 0.0574, 0.0754, … in Fig. 3) or very close to

them, the second-harmonic magnitudes also have peaks

(f0d/cT ¼ 0.0527, 0.0584, 0.0754, … in Fig. 8). Second, the

second-harmonic magnitudes have peaks at some incident-

wave frequencies (f0d/cT ¼ 0.0268, 0.0290, 0.0375, … in

Fig. 8) when they are close to the half values of the linear

resonance frequencies (f0d/cT ¼ 0.0536, 0.0574, 0.0754, …

in Fig. 3). These two frequency selection rules can basically

explain the location of all peaks in the second-harmonic

response. The first rule can be interpreted based on the

nature of the quadratic nonlinearity of the interface.

Namely, the resonance induces larger relative normal

FIG. 5. (Color online) The finite plate model with a thin layer.

FIG. 6. (Color online) Three eigenmodes of the upper and lower surfaces of

the thin layer for the eigenfrequencies of fd/cT ¼ (a) 0.0497, (b) 0.0586, and

(c) 0.0776 when a ¼ 4d.

FIG. 7. (Color online) The crack opening parameter �F against the normal-

ized incident-wave frequency when a ¼ 4d.
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displacement of the crack (as shown in Fig. 7) and gives

higher driving force for second-harmonic generation. The

second rule can be interpreted as the enhancement of the

nonlinear effect by the superharmonic resonance. Namely,

the generated second-harmonic components can be ampli-

fied significantly when the double frequency matches the

resonance of the crack. Some incident-wave frequencies

(f0d/cT ¼ 0.0536 (� 0.0527), 0.0754) nearly meet both rules

and are found to give particularly high peaks in the second-

harmonic amplitudes. The results shown here thus support

the idea of utilizing the so-called local defect resonance for

efficient characterization of defects, as pioneered by

Solodov and co-workers,38,39 and demonstrate its variant for

Lamb waves.

It should be noted in passing that the quantities plotted

in Fig. 8 are scaled by the non-dimensional parameter

bA0, as shown in Eq. (36). The actual magnitudes of the

second-harmonic components, which depend on both these

quantities and bA0, can be significantly large at the peaks.

The present analysis may lose accuracy for such high peaks

since it is based on the assumption of weak nonlinearity as

stated in Sec. II. In fact, the precise magnitude of these

peaks does not have much physical meaning since, in realis-

tic circumstances, some damping mechanisms such as inter-

nal or interfacial friction can impede the occurrence of such

high peaks. Nevertheless, the present analysis reveals

clearly that the second-harmonic generation by a closed

crack in a plate is highly frequency-sensitive due to the reso-

nance of the crack to the incident Lamb wave.

In order to examine the effect of crack length on the lin-

ear and second-harmonic responses, the crack length is

changed to a ¼ 2d and 6d from the reference case (a ¼ 4d)

with the other parameters kept the same. The numerical

results are shown in Figs. 9 and 10. At a quick glance, the

shorter crack in Fig. 9(a) has fewer resonances, while the

longer crack in Fig. 10(a) has more resonances in the same

frequency range as compared to the reference case (a ¼ 4d).

This is naturally expected as the shorter (longer) crack

should have higher (lower) resonance frequencies. In accor-

dance with this, the second-harmonic magnitudes show a

smaller (greater) number of peaks for the shorter (longer)

crack. In Fig. 9(b) for the shorter crack (a ¼ 2d), the peaks

of the second-harmonic amplitude are found at linear reso-

nance (f0d/cT ¼ 0.0653) as well as near the halves of linear

resonance (f0d/cT ¼ 0.0325, 0.0584). In Fig. 10(b) for the

longer crack (a ¼ 6d), the peaks are found at linear reso-

nance (f0d/cT ¼ 0.0562, 0.0659, 0.0804) as well as near

the halves of some linear resonance frequencies (f0d/cT

¼ 0.0262, 0.0281, 0.0331, …). Therefore, the two

frequency-selection rules discussed for the reference case

are also valid for these cases.

V. SUPPLEMENTARY ANALYSIS IN THE TIME DOMAIN

The present analysis has revealed a significant effect of

crack resonance on the linear and nonlinear scattering

responses of the A0-mode Lamb wave. It is then of definite

interest to examine the associated temporal reflection/

FIG. 8. (Color online) The second-harmonic amplitudes of the A0 and S0

modes against the normalized incident-wave frequency when a ¼ 4d.

FIG. 9. (Color online) (a) The reflection and transmission coefficients and (b) the second-harmonic amplitudes of the A0 and S0 modes against the normal-

ized incident-wave frequency when a ¼ 2d.
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transmission waveforms and their spectral components,

since these are the features directly observed in actual mea-

surements. To this purpose, the Lamb wave propagation in

the plate with a closed crack is analyzed in the time domain

using Comsol Multiphysics. The numerical model is con-

structed as shown in Fig. 11, for which the maximum ele-

ment size is designed as d/20 in accordance with the model

used for the frequency-domain analysis. The wave source is

set at x1 ¼ –55d as the prescribed force pair with the magni-

tude as a function of time in the form of a sinusoidal wave

of frequency f0d/cT ¼ 0.0757 modulated by a Gaussian

envelope. The selected center frequency of excitation is near

one of the resonance frequencies of the crack (Fig. 3). The

amplitude of the force is chosen so that it gives the maxi-

mum (the height of the wave-packet envelope) of the verti-

cal displacement At0 ¼ 10�5d at x1 ¼ x2 ¼ 0 in the absence

of the crack. This force pair excites the A0-mode Lamb

wave in the plate and interacts with the crack. In order to

suppress the unwanted reflection from the plate edges, the

plate is connected to the exterior plates with the similar elas-

tic constants but with the damping parameter that increases

gradually with the distance from 0 to E/(20pf0), where E is

Young’s modulus. The time step for the analysis is set equal

to 3.6 � 10�4/f0, which resolves the relevant period of wave

motion with sufficient fineness and also meets the stability

condition. Like in the frequency-domain analysis, the actual

parameters are determined for aluminum alloy plates with

d¼ 1 mm.

The closed crack is modeled as a thin layer with the

elastic constants equivalent to the spring-type interface as

given in Eq. (32). In order to incorporate the quadratic

nonlinearity of the crack, the thin layer is modeled as a non-

linear medium for which the shear modulus lC is constant,

but the bulk modulus jC varies linearly with the volume

strain ev as

jC ¼ jC0 � aeV; (38)

where jC0 and a are constants. The Nonlinear Structural

Material module of Comsol Multiphysics is used to imple-

ment the above nonlinear material model. When the layer is

sufficiently thin, this is approximately equivalent to the non-

linear spring-type interface model of Eqs. (1) and (2) with

c ¼ v ¼ 0 when

jC0 ¼ KN �
4

3
KT

� �
d; lC ¼ KTd; a ¼ KNd2b: (39)

Furthermore, this reduces to the thin layer model used in the

frequency-domain analysis in Sec. IV when a ¼ 0. In what

follows, the reference case (a ¼ 4d, b ¼ 0.1d, KNd/(qcT
2) ¼

0.01, KT/KN ¼ 0.4) is considered and the nonlinearity

parameter b is chosen sufficiently small to ensure the weak

nonlinearity, i.e., bAt0 ¼ 0.005. It is noted that this model-

ing, with a constant shear modulus and a volume-strain-

dependent bulk modulus, is sufficient for the present analy-

sis, but a more detailed account of nonlinear elastic thin

layer modeling has been provided by Zhang et al.41 together

with the discussion of its equivalence to the nonlinear

spring-type interface model.

The vertical displacement histories at x1 ¼ –50d, x2 ¼ 0

(behind the crack) and x1 ¼ 50d, x2 ¼ 0 (ahead of the crack),

representing the reflected and transmitted A0-mode Lamb

FIG. 10. (Color online) (a) The reflection and transmission coefficients and (b) the second-harmonic amplitudes of the A0 and S0 modes against the normal-

ized incident-wave frequency when a ¼ 6d.

FIG. 11. The numerical model of the plate with a crack for the time-domain analysis.
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waves, are shown in Figs. 12(a) and 12(b) for the plates with

and without a closed crack. The displacement is normalized

by the maximum incident-wave amplitude At0, and the

elapsed time is normalized as f0t. At x1 ¼ –50d [Fig. 12(a)],

the first signal corresponds to the incident wave propagating

to the right, which is followed by additional reflected wave

signals in the presence of the crack. The reflected wave can

be obtained as the difference of the two waveforms in

Fig. 12(a). At x1 ¼ 50d [Fig. 12(b)], the wave consists of the

direct transmission waveform and the accompanying oscilla-

tory signals when the crack is present. The fast Fourier

transforms of the reflected and transmitted waveforms are

shown in Fig. 13 together with the amplitude spectrum of

the incident wave obtained at x1 ¼ x2 ¼ 0 in the plate with-

out the crack. In Fig. 13, the amplitude spectra are normal-

ized by the maximum of the incident wave spectrum. In the

frequency bandwidth of the incident wave, the reflection

and transmission coefficients Rt and Tt have been calculated

by dividing the spectral amplitudes of reflected and trans-

mitted waves by the corresponding amplitude of the incident

wave, and excellent agreement with the results of the

frequency-domain analysis in Sec. IV has been confirmed.

In Fig. 13, the reflected and transmitted waves have

spectral amplitudes in the lower and higher frequencies out-

side the bandwidth of the incident wave. These spectral

components are generated by the closed crack in the plate

and can be interpreted as follows. The spectral components

in the low-frequency region are likely due to the nonlinear

interaction of amplitude-modulated waves observed for

nonlinear media50,51 and have a common background as the

static component due to the nonlinearity mentioned in

Sec. II. The spectral components in the high-frequency

range are also generated by the nonlinearity of the closed

crack. They are shown separately in Fig. 14 and have peaks

at some frequencies. The peak frequencies of the reflected

A0-mode are indicated as texts in Fig. 14. The peaks at fd/cT

¼ 0.1448, 0.1508, and 0.1905 are likely the second-

harmonic components of the incident wave component of

the frequency fd/cT ¼ 0.0724, 0.0754, and 0.0953, which

are close or equal to the incident-wave frequencies of the

second-harmonic peaks shown in Fig. 8. Namely, although

the incident wave has a smooth Gaussian spectrum, some

particular frequencies within its bandwidth generate the

second-harmonic components in a selective manner due to

the nonlinear interaction with the closed crack. This con-

firms the finding of the frequency-domain analysis obtained

in Secs. II–IV in a qualitative manner. It should be noted

that there are other peaks at the frequencies that do not cor-

respond to the second-harmonics shown in Fig. 8, i.e., at fd/

cT ¼ 0.1284, 0.1337, and 0.1807. These are probably the

mixed-frequency components that are also generated by the

nonlinearity of the crack, since the sums of the resonance

frequencies in Fig. 3 (f0d/cT ¼ 0.0536, 0.0574, 0.0754, and

0.1054) give the frequencies close to them, i.e., 0.0536

þ 0.0754 ¼ 0.129 (� 0.1284), 0.0574 þ 0.0754 ¼ 0.1328

(� 0.1337), 0.0754 þ 0.1054 ¼ 0.1808 (� 0.1807). This

indicates that some frequency components in the bandwidth

of the incident wave are amplified by the crack resonance,

and their combination frequencies are generated by the

FIG. 12. (Color online) The time histories of the vertical displacement on the mid-plane at (a) x1 ¼ –50d and (b) x1 ¼ 50d with and without the crack.

FIG. 13. (Color online) The amplitude spectra of the incident, reflected, and

transmitted waves when a ¼ 4d.
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contact nonlinearity. Such mixed-frequency components are

not obtained in the analysis of Secs. II–IV, which assumed

the incidence of the Lamb mode with a single frequency.

The analysis can, however, be extended to the case of the

incidence of two waves with different frequencies in a

straightforward manner.

The time-domain analysis presented here has shown

that the reflected and transmitted Lamb waves contain spe-

cific nonlinear frequency components in a selective manner,

even if the incident wave has a smooth spectrum. These fre-

quency components may indicate the presence of a closed

crack and contain information of its conditions.

Understanding such features may be useful in interpreting

the measurement data or selecting the suitable monitoring

conditions for the Lamb-wave based nonlinear ultrasonic

techniques.

VI. SUMMARY

In this paper, the nonlinear interaction of the fundamen-

tal antisymmetric Lamb wave with a closed parallel crack in

an elastic plate has been studied, with particular emphasis

on the second-harmonic generation. Based on a perturbation

method, the problem of nonlinear Lamb wave scattering by

a closed crack has been decomposed into two linearized

problems, i.e., for the linear reflection/transmission response

and for the perturbation due to the weak nonlinearity of the

crack, and solved by the finite element method in the fre-

quency domain. Numerical results have shown significant

effects of the resonance of the crack with the Lamb wave,

which exhibits sharp peaks/dips in the reflection/transmis-

sion spectra and enhances the second-harmonic generation.

The peak frequencies of the second-harmonic Lamb modes

have been shown to depend on the size of the crack. Two

simple frequency selection rules have been established that

explain the enhancement of second-harmonic generation.

The time-domain analysis has also been carried out to sup-

plement the analysis, which has confirmed that the incident

Lamb wave interacts with the crack at specific frequencies

within its bandwidth in a selective manner, as indicated in

the present analysis. The perturbation method combined

with the frequency-domain finite element analysis is an

advantage in carrying out the computation of the reflection/

transmission and the associated second-harmonic generation

characteristics of the Lamb wave with a given frequency in

an efficient manner and elucidates the essential physics.
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APPENDIX

In order to check the validity of replacing the spring-

type interface by a thin elastic layer, the guided wave propa-

gation in a bilayer plate with a linear spring-type interface at

0.1d above the lower surface as shown in Fig. 15(a) was

examined. For the frequency-domain analysis with Comsol

Multiphysics, the numerical model consisting of the elastic

plate of the length 60d connected with the PMLs of the

length 30d at both ends was built, where the spring-type

interface was replaced by a thin elastic layer of thickness d
¼ 10�6d as shown in Fig. 15(b). The elastic constants kC

and lC of the thin layer were determined by Eq. (32) for the

two values of KNd/(qcT
2) ¼ 0.01 and 0.1. The frequency-

domain analysis was performed for a normal point force

applied at the left edge of the plate region, and the horizon-

tal displacement was extracted on the upper plate surface at

512 equally spaced points starting at the distance 5d from

the excitation point with the spatial sampling interval of

d/10 in the horizontal direction as shown in Fig. 15(b). The

spatial fast Fourier transform (FFT) was applied to the sam-

pling data computed at each excitation frequency in the

range 0 < fd/cT < 0.6 with interval of Dfd/cT ¼ 3.155

� 10�4, and the frequency-wavenumber plot was obtained

as shown in Fig. 16 for KNd/(qcT
2) ¼ 0.01 and 0.1 with KT/

KN ¼ 0.4. In Fig. 16, the analytical dispersion curves of the

corresponding bilayer plate with the spring-type interface

are superposed, which were obtained by solving the global

matrix of the system by introducing the linear spring-type

FIG. 14. (Color online) The amplitude spectra of the incident, reflected, and

transmitted waves when a ¼ 4d, magnified for the high-frequency region.

FIG. 15. (Color online) (a) A bilayer plate with a spring-type interface and

(b) the numerical model of the plate with a thin elastic layer.
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boundary conditions in Eqs. (16) and (17) in the procedure

proposed by Lowe.52 It is shown in Fig. 16 that the results

of the finite element analysis using the thin elastic layer

match the analytical dispersion curves for the spring-type

interface very well. Furthermore, the numerical values of

the ratios of the stress and the relative displacement at the

thin layer (i.e., j�R22/ �Y2j and j�R12/ �Y1j) were checked by

choosing arbitrary points on the upper and lower boundaries

of the thin elastic layer. Theoretically, these values should

coincide with the interfacial stiffnesses KN and KT for the

linear spring-type interface. The numerical values by the

finite element analysis assuming the thin layer were within

negligible errors around the theoretical values, which also

confirmed that the spring-type interface was accurately sim-

ulated by the thin elastic layer.
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