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ABSTRACT

Cluster formation has been observed in many organisms in nature. It has the desirable properties for designing energy efficient protocols for
Wireless Sensor Networks (WSNs). In this paper, we present a new approach for energy efficient WSN protocols that investigates how the
cluster formation of sensors responds to the external time-invariant energy potential. In this approach, the necessity for data transmission
to the Base Station is eliminated, thereby conserving energy for WSNs. We define swarm formation topology and estimate the curvature of
an external potential manifold by analyzing the change of the swarm formation in time. We also introduce a dynamic formation control
algorithm for maintaining defined swarm formation topology in the external potential.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019886

Energy conservation is a crucial challenge in Wireless Sensor
Networks (WSNs). As energy for data transmission is most
costly, WSNs’ algorithms need to be designed in ways where
data transmission, especially to the control center called the
Base Station (BS), is minimized. Clustering is a possible mech-
anism to design energy efficient algorithms for WSNs. In this
paper, we combine the idea of swarm intelligence with WSNs and
design an algorithm that captures the environmental informa-
tion through analyzing the change in sensor cluster formations
(swarm formation) rather than gathering information directly
through individual sensor measurements. In this approach, it
is numerically clarified that the necessity for the BS is elimi-
nated, and the formation is controllable based on the obtained
information.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have attracted much atten-
tion due to their ability to provide ubiquitous and multi-faceted
situational awareness with a host of applications ranging from struc-
tural health monitoring, habitat surveillance, and target detection to
power system management, smart car parking, and wireless luggage

tags.1–5 A WSN depends on spatially distributed sensor nodes to
measure and collect desired environmental data within its sensing
range and then transmit them to a control center called the Base
Station (BS). The ideal WSN should be autonomous, robust, and
scalable and has an extended network lifetime. However, WSNs are
usually deployed in hostile environments where energy resources
are limited. As energy is constrained and data transmission is most
costly, WSN algorithms need to be designed in ways where data
transmission, especially to the BS, is minimized. Clustering becomes
an often utilized technique in designing energy efficient algorithms
for WSNs.

Cluster formations can be readily observed in nature, such as
bird flocking and fish schooling. These organism systems express
collective motion behaviors and are studied in a relatively novel
interdisciplinary field of research, Swarm Intelligence (SI). Individ-
ual agents in the swarm are simple agents with limited sensing abil-
ities and computational rules that interact with each other locally.
Nevertheless, the swarm as a whole demonstrates emergent global
behaviors, which are unknown to the individuals. SI systems have
been applied to tackle real-world problems, such as area coverage,
with success.6,7 It has the desirable properties of being distributed,
autonomous, scalable, and robust,8 all of which are key in designing
algorithms for WSNs.
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Many clustering algorithms have been developed.9–11 However,
besides the main objective of energy conservation, the existing clus-
tering algorithms mainly focus on the optimization of sensor pro-
tocol routines to enhance WSNs in scalability, fault-tolerance, data
aggregation, load balancing, and network topology stability, where
data transmission to the BS is unavoidable. To address the energy
efficiency challenge from a new perspective, this paper combines
the SI concept with WSNs. We focus on designing the WSN algo-
rithms where the desired environmental information is obtained
through analyzing the change in sensor cluster formations (swarm
formation) rather than information collected directly through indi-
vidual sensors, thereby minimizing the energy expenditure in data
transmission between sensors and eliminates the necessity for the
BS.

We identify the environmental information as an external
potential hypersurface M of (n − 1)-dimensions (n = 3 or n = 4).
Mathematically, M is a Riemannian manifold defined by the set of
solutions to a single equation,

F(x1, . . . , xn) = 0, (1)

where F is a C∞ function. We introduce a formation analysis
algorithm that uses swarm formation in the external potential to
estimate the curvature, which is invariant under isometry, of the
manifold M.

This paper is organized as follows. In Sec. II, we introduce the
topology of swarm lattice formation and demonstrate how to con-
struct such formation in an arbitrary external potential. In Sec. III,
we explain the theoretical basis and computations for the forma-
tion analysis algorithm. In Sec. IV, we formulate a formation con-
trol algorithm that shows how the swarm lattice formation can be
obtained by the dynamic control of the individual agents. In Sec. V,
we discuss the simulation results of both formation analysis and
formation control algorithms.

II. SWARM FORMATION

The topology definition of the swarm formation is inspired by
Reynolds12 and Olfati-Saber.13 In this paper, we consider line forma-
tion. In the line formation, agents are divided into two groups: one
head agent and the following agents. The head agent acts as an initial
stimuli to the swarm motion. Its dynamics can be predefined and are
not affected by the following agents in the swarm.

Define a path graph Pn as a pair (V, E) that consists of a set
of vertices V = {v1, v2, . . . , vn} and a set of edges E such that E ⊆

{vi, vi+1}, where i = 1, 2, . . . , n − 1. Each vertex represents an agent
of the swarm, while the edges represent the inter-agent communica-
tions. Let qi ∈ R denote the position of the agent vi for all vi ∈ V.
The vector q = (q1, . . . , qn)

T is the configuration of all agents of
the swarm. The inter-agent distance, that is, the length of edges,
is defined to be the geodesic length between two connected ver-
tices over G(q). To maintain an identical inter-agent distance, we
consider an algebraic constraint on the edges,

dis(Evi ,vi+1
) = d, ∀ vi ∈ V, d ∈ R. (2)

A configuration q that satisfies the set of constraints in (2) is referred
to as a lattice formation.

To formulate lattice formation in any arbitrary external poten-
tial M, we need to first define the trajectory of the head agent, then
construct a representation of edges—a parallel vector field that is
metrically orthogonal to the head agent trajectory, and finally, cal-
culate the geodesic deviation vector field. The trajectories of the
following agents are the integral curves of the geodesic deviation
vector field. The theoretical basis14 and details of the formulation
are discussed as follows.

Let U ⊆ R
n be a non-empty open subset and F : U → R a

C∞ function defining the external potential. Let M ⊆ U × R be the
graph of f. The closed subset M in U × R projects homeomorphi-
cally onto U with inverse (x1, . . . , xn) 7→ (x1, . . . , xn, F(x1, . . . , xn))

that is a smooth mapping from U to U × R. M is a closed smooth
submanifold of U × R. Using the standard Riemannian metric on
U × R ⊆ R

n+1, the induced metric g on M at a point p ∈ M is

g(p) = 〈∂qi
|p, ∂qj

|p〉p dqi(p) ⊗ dqj(p), (3)

with the coordinate chart {qi} on M. Each ∂qi
|p ∈ TpM can be

represented as a linear combination of {∂xi
|p} ∈ Tp(R

n+1) given as

∂qi
|p = ∂xi

|p + ∂xi
f(p)∂xn+1 |p. (4)

Consider the aforementioned graph M as a C∞ Riemannian man-
ifold. Given a curve, C : [a, b] −→ M, a vector field X along C is
any section of the tangent bundle TM over C (X : [a, b] −→ TM,
projection π : TM −→ M, such that π ◦ X = C). If M is a smooth
manifold, all vector fields on the manifold are also smooth. We
denote the collection of all smooth vector fields on the manifold M
as X(M). For a Riemannian manifold (M, g), the Levi–Civita connec-
tion ∇g on M is the unique connection on TM that has both metric
compatibility and torsion freeness. The Christoffel symbols of the
second kind are the connection coefficients (in a local chart) of the
Levi–Civita connection denoted as

0a
bc =

1

2
gad(∂cgdb + ∂bgdc − ∂dgbc). (5)

For a Riemannian manifold (M, g), a curve is called geodesic with
respect to the connection ∇g if its acceleration is zero, that is, a curve
γ where ∇γ̇ γ̇ = 0. A geodesic curve in an n-dimensional Rieman-
nian manifold can be expressed as a system of second-order ordinary
differential equations,

d2γ λ

dt2
+ 0λ

µν

dγ µ

dt

dγ ν

dt
= 0. (6)

All geodesics are the shortest path between any two points on the
manifold.

We predefine the trajectory of the head agent to be a geodesic
curve on the manifold. Based on (6), for a two-dimensional manifold
(M, g), the head agent trajectory h(t) can be expressed as a system of
ordinary differential equations,

ḣ1 = h3,

ḣ2 = h4,

ḣ3 = −0x
xx(h3)

2
− 20x

xyh3h4 − 0x
yy(h4)

2,

ḣ4 = −0y
xx(h3)

2
− 20y

xyh3h4 − 0y
yy(h4)

2,

(7)
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where a basis {x, y} is used in the index and ḣ is the first derivative
with respect to time. Each Christoffel symbol depends entirely on the
metric at a certain point in M in terms of the basis {x, y}. Given the
initial conditions, [x1, x2, ẋ1, ẋ2], (7) is guaranteed to have a solution
according to the Picard–Lindelöf theorem. This choice of the head
agent trajectory is made to simplify agent’s dynamic control. On the
geodesic, the head agent is traveling with a constant velocity given
the initial position and velocity; thus, there is no requirement for an
outside reference beacon.

The distance of the edges of lattice formation needs to be iden-
tical. For the representation of edges, a parallel vector field K that is
orthogonal to the head agent trajectory h(t) is constructed as

∇KK = 0. (8)

Here, K forms a family of geodesics where we require the initial

position, and velocity conditions (u
j
0, v

j
0) for the jth geodesic γj ∈ K

are u
j
0 = h(tj), v

j
0 = v : g(v, ḣ(tj)) = 0, j ∈ Z. The frequency of inter-

agent communications is defined by the number of geodesics in K
within the given traveling time.

The separation vector s(t) connects a point γ (t) on one
geodesic to a point γ (t) + s(t) on a nearby geodesic at the same
time. For the parallel vector field K, we can construct a separa-
tion vector field S such that s ∈ S is the separation vector described
above. For the swarm lattice formation, the following agents’ trajec-
tories are the integral curves of S. Figure 1 gives a visual example of
two-dimensional swarm lattice formation traveling in the external
potential.

FIG. 1. Two-dimensional visual example of swarm lattice formation in the exter-
nal potential F = sin

(
x1
a

)
+ cos

(
x2
a

)
, a = 2. The travel time t = 20. The head

agent is in red, with the initial condition [0, 0, cos(π/18), sin(π/18)], and the
following agents are in orange.

III. FORMATION ANALYSIS

In Fig. 1, one can notice the change in swarm lattice formation
as it travels due to the curvature of the external potential mani-
fold. As an invariant property under isometry, the curvature tensor
gives valuable information about the external potential manifold
itself. We quantify this change as the acceleration of the separa-
tion vectors s ∈ S along K, which is equivalent to the change in the
difference of neighboring agents’ velocities. The geodesic deviation
equation relates the acceleration of the separation vector between
two neighboring geodesic curves to the Riemann curvature tensor.
The theoretical elements14,15 and the analysis method are described
in detail as follows.

The Riemann curvature tensor is a (1, 3) tensor defined
through the Lie bracket on (M, g) as

R(X, Y)Z = ∇[X,Y]Z − ∇X∇YZ + ∇Y∇XZ, (9)

where X, Y, Z ∈ X(M) and R(X, Y)Z are vector-valued. R(X, Y)Z can
be expressed in a local chart as

Rρ
σµν = ∂µ0ρ

νσ − ∂ν0
ρ
µσ + 0

ρ

µλ0
λ
νσ − 0

ρ

νλ0
λ
µσ . (10)

By our definition in Sec. II, the separation vector s can be
written as vectors,

s(t) = γ̃ (t) − γ (t), (11)

between two nearby geodesics. The separation acceleration field W
is

W = ∇γ̇ ∇γ̇ S = ∇γ̇ V, (12)

where V is the separation velocity field. In a local chart, W and V can
be expressed as

Vρ =
dSρ

dt
+ 0ρ

µν γ̇
µSν , (13)

Wρ =
dVρ

dt
+ 0

ρ

λσ γ̇ λVσ , (14)

where γ̇ ≡
dγ

dt
. Combining (13) and (14) gives

Wρ =
d2Sρ

dt2
+ 20ρ

µν γ̇
µ dSν

dt
+

∂0ρ
µν

∂γ λ
γ̇ λγ̇ µSν + 0ρ

µν γ̈
µSν

+ 0
ρ

λσ 0σ
µν γ̇

µγ̇ λSν , (15)

where γ̈ ≡
d2γ

dt2
. Rearranging (11) to be

γ̃ (t) = γ (t) + s(t), (16)

where the separation vector s(t) is treated as an expansion param-
eter. Making use of the fact that both γ and γ̃ are geodesics,
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we have

0 =
d2Sρ

dt2
+ 20ρ

µν γ̇
µ dSν

dt
+

∂0ρ
µν

∂γ λ
γ̇ µγ̇ νSλ. (17)

Inserting (17) into (15), the first-order geodesic deviation equation
is

Wρ = −

(
∂0

ρ

µλ

∂γ ν
−

∂0ρ
µν

∂γ λ
+ 0σ

µλ0
ρ
σν − 0

ρ

λσ 0σ
µν

)
γ̇ µSν γ̇ λ

≡ −R
ρ

µνλγ̇
µSν γ̇ λ. (18)

A vector field J along a geodesic γ is called a Jacobi field if

J̈ + R(J, γ̇ )γ̇ = 0, (19)

where J̈ ≡ ∇ d
dt

∇ d
dt

J and γ̇ ≡
dγ

dt
. Obviously, the deviation vector

field S is a Jacobi field.
Furthermore, the sectional curvature is an equivalent but more

geometrical description of the curvature of Riemannian manifolds.
Let tangent 2-plane, 5p, be the two-dimensional subspace in TpM
defined as 5p ≡ span{u, v}, with u, v ∈ TpM. The sectional curva-
ture κ of (M, g) at a point p ∈ M with respect to the plane 5p is
defined as

κ(5p) = κ(Xp, Yp)

=
〈R(X, Y)X, Y〉p

|X|2p|Y|2p − 〈X, Y〉2
p

. (20)

Substituting the vector fields K and S we constructed in Sec. II into
(20), we have

κ(K, S) =
〈R(K, S)K, S〉

|K|2|S|2 − 〈K, S〉2
. (21)

Also, S is in fact a Jacobi field along K that is also orthogonal
to K. That is, W ≡ ∇2

τ S = −R(K, S)K, and 〈K, S〉 = 0. Combining
with the fact that the integral curves of K are geodesic sets to have
the velocity |γ̇ | = 1, the equation for the sectional curvature is
simplified to

W = −κ(K, S)S. (22)

For a two-dimensional Riemannian manifold (M, g), there is only
one sectional curvature at each point p ∈ M.

In summary, by recording the change of swarm lattice for-
mation in the external potential, the observer can quantify two
variables: S is agents’ velocities and W is the second-order difference
of nearby agents’ velocities. The geodesic deviation equation (22)
relates W and S to the sectional curvature κ of the external potential
manifold.

IV. FORMATION CONTROL

To stay in lattice formation as the swarm traveling through the
external potential, the individual agent needs dynamic control of its
trajectory. The trajectory of the individual agent can be considered
as a dynamic system of the form16

d

dt
x(t) = F(x(t)), (23)

where x is the state of the system, which is the position of the agent,
and F is a vector field that depends on the system. In practice, we

consider the equivalent discrete-time dynamic system,

xk+1 = F(xk), (24)

where xk is the sampling of the agent trajectory in (23) discretely in
timesteps 1t. If we can assume that the system is of linear dynamics,
then we can work with the form

d

dt
x = Ax, (25)

where it admits a closed-form solution

x(t0 + t) = eAtx(t0). (26)

The entire system dynamics is characterized by the eigenvalues and
eigenvectors of the matrix A. Using spectral decomposition, one can
simplify the dynamic system to

d

dt
w = λw, (27)

with A = PλP−1 and w = P−1x. Using A, we can also predict agents’
trajectories in time, thereby controlling the swarm to be in its lattice
formation as time evolves.

Even though it is desirable to work with linear dynamic sys-
tems, the curvature property of the external potential manifold and
thus the trajectories of agents are essentially nonlinear. To analyze a
nonlinear dynamics with a linear technique, we utilize the Koopman
operator theory.

A. Koopman operator theory and dynamic mode

decomposition

Bernard O. Koopman has proved the possibility of representing
a nonlinear dynamic system in terms of an infinite-dimensional lin-
ear operator acting on a Hilbert space of measurement functions of
the state of the system. The basic elements of the Koopman spectral
analysis are discussed below.17–20

Consider a real-valued measurement function g : M −→ R,
known as observables, which belongs to the infinite-dimensional
Hilbert space. The Koopman operator Kt is an infinite-dimensional
linear operator that acts on the observable g as

Ktg = g ◦ Ft, (28)

where Ft is the system dynamics and ◦ is the composition operator.
For a discrete-time system with the time step 1t, it becomes

g(xk+1) = K1tg(xk). (29)

Even though the Koopman operator is linear, it is also infinite-
dimensional. Thus, it is important to identify key measurement
functions that evolve linearly with the flow of the dynamics. Eigen-
decomposition of the Koopman operator can provide us with such
a set of measurement functions that captures the dynamics of the
system and also behaves linearly in time. A discrete-time Koopman
eigenfunction ϕ(x) and its corresponding eigenvalue λ satisfy

ϕ(xk+1) = K1tϕ(xk) = λϕ(xk). (30)

Nonlinear dynamics become linear in this eigenfunction coordinate.
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In a general dynamic system, the measurement functions can
be arranged into a vector g,

g(x) =




g1(x)
g2(x)

...
gm(x)


 . (31)

Each measurement function may be expanded in terms of eigen-
functions ϕj(x); thus, the vector g can be written as

g(x) =

∞∑

j=1

ϕj(x)vj, (32)

where vj is the jth Koopman mode associated with the eigenfunction
ϕj. Given this decomposition, we can represent the dynamics of the
system in terms of the measurement function g as

g(xk) = Kk
1tg(x0)

= Kk
1t

∞∑

j=0

ϕj(x0)vj

=

∞∑

j=0

Kk
1tϕj(x0)vj

=

∞∑

j=0

λk
j ϕj(x0)vj. (33)

The sequence of triples {(λj, ϕj, vj)}
∞

j=0
is the Koopman mode decom-

position.
Finding such a Koopman mode is extremely difficult even for

a system with known governing equations. For systems with an
unknown governing equation, such as in our situation, the dynamic
mode decomposition (DMD) algorithm is adopted. As one of the
modal decomposition techniques, DMD is first introduced in the
fluid dynamic community to analyze the high-dimensional fluid
state. It provides information about the dynamics of the flow in
superposition of modes (similar to eigenmodes), even if the flow
is nonlinear. The DMD analysis can be considered an approxima-
tion to the Koopman spectral analysis and also provides a numerical
method for computing Koopman modes. In this paper, the forma-
tion control algorithm is inspired by the online DMD framework
from Zhang et al.21

We consider a sequential set of data vectors {x0, x1, . . . , xm},
where each xk ∈ R

n is the system state of time t0–tm. These data can
be arranged into two matrices,

X =




| | |

x0 x1 · · · xm−1

| | |


 , (34)

Y =




| | |

x1 x2 · · · xm

| | |


 . (35)

We assume that there exists an operator A that approximates the
nonlinear dynamics of the system as

xk+1 ≈ Axk. (36)

Then, the best-fit operator A is defined as

A = arg min
A

‖Y − AX‖F , (37)

where ‖·‖F is the Frobenius norm. The unique solution to the least-
square problem is given by

A = YX†, (38)

where X† denotes the Moore–Penrose pseudoinverse of X.
Having A, computed from data from t0 up to tm, we can pre-

dict xm+1 of the system, that is, controlling agent’s trajectory. Since
new data are fed into the system as time progresses, A also changes.
Unlike the standard DMD algorithm, the online DMD algorithm
updates the operator A using the new system data, providing a more
reliable operator A for the prediction of future system states. The
algorithm does not compute the least-square problem of the whole
system once new data have been updated. Alternatively, it computes
Ak+1 given Ak and new pairs of data (xk+1, yk+1), on the assumption
that Ak+1 is close to Ak in some sense.

Using (38), we have

Ak = YkX
T
k (XkX

T
k )

−1
. (39)

We define two new matrices Pk and Qk,

Qk = YkX
T
k , (40)

Pk = (XkX
T
k )

−1
(41)

so that Ak = QkPk. Pk is well-defined if we ensure XkX
T
k is invertible.

The operator A at the time tk+1 is related to Ak as

Ak+1 = Qk+1Pk+1

= (Qk + yk+1x
T
k+1)(P

−1
k + xk+1x

T
k+1)

−1
. (42)

Using the Sherman–Morrison formula, we can express Pk+1 as

Pk+1 = (P−1
k + xk+1x

T
k+1)

−1

= Pk −
Pkxk+1x

T
k+1Pk

1 + xT
k+1Pkxk+1

. (43)

Pk+1 can be updated more efficiently, without the computation of
inverses. Combining (43) and (42), we obtain the formula

Ak+1 = Ak +
(yk+1 − Akxk+1)x

T
k+1Pk

1 + xT
k+1Pkxk+1

. (44)

Ak+1 is computed using Ak and new data pair {xk+1, yk+1}.

B. Formation control algorithm

The aforementioned online DMD algorithm is a data-driven
algorithm that predicts nonlinear dynamics. Therefore, even with-
out knowledge of the external energy potential, it is still possible to
control the lattice formation of the swarm. The general scheme of

Chaos 30, 093145 (2020); doi: 10.1063/5.0019886 30, 093145-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 2. The dynamic control algorithm scheme. The white box indicates raw
system data obtained from measurements, the black box indicates algorithm
calculated data, and the strip box indicates corrected data.

the control algorithm is shown in Fig. 2. Notice that if the predicted
agent trajectory is not equivalent to the ideal trajectory of the lattice
formation, a correction term needs to be added to the prediction.
The details of the online DMD algorithm modeled specific to control
the lattice formation of swarm are shown next.

Algorithm 1. Online DMD

(1) Collecting system data as it evolves in time. Arrange data into
two matrices,

X ≡ [x0 x1 · · · xk−1],

Y ≡ [x1 x2 · · · xk].

(2) Compute Ak and Pk from (38) and (41).
(3) Predict yk+1 from yk+1 = Akxk+1 = Akyk.
(4) Correct yk+1 by agent’s measurements.
(5) Update Ak and Pk using the corrected data pair (xk+1, yk+1),

according to (42) and (43).

This algorithm is scalable to the rest of the following agents
in the swarm; therefore, the whole swarm can be dynamically
controlled to stay in the lattice formation.

V. SIMULATION AND DISCUSSION

A. Formation analysis algorithm

The formation analysis algorithm in Sec. III is performed on
swarm lattice formation in three different external potentials,

1. elliptic paraboloid:
x2

1 + x2
2

a
,

2. hyperbolic paraboloid:
x2

1 − x2
2

a
, and

3. sinusoidal and cosinusoidal: sin
(x1

a

)
+ cos

(x2

a

)
,

parameterized by a. All simulations used 100 following agents, with
the traveling time t = 10.

The algorithm is able to estimate the sectional curvature of
all three external potential manifolds with some extent of accu-
racy. Overall, the estimation accuracy increases with the decrease

FIG. 3. Percentage error for sectional curvature estimation. All simulations used
the same initial conditions for the head agent and have the inter-agent distance
constraint d = 0.1 and the communication frequency ts1 = 0.1 and ts2 = 0.5.
The square represents the mean error.

of curvature, while the frequency of inter-agent communications
and inter-agent distance constraints does not significantly affect the
algorithm accuracy shown in Figs. 3 and 4. However, the inter-agent
distance directly affects the area in which the swarm is sensing.
The accuracy of the algorithm is linked to the following features
of the sensing area. For the external potential F(x1, x2) = sin

(
x1
a

)
+

cos
(

x2
a

)
, both features are represented depending on the swarm

sensing area.

1. Jacobi field conjugate points

For the external potential manifold with a non-negative sec-
tional curvature at each point, such as the elliptic paraboloid poten-
tial, there exist conjugate points in the vector field K. Consider p, q ∈

M are two points connected by a geodesic γ . p, q are conjugate points
along γ if there exists a non-zero Jacobi field along γ that vanishes
at p and q. Conjugate points are when the geodesic fails, locally,
to be the minimum length curve connecting two points. Thus, our
geodesic deviation based algorithm also fails. A visual example of the
conjugate point is shown in Fig. 5. Additional agent’s protocols need
to be installed to identify and bypass conjugate points.

2. Striction curve

The external potential two-dimensional manifold with a non-
positive sectional curvature, such as the hyperbolic paraboloid, is a
saddle surface and thus a ruled surface. For a noncylindrical ruled
surface, it always has a parameterization of the form

r(u, v) = σ (u) + vδ(u), (45)

where σ is called the striction curve. In particular, a hyperbolic
paraboloid is a doubly ruled surface that has two striction curves.
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FIG. 4. Percentage error for sectional curvature estimation. All simulations used
the same initial conditions for the head agent and the communication frequency
ts = 0.1. The square is the mean error.

In our simulation of the hyperbolic paraboloid potential, the two
striction curves are [x1, ± x2]. Shown in Fig. 6, if the head agent is
traveling on striction curves, the swarm is unable to estimate the
sectional curvature. The acceleration of the separation vector field is
zero, equivalent to a flat space (zero curvature).

With the same number of agents in the swarm, the
communication frequency and the inter-agent distance affect the

sensing area. For an external potential manifold with feature one,
a smaller sensing area is more likely to avoid conjugate points,
while for an external potential manifold with feature two, a larger
sensing area provides more information about the manifold. The
overall shape of the swarm reveals that the external potential
is not zero in Fig. 6, even though the curvature estimation is
zero.

B. Formation control algorithm

In the simulation for the formation control algorithm in
Sec. IV, we assume that the agents can measure the relative dis-
tance to their neighbors. The head agent has its own course of
trajectory, thus not affected by other agents in the swarm. All the
following agents take their right-hand neighbors (closer to the head
agent) as a beacon to measure their own relative position. In ideal
lattice formation, following agents are traveling in parallel and at
a fixed distance to its right-hand neighbor, thus measurable in
theory.

Figure 7 shows the velocity trajectory of the following agent
that is next to the head agent. In this simulation, we use the time step
1t = 0.1, the data size k = 3, observable (xk, yk) to be the velocity of
the agent. In practice, the data X, Y can only be collected by mea-
suring the deviation of k + 1 agents traveling on nearby geodesics.
Therefore, without any information of the external potential, the ini-
tial velocity of these agents can only be approximated in a Euclidean
metric, not the external potential metric itself. Figure 7 shows that
with a reliable correction step, the algorithm has a reliable prediction
of the agent’s dynamics and even uses data that are approximated in
the Euclidean metric.

However, when agents have a near linear dynamics (constant
velocity), the algorithm decreases in accuracy and eventually fails.

FIG. 5. Visual example of a conjugate point. The external potential is F(x1, x2) = sin
(
x1
a

)
+ cos

(
x2
a

)
, a = 2, and the head agent’s initial condition is

[−5,−2, cos(4/π), sin(4/π)]. (a) Two-dimensional view of the swarm trajectory. The head agent trajectory is in red, and following agents’ trajectory is in magenta. (b)
Enlargement of (a) around the conjugate point.
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FIG. 6. Sectional curvature estimation and two-dimensional swarm trajectories. The external potential F(x1, x2) =
x
2
1
−x

2
2

a
, a = 20. The head agent is traveling on a striction

curve [x1, x2]. (a) Sectional curvature estimation. The estimated curvature is in red, and the calculated curvature is in blue. (b) Two-dimensional view of swarm trajectories.
The head agent’s trajectory is in red, and following agents’ trajectory is in magenta.

This is expected as the algorithm is based on the linear regression
method. Therefore, an additional control protocol needs to be
implanted when agents have linear dynamics, and the agents should
have an autonomous decision on when to switch the dynamic
control protocols.

C. Margin of algorithms

In formation analysis algorithm simulations, we have discussed
for the same number of agents by changing the communication
frequency and the inter-agent distance constraint, how the sensing

FIG. 7. Velocity trajectory of the first following agent. The ideal lattice formation velocity is in blue, the original data DMD predicted velocity is in red, and the approximate data

DMD predicted velocity is in yellow. The external potential F(x1, x2) =
x
2
1 + x

2
2

a
, a = 20. The head agent’s initial condition is [0, 0, 1, 0] (left) and [−5, 0, cos(6/π), sin(6/π)]

(right).
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area of the swarm is beneficial in some cases, while in other cases, it
affects the accuracy of the swarm formation analysis. Moreover, for
the same sensing area, the number of agents has a positive correla-
tion to the accuracy of the formation analysis. The size of the swarm
also plays a role in swarm formation control. In formation control
algorithm simulations, the control algorithm requires agents to be
able to communicate regarding their relative distance and angle in
terms of the external potential manifold metric. In practice, these
types of sensing are extremely difficult. Approximation of this inter-
agent distance can be made in an Euclidean metric by on-board
agent sensories. We notice that when using the same number of
agents while increasing the inter-agent distance or the communi-
cation frequency to enlarge the sensing area, the Euclidean metric
approximately increases its error.

In summary, the smaller swarm size is more controllable but
with lower accuracy in external potential estimation and vice versa.
This conflict is due to the fact that for formation analysis, we uti-
lize the nonlinearity in agents’ trajectory to estimate a nonlinear
property, namely, the external potential manifold curvature, while
in formation control, we rely on linear approximation in a Euclidean
metric to correct the agent’s trajectory predictions. Therefore, the
balance between the number of agents, the communication fre-
quency, and the inter-agent distance is crucial in optimizing our
approach of energy efficient WSN algorithms.

VI. CONCLUSION

We introduced a new approach for designing energy efficient
WSN algorithms inspired by swarm intelligence. In this approach,
we identify the clustering WSN as swarm and time-invariant exter-
nal potentials as manifolds. By observing the change of swarm lattice
formation in the external potential, we are able to estimate the cur-
vature of the manifold, which is valuable information of the external
potential. To maintain lattice formation in the external potential, the
Koopman operator theory and DMD are used to predict the state
of the nonlinear autonomous dynamic system of individual follow-
ing agents, thus guiding the trajectory of the following agents. The
concepts presented in this paper can also be extended to the time-
variant external potential, where an individual agent is a nonlinear
non-autonomous dynamic system.
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