1	Effect of moisture in <i>k</i> -carrageenan films on their tensile and relaxation behavior
2	studied by correlation between stress and birefringence
3	
4	Jun-ichi Horinaka*, Yurina Ishibashi, and Toshikazu Takigawa
5	
6	Department of Material Chemistry, Graduate School of Engineering, Kyoto University,
7	Nishikyo, Kyoto 615-8510, Japan
8	
9	
10	* Corresponding author
11	E-mail: horinaka.junichi.5c@kyoto-u.ac.jp
12	Tel: +81-75-383-2454
13	Fax: +81-75-383-2458
14	
15	
16	

17 Abstract:

18	A picture on the molecular level describing the deformation and the following relaxation of κ -
19	carrageenan chains has been proposed based on the three-domain structural model for κ -
20	carrageenan films and on the idea of the modified stress-optical rule. The uniaxial tensile and the
21	relaxation behavior for dry and moist κ -carrageenan films has been examined by using a
22	homemade apparatus available for the simultaneous mechanical and birefringence measurements.
23	It has been suggested that the continuous amorphous phase of κ -carrageenan in the dry film is
24	deformed together with the local glass component and only the glass component relaxes in the
25	following process. On the other hand, concerning the moist film, the crosslinks of κ -carrageenan
26	aggregates in addition to the continuous phase are movable with deformation, while the following
27	relaxation is attributed only to the unbridged κ -carrageenan chains in the continuous phase.
28	
29	
30	Keywords: κ -carrageenan; gel film; birefringence; stress-optical coefficient; moisture
31	

33 Introduction

34 The first-order molecular structures of polymer chains are intrinsically anisotropic, that is, the 35 local refractive index with respect to the direction of main chain is different from that normal to 36 it, although such local anisotropies are cancelled out in macroscopically isotropic systems, where 37 the chain segments are randomly oriented. However, once such a system undergoes deformation, 38 the total difference in the refractive index with respect to the direction of deformation can be 39 detected as birefringence reflecting the global chain orientation in the system. Therefore, it is 40 often helpful for understanding the way in which polymer chains behave against deformation to 41 use optical techniques measuring the birefringence together with the conventional mechanical 42 tests. To give a good example, the modified stress-optical rule (MSOR) holds well for polymer 43 melts and solutions: Both the stress and the birefringence are considered consisting of two 44 components, which are usually referred to as the rubber and the glass components, and the 45 proportionality between the birefringence and the stress holds for each component. A great 46 number of studies on the viscoelasticity and the birefringence for amorphous polymers, especially 47 for styrene polymers, have established the proportionality, and the orientation relaxation of 48 polymer chains has been analyzed by using MSOR so that the contribution of each component 49 can be estimated (Inoue et al. 1991; Janeschitz-Kriegl 1983; Okamoto et al. 1992; Read 1983). In 50 our previous study, mechanical measurement for amorphous pullulan films by the uniaxial

51 stretching has been combined with birefringence measurement, and a set of stress-optical 52 coefficients for the rubber and the glass components of pullulan have been determined as the 53 material constants on the basis of MSOR (Horinaka et al. 2018b).

54 Carrageenan is a group of polysaccharides consisting of repeating units of D-galactose 55 alternating β -1,4- and α -1,3-linkages. Among them κ -carrageenan is characterized in terms of the 56 chemical structure by a 3,6-anhydro-galactose ring as well as a single sulfate group in the 57 companion ring. *k*-Carrageenan has been widely used as an additive in the food and cosmetic 58 industries due to its favorable function of forming hydrogels. Regarding the network structure of 59 κ -carrageenan hydrogels, it should be noted that the crosslinks are very likely composed of aggregates of κ -carrageenan chains in the helical conformation, that is, κ -carrageenan hydrogels 60 have fairly large sizes of crosslinks in comparison with ordinary chemical and physical gels (Ikeda 61 62 et al. 2001; Morris et al. 1980; Viebke et al. 1994). When κ -carrageenan films are prepared by 63 drying κ -carrageenan hydrogels, it is almost certain that there remain the large crosslinks of 64 aggregates inside the films and that the obtained κ -carrageenan films do not become amorphous 65 as a whole due to the crystal-like aggregates. This implies that MSOR cannot be applied to the 66 correlation between the stress and the birefringence for the κ -carrageenan films in the same 67 manner as the pullulan films mentioned above. Although the mechanical tests of κ -carrageenan 68 hydrogels have been extensively carried out from the point of the industrial applications (Sason

69	et al. 2018; Rochas et al. 1990; Watase et al. 1986), the mechanism of the mechanical behavior
70	has not been fully understood on the molecular level, nor is the role of the large crosslinks.
71	In this study, mechanical measurement for κ -carrageenan films during the uniaxial stretching
72	and subsequent stress relaxation has been performed simultaneously with birefringence
73	measurement using the polarization modulation method. The stiffness of the films has been
74	changed by adding small amount of water to the thoroughly dried state. The correlation between
75	the stress and the birefringence for the κ -carrageenan films with and without the moisture has
76	been examined by partly using the idea of MSOR, and the difference in the tensile and the
77	relaxation behavior of the κ -carrageenan films due to the moisture has been clarified.
78	
78 79	Experimental
78 79 80	Experimental Sample preparation
78798081	Experimental Sample preparation In order to use κ-carrageenan films for birefringence measurement, we needed to prepare
7879808182	Experimental Sample preparation In order to use κ-carrageenan films for birefringence measurement, we needed to prepare transparent and isotropic samples, so that the intrinsic birefringence of the samples at the as-
 78 79 80 81 82 83 	Experimental Sample preparation In order to use κ -carrageenan films for birefringence measurement, we needed to prepare transparent and isotropic samples, so that the intrinsic birefringence of the samples at the as- prepared states (Δn_0) could be neglected. However, the preliminary test showed that κ -
 78 79 80 81 82 83 84 	Experimental Sample preparation In order to use κ -carrageenan films for birefringence measurement, we needed to prepare transparent and isotropic samples, so that the intrinsic birefringence of the samples at the as- prepared states (Δn_0) could be neglected. However, the preliminary test showed that κ - carrageenan films prepared just by drying κ -carrageenan hydrogels on a flat plate exhibited
 78 79 80 81 82 83 84 85 	Experimental Sample preparation In order to use κ -carrageenan films for birefringence measurement, we needed to prepare transparent and isotropic samples, so that the intrinsic birefringence of the samples at the as- prepared states (Δn_0) could be neglected. However, the preliminary test showed that κ - carrageenan films prepared just by drying κ -carrageenan hydrogels on a flat plate exhibited substantial birefringence. This matter was finally settled by using a monosaccharide as an additive
 78 79 80 81 82 83 84 85 86 	Experimental Sample preparation In order to use κ -carrageenan films for birefringence measurement, we needed to prepare transparent and isotropic samples, so that the intrinsic birefringence of the samples at the as- prepared states (Δn_0) could be neglected. However, the preliminary test showed that κ - carrageenan films prepared just by drying κ -carrageenan hydrogels on a flat plate exhibited substantial birefringence. This matter was finally settled by using a monosaccharide as an additive to the film. Practically, isotropic κ -carrageenan films used in this study, which had $\Delta n_0 < 10^{-6}$,

87	were prepared in the following manner. Powdery <i>k</i> -carrageenan (TCI, Japan) and a
88	monosaccharide fructose (Wako, Japan) were dissolved in distilled water. The concentrations of
89	the κ -carrageenan and the monosaccharide were fixed at 10 g/L and 30 g/L, respectively. The
90	mixture was stirred at 80 °C for 3 h and the obtained aqueous solution was spread on a Teflon
91	plate at 80 °C. Then evaporation of the solvent water was allowed for several hours until a
92	transparent film formed on the plate. The film that was in the roughly dried state was cut into
93	rectangular pieces and each one was dried further under vacuum at 80 °C for more than 6 h to be
94	a constant weight. The dimensions of the thoroughly dried film were 10 mm \times 30 mm \times 0.1 mm.
95	The addition of moisture was performed by leaving the thoroughly dried films in a moist
96	atmosphere for more than 24 h. It was impossible to prepare moist films at arbitrary water contents.
97	The water content of the moisturized films was estimated from the weight reduction in the re-
98	drying process executed after the measurement described below.
99	
100	Measurement
101	Simultaneous measurement of the stress and the birefringence for the κ -carrageenan films was
102	carried out using a homemade apparatus for the birefringence coupled with a commercial tensile
103	machine (TENSILON RTM-500, Orientec Corp., Japan). Details of the homemade apparatus and
104	the principles of the birefringence measurement using the polarization modulation method were

105	described in our previous manuscript (Horinaka et al., 2018b). First the film sample was uniaxially
106	stretched between cramps at a constant speed of 5 mm/min up to a nominal tensile strain (ε) so
107	that the measurement could be performed in the linear viscoelasticity region. The initial length
108	between the cramps was around 15 mm. Then the birefringence (Δn) as well as the stress (σ) was
109	monitored during the following relaxation process with time (<i>t</i>) until $t = 3000$ s at the longest with
110	$arepsilon$ fixed. Actually, σ was calculated from the force with the cross section of the film measured
111	before stretching; hence, σ obtained in this study was the nominal tensile stress. The measurement
112	temperature was 25 °C.

. . .

114 **Results and discussion**

115 Figure 1 shows the stress-strain curves for the dry and moist κ -carrageenan films with fructose. 116 To check the effect of species of the monosaccharide additive, the stress-strain curves for κ -117 carrageenan films with glucose of the same content are also given in the figure. The weight 118 fraction of moisture has been estimated to be 19 % for the film with fructose and 16 % for the 119 film with glucose. It is seen that the stress-strain behavior is independent of the species of the monosaccharide additive within the experimental error and is significantly affected by the 120 121 moisture; each stress-strain curve appears almost linear within the *e*-range examined but the slope of the curve, which is defined as the Young's modulus (E), greatly decreases as the moisture is 122

123	added. In fact, the values of E for the dry and moist films with fructose estimated from Fig. 1 are
124	7.4×10^8 and 6.6×10^7 Pa, respectively. We have previously examined plasticizing effects of
125	saccharides and alditols on the uniaxial tensile behavior of κ -carrageenan films (Horinaka et al.
126	2017). Although the measurement temperature in this study is slightly lower and the procedure of
127	sample preparation is different compared to the previous study, E for the dry film with fructose
128	coincides well with our previous value for the film of the same content; E of the order of 10^8 Pa
129	indicates that this film is under the "physical" plasticizing effect which can be explained by the
130	blending law for immiscible blends (Dekkers et al. 2016; Katopo et al. 2012; Takayanagi et al.
131	1963). It has been proposed that the κ -carrageenan film has three domains; namely, crosslinks of
132	helical κ -carrageenan aggregates, continuous phase of amorphous κ -carrageenan, and voids
133	without κ -carrageenan (Horinaka et al. 2017, 2018a, 2019). Then the additive is situated in the
134	voids as an assembly of micro-granules having very low modulus compared with the κ -
135	carrageenan matrix, which decreases E as a whole. On the other hand, E of the order of 10^7 Pa
136	estimated for the moist film is close to those obtained in our previous study for the κ -carrageenan
137	films under the conventional plasticization, as it were, the "chemical" effect; the additive has a
138	good miscibility with κ -carrageenan and swells continuous phase of amorphous κ -carrageenan to
139	soften the network (Horinaka et al. 2017). Regarding the moist film examined in this study, water
140	from the moisture very probably works as the additive miscible with κ -carrageenan.

142 Fig. 1 Stress-strain curves for dry and moist *κ*-carrageenan films with fructose or glucose.

Fig. 2 Young's relaxation modulus for the dry and moist *κ*-carrageenan films with fructose after
uniaxial stretching.

147	Figure 2 shows the Young's relaxation modulus $(E(t))$ for the dry and moist films with fructose
148	after uniaxial stretching of $\varepsilon = 0.4$ % and 1.3 % respectively. Here the duration of stretching is
149	less than 2 s and therefore an instant deformation is assumed in the analysis described below. It
150	is obvious that both $E(t)$ curves decrease with t very slowly and remain at the same order of $E(t)$
151	within the experimental condition. Now, we must remind that the κ -carrageenan films used in this
152	study have been prepared by drying κ -carrageenan hydrogels and basically have network
153	structures due to the crosslinks of κ -carrageenan aggregates inside, as described above. It is
154	known that $E(t)$ is constant against t in the case of a polymer system having the ideal network
155	structure and that the ultimate initial value of $E(t)$ becomes roughly 10 ⁷ Pa almost regardless of
156	polymer species (Okamoto et al. 1992; Inoue et al. 1995, 2003). These facts indicate that the
157	practical $E(t)$ much greater than 10 ⁷ Pa for the dry and moist films and their relaxation observed
158	in Fig. 2 must be attributed to some components other than the rubber component.
159	The stress relaxation as well as the simultaneous change in Δn is compared between the dry
160	and moist films with fructose in Figure 3. It should be noted that Δn for a polymer system is not
161	necessarily positive but Δn for the κ -carrageenan films are actually positive, so that the
162	logarithmic value of Δn is plotted using the right axis of the figure for ease of identification. The
163	decreasing trend of σ is similar between the dry and moist films, as expected from Fig. 2, but
164	change in Δn with <i>t</i> is completely different: Δn for the dry film increases, while that for the moist

175 Fig. 3 Comparison of σ and Δn between dry and moist κ -carrageenan films with fructose.

176 In the framework of MSOR, there is a correlation between σ and Δn observed with deformation,

177 which is given by the following equation:

178
$$\Delta n = C_{\rm R} \sigma_{\rm R} + C_{\rm G} \sigma_{\rm G} \tag{1}$$

179 where C is the stress-optical coefficient, and the subscripts R and G stand for the rubber and the 180 glass components respectively (Okamoto et al. 1992; Inoue et al. 1995, 2003). Concerning 181 amorphous polymers in the glassy zone, it is recognized that R-component arises from orientation 182 of polymer segments, while G-component is attributed to planar orientation of monomer units. 183 Although MSOR cannot be applied to our κ -carrageenan films in the same manner due to the 184 crystal-like aggregates, as mentioned above, we have tried to analyze the correlation between σ 185 and Δn for the κ -carrageenan films using the basic idea of MSOR, that is, σ and Δn have the same 186 origins and the ratio of Δn to σ for each origin is defined as the stress-optical coefficient. The 187 solid lines in Figure 4 represent the measured simultaneous relaxation processes of σ and Δn for the dry film. To express the decreasing trend of σ as precise as possible, an empirical five-188 189 component equation given below has been used:

190
$$\sigma = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right) + A_3 \exp\left(-\frac{t}{\tau_3}\right) + A_4 \exp\left(-\frac{t}{\tau_4}\right) + A_5$$
(2)

191 where A_i (i = 1-5) is the fraction of the mode with the relaxation time of τ_i , though τ_5 is assumed 192 infinity. At present, it is impossible to quantitatively explain each relaxation mode in terms of the 193 chain motion, but the decreasing trend of σ can be expressed by eq 2 using the parameters in Table 194 1 as drawn by a broken line in Fig. 4. According to the idea of MSOR, the measured Δn should 195 be fitted by five components of the product of the stress-optical coefficient and the stress by 196 analogy with eq 1. Actually, however, two stress-optical coefficients instead of five are enough 197 to express the increasing trend of Δn as demonstrated by a broken line in Fig. 4. That is, Δn for 198 the dry κ -carrageenan film can be represented by the following equation:

199
$$\Delta n = C_{d1} \left(A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right) + A_3 \exp\left(-\frac{t}{\tau_3}\right) + A_4 \exp\left(-\frac{t}{\tau_4}\right) \right) + C_{d2}A_5$$
(3)

As given in Table 1, one negative coefficient $C_{d1} = -1.4 \times 10^{-12} \text{ Pa}^{-1}$ covers the four components 200 201 having finite relaxation times, which explains the increasing trend of Δn . The other coefficient $C_{d2} = 1.1 \times 10^{-11} \text{ Pa}^{-1}$, assigned to the fifth component, is positive and the absolute value is greater 202 203 than that of C_{d1} , so that the measured Δn is the positive as a whole. This result means that σ and 204 Δn for the dry κ -carrageenan film arise from two components: Since C_{d1} corresponds to a single 205 component that relaxes even in the stiff dry film and the glass component proposed in MSOR appears at shortest times due to the much-localized mode, it seems appropriate that C_{d1} is 206 207 identified as the glass component. It is natural that such a localized mode exists in any polymer 208 system whether the system is amorphous or not. Now, let us turn to the fifth component. It is seen 209 in Table 1 that the stress of this component is constant during the relaxation process at $A_5 = 4.4 \times$ 210 10^5 Pa, which corresponds to a modulus of 1.0×10^8 Pa. As mentioned above, E(t) becomes 10^7 211 Pa at the highest, and therefore the fifth component cannot be attributed to the rubber component.

i	A_i (Pa)	τ_i (s)	(Pa^{-1})
1	$5.9 imes 10^5$	$1.8 imes 10^{0}$	
2	4.9×10^5	1.6×10^{1}	$C = 1.4 \times 10^{-12}$
3	2.9×10^5	1.0×10^2	$C_{d1} = -1.4 \times 10^{-12}$
4	3.6×10^{5}	5.9×10^2	
5	4.4×10^{5}	x	$C_{\rm d2} = 1.1 \times 10^{-11}$
-			

212 Table 1 Fitting parameters of eqs 2 and 3 for dry *κ*-carrageenan film.

214

215

216Fig. 4Fitting of σ and Δn for dry κ -carrageenan film with eqs 2 and 3. The measured value is217represented by solid lines and the values calculated using parameters in Table 1 are shown218by broken lines.

Based on the structure of the κ -carrageenan film consisting of three domains as well as on the "physical" plasticization for the dry film, the fifth component should be primarily attributed to the continuous phase of amorphous κ -carrageenan. It is likely that the κ -carrageenan chains are forced to align the backbones along the deformation direction to some extent and then remain

224 unchanged during the following relaxation process because of the very low mobility in the dry 225 film. The modulus higher than that of the rubber component might be due to the constraints on 226 the chain motion of κ -carrageenan chains densely assembled within that domain.

227 The results for the moist film are shown in Figure 5. The decreasing trend of measured σ is 228 well expressed by the empirical equation likewise with the parameters listed in Table 2, as drawn by a broken line in the figure. Then the parameters are used for fitting the measured Δn so that 229 230 the stress-optical coefficients can be obtained. It is found that the decreasing trend of Δn can be 231 also represented by a similar equation to eq 3 where the two stress-optical coefficients C_{d1} and 232 C_{d2} are replaced with C_{m1} and C_{m2} as demonstrated by a broken line in Fig. 5. As shown in Table 2, one positive coefficient $C_{m1} = 1.0 \times 10^{-11} \text{ Pa}^{-1}$ is common to the four components having finite 233 relaxation times and the other coefficient $C_{m2} = 1.1 \times 10^{-10} \text{ Pa}^{-1}$ for the constant term is greater 234 than C_{m1} . In the previous paragraph, the negative C_{d1} has been correlated with the glass component. 235 236 Hence, it is hardly likely that the positive stress-optical coefficients for the moist film are 237 attributable to that component. Although the glass component indeed exists even in the moist film, 238 the relaxation time of such a localized mode becomes too short under the "chemical" plasticizing 239 effect of the moisture to be detected using our apparatus. Water from the moisture works as the 240 plasticizer in the moist film and swells the continuous phase of amorphous *k*-carrageenan to soften the network. Therefore the addition of moisture would make it possible for κ -carrageenan 241

Fig. 5 Fitting of σ and Δn for moist κ -carrageenan film with eqs 2 and 3. The measured value is represented by solid lines and the values calculated using parameters in Table 2 are shown by broken lines.

246

247 Table 2 Fitting parameters for moist *κ*-carrageenan film.

i	A_i (Pa)	$ au_i$ (s)	(Pa^{-1})
1	3.0×10^{5}	$2.0 imes 10^{0}$	
2	1.6×10^{5}	2.8×10^1	$C_{1} = 1.0 \times 10^{-11}$
3	6.6×10^4	2.5×10^2	$C_{m1} = 1.0 \times 10^{11}$
4	3.0×10^{5}	7.7×10^2	
5	1.5×10^{5}	œ	$C_{\rm m2} = 1.1 \times 10^{-10}$

248

249

chains in the continuous phase to contribute not only to σ and accordingly of Δn appearing with the uniaxial deformation but also to the following relaxation. In fact $C_{\rm m1}$ agrees well with $C_{\rm d2}$, suggesting that the relaxation mode of the moist film represented by $C_{\rm m1}$ is mainly attributed to

253	the continuous phase of amorphous κ -carrageenan. It should be emphasized that σ as well as Δn
254	for a polymer system having the ideal network structure does not change during the measurement
255	with ε fixed. Therefore κ -carrageenan chains whose one end or both ends are not included in the
256	crosslinks of κ -carrageenan aggregates would be charged with the relaxation of σ and Δn
257	mentioned above. Now we focus on C_{m2} ; $C_{m2}A_5$ corresponds to the value of birefringence at long
258	times. As is obvious from Tables 1 and 2, $C_{m2}A_5$ is greater than $C_{d2}A_5$ for the dry film. If moisture
259	just acts as a plasticizer for the continuous phase of amorphous κ -carrageenan, $C_{m2}A_5$ should
260	naturally be smaller than $C_{d2}A_5$. The increase in birefringence at long times is not simply due to
261	moisture acting as a plasticizer and must be attributed to some structural change. The present
262	results clearly show that some structure change is generated. In the framework of the three-domain
263	model, the greater value of birefringence for the moist film could be mainly explained by the
264	contribution of the third domain, the large crosslinks consisting of helical κ -carrageenan
265	aggregates. Because the continuous phase of network is linked with the crosslinks by sharing a
266	great number of κ -carrageenan chains, the plasticization of the former by the moisture will
267	indirectly activate the global motion of the latter even though the crosslinks themselves are not
268	plasticized by the moisture. Then the large crosslinks would rotate accompanying deformation of
269	the surrounding κ -carrageenan chains in the plasticized continuous phase. The crosslinks would
270	not rotate back in the following relaxation process, because the overall network existing in the κ -

carrageenan film remains unchanged under the fixed ε . At present, it is impossible to identify the origins of the force and the optical anisotropy in the third domain based on the structure of the crosslinks, but it is probable that an aggregate of helical κ -carrageenan chains is very anisotropic. Despite the fact that the network of κ -carrageenan chains in the continuous phase also contribute to the constant σ and Δn under the fixed ε , C_{m2} should be essentially attributed to the crosslinks taking the relation $C_{m1} \ll C_{m2}$ into consideration.

277

278 Conclusions

279 The uniaxial tensile and the relaxation behavior for κ -carrageenan films was examined by 280 means of the conventional mechanical tests and the birefringence measurement using the 281 polarization modulation method. A picture on the molecular level regarding the deformation and 282 the following relaxation of κ -carrageenan chains was obtained based on the three-domain model for *k*-carrageenan films and on the idea of MSOR. It was suggested that the continuous phase of 283 284 amorphous κ -carrageenan chains in the dry film is deformed by the uniaxial stretching together with the local glass component and only the glass component contributes to the decrease in σ and 285 286 the increase in Δn in the relaxation process. This situation totally changes regarding the moist 287 film: the crosslinks of κ -carrageenan aggregates in addition to the continuous phase become responsible for the observed σ and Δn with deformation and the relaxation is attributed only to 288

289 the unbridged κ -carrageenan chains in the continuous phase.

290

291	References
292	Dekkers BL, de Kort DW, Grabowska KJ, Tian B, Van As H, van der Goot AJ (2016) A combined
293	rheology and time domain NMR approach for determining water distributions in protein
294	blends. Food Hydrocolloids 60: 525-532
295	Horinaka J, Tanaka M, Takigawa T (2017) Plasticizing effect of saccharides on uniaxial tensile
296	behavior of κ- carrageenan films. Nihon Reoroji Gakkaishi 45: 13-18
297	Horinaka J, Tanaka M, Takigawa T (2018)a Effect of saccharide and alditol additives on uniaxial
298	tensile behavior of gellan films. J Polym Environment 26: 3034-3039
299	Horinaka J, Hashimoto Y, Takigawa T (2018)b Optical and mechanical properties of pullulan
300	films studied by uniaxial stretching. Int J Biol Macromol 118: 584-587
301	Horinaka J, Nakamura Y, Takigawa T (2019) Effect of adding fructose on uniaxial tensile behavior
302	of pullulan films. J Soc Mater Sci Jap 68: 1-5
303	Ikeda S, Morris VJ, Nishinari K (2001) Microstructure of aggregated and nonaggregated kappa-
304	carrageenan helices visualized by atomic force microscopy. Biomacromolecules 2: 1331-
305	1337

306 Inoue T, Okamoto H, Osaki K (1991) Birefringence of amorphous polymers. 1. Dynamic

307	measurement of polystyrene. Macromolecules 24: 5670-5675
308	Inoue T, Okamoto H, Osaki K, Kohara T, Natsuume T (1995) Dynamic birefringence of
309	amorphous polyolefins II. Measurements on polymers containing five-membered ring in
310	main chain. Polym J 27: 943-950
311	Inoue T, Osaki K, Morishita H, Tamura H, Sakamoto S (2003) Viscoelasticity and birefringence
312	of polycarbonate derivatives. J Soc Mate Sci Jap 52: 314-318
313	Janeschitz-Kriegl H (1983) Polymer melt rheology and flow birefringence. Springer-Verlag,
314	Berlin.
315	Katopo L, Kasapis S, Hemar Y (2012) Segregative phase separation in agarose/whey protein
316	systems induced by sequence-dependent trapping and change in pH. Carbohydr Polym 87:
317	2100-2108
318	Morris ER, Rees DA, Robinson G (1980) Cation-specific aggregation of carrageenan helices –
319	domain model of polymer gel structure. J Mol Biol 138: 349-362
320	Okamoto H, Inoue T, Osaki K (1992) Birefringence of amorphous polymers. 4. Large deformation
321	of polystyrene near its glass transition temperature. Macromolecules 25: 3413-3415
322	Read BE (1983) Viscoelastic behavior of amorphous polymers in the glass-rubber transition
323	region: Birefringence studies. Polym Eng Sci 23: 835-843
324	Rochas C, Rinaudo M, Landry S (1990) Role of the molecular weight on the mechanical

325	properties of	kappa-car	rageenan gels	s. Carbohydr	Polym 12:	255-66
-----	---------------	-----------	---------------	--------------	-----------	--------

- 326 Sason G, Nussinovitch A (2018) Characterization of κ -carrageenan gels immersed in ethanol
- 327 solutions. Food Hydrocolloids 79: 136-144
- 328 Takayanagi M, Harima H, Iwata Y (1963) Viscoelastic behavior of polymer blends and its
- 329 comparison with model experiments. J Soc Mate Sci Jap 12: 389-394
- 330 Viebke C, Piculell L, Nilsson S (1994) On the mechanism of gelation of helix-forming
- 331 biopolymers. Macromolecules 27: 4160-4166
- 332 Watase M, Nishinari K (1986) Rheological and thermal properties of agarose and kappa-
- 333 carrageenan gels containing urea, guanidine hydrochloride or formamide. Food
- Hydrocolloids 1: 25-36
- 335