1	A new species of <i>Paramoera</i> (Crustacea: Amphipoda: Pontogeneiidae) from an estuary
2	habitat in Hokkaido, Japan
3	
4	Kumiko Hagihara ^a , Takafumi Nakano ^{a,b} and Ko Tomikawa ^a
5	
6	^a Department of Science Education, Graduate School of Education, Hiroshima University,
7	Higashihiroshima 739-8524, Japan
8	E-mail: tomikawa@hiroshima-u.ac.jp
9	^b Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502
10	Japan
11	E-mail: nakano@zoo.zool.kyoto-u.ac.jp
12	
13	CONTACT Ko Tomikawa tomikawa@hiroshima-u.ac.jp
14	
15	Acknowledgements
16	
17	We thank Mr. Masaki Kyono (Sapporo Technical College) for providing valuable specimens
18	of the new species. The authors are also grateful to two anonymous reviewers for their
19	valuable comments on this manuscript.

20	
21	Disclosure statement
22	
23	No potential conflict of interest was reported by the authors
24	
25	Funding
26	
27	This study was financially supported by JSPS KAKENHI Grant Numbers JP17K15174,
28	JP15J00720, and JP17H00820.
29	
30	Geolocation information
31	
32	KUZ Z2041–Z2043 (point): 43.332857°N, 140.410445°E
33	
34	ORCID
35	
36	Takafumi Nakano https//orcid.org/0000-0001-6107-2188
37	Ko Tomikawa http://orcid.org/0000-0003-1521-9016
38	

39 ABSTRACT

40	A new species of the pontogeneiid amphipod, Paramoera shakotanensis, from the mouth of
41	Horonaifu River, Hokkaido, Japan, is described. Paramoera shakotanensis sp. nov. can
42	clearly be distinguished from its congeners by a combination of the following features: large
43	eyes, deep antennal sinus without sharp incision, epimeral plate 3 with smooth posterior
44	margin, small number of setae on inner plate of the maxilla 1 (up to three) and on inner plate
45	with oblique inner row (up to two), pereopod 7 with coxal gill, and distally tapering telson
46	with almost straight lateral margins bearing submarginal setae.
47	
48	http://zoobank.org/urn:lsid:zoobank.org:pub:72E1F36D-87E5-406A-B92D-6DE686150F99
49	
50	KEYWORDS
51	Gammaridea; Pacific Ocean; estuary; brackish water
52	
53	Introduction
54	
55	Paramoera Miers, 1875 is the most species-rich genus within the family Pontogeneiidae and
56	contains more than 50 species, which inhabit mainly cold marine habitats but are occasionally
57	found in brackish or freshwater (Staude 1995; Sidorov 2010; Jung et al. 2016). The type

58	species, <i>Paramoera australis</i> Miers, 1875, was described from Kerguelen Island in the
59	southern Indian Ocean and is an epigean amphipod. However, several other species in the
60	genus, described from the northern Pacific Rim region, are hypogean crustaceans (Staude
61	1995; Sidorov 2010; Nakano and Tomikawa 2018).
62	Before this study, none of hypogean Paramoera amphipods had been recorded from
63	coastal areas in the northwestern Pacific. Three Paramoera species, i.e. P. erimoensis
64	Kuribayashi and Kyono, 1995, P. hanamurai Hirayama, 1990, and P. koysama Kuribayashi
65	and Kyono, 1995, were described from epigean waters of Hokkaido, Japan, and all of them
66	were classified within Paramoera sensu stricto (Hirayama 1990; Kuribayashi and Kyono
67	1995). Paramoera relicta Uéno, 1971 is a subterranean species inhabiting an underground
68	water habitats of an insular lava tube in Fukuejima island, Goto Islands, Japan (Uéno 1971;
69	Nakano and Tomikawa 2018). In 2012, several specimens of an unidentified Paramoera
70	species were collected from a river mouth in Hokkaido, Japan by Masaki Kyono of Sapporo
71	Technical College, and given to the last author. After careful examination, detailed below, we
72	concluded that these specimens belonged to a distinctive species, and thus describe and
73	illustrate them herein as a new species belonging to the genus Paramoera.
74	
75	Material and methods

76 Sample collection

77	Paramoera amphipods were collected from under stones at a river mouth of Horonaifu River,
78	Shakotan Peninsula, Hokkaido, Japan using a fine-mesh hand-net. Specimens were fixed and
79	preserved in 99% ethanol.
80	
81	Morphological examination
82	All appendages of the specimens were dissected in 80% ethanol and mounted in gum-chloral
83	medium on glass slides using a stereomicroscope (Olympus SZX7; Olympus, Tokyo, Japan).
84	The specimens were examined using a light microscope (Nikon Eclipse Ni; Nikon, Tokyo,
85	Japan), and illustrated with the aid of a camera lucida. Body length (BL: to the nearest 0.1
86	mm) was measured from the rostrum tip to the telson base, along the dorsal curvature. The
87	specimens examined in this study have been deposited in the Zoological Collection of Kyoto
88	University (KUZ).
89	
90	Taxonomy
91	
92	Family Pontogeneiidae Stebbing, 1906
93	Genus Paramoera Miers, 1875
94	Paramoera shakotanensis sp. nov.
95	(New Japanese name: Shakotan-migiwa-yokoebi)

96	(Figures 1–5)
97	
98	Paramoera sp.: Tomikawa et al., 2014: fig 2; Tomikawa et al., 2017: fig. 2.
99	Paramoera sp. 1: Nakano and Tomikawa, 2018: fig. 4, table 1.
100	
101	Type material
102	Holotype. Female (BL 4.6 mm), KUZ Z2041, collected from Horonaifu River
103	(43.332857°N, 140.410445°E), Shakotan, Hokkaido, Japan, by Masaki Kyono, on 13 May
104	2012.
105	
106	<i>Paratypes.</i> In total 3 females: female (BL 5.3 mm), KUZ Z1939, female (BL 5.6 mm), KUZ
107	Z2042 (Figure 1), female (BL 5.1 mm), KUZ Z2043, data same as for holotype.
108	
109	Diagnosis
110	Head with large eyes; peduncular article 2 gland cone of antenna 2 with 2 apical setae; lacinia
111	mobilis of left mandible 5-dentate; mandibular palp article 3 without B-setae; inner plate of
112	maxilla 1 with 3 plumose setae; gnathopod 2, carpus longer than propodus; coxa of pereopod
113	4 with shallow posterior concavity; coxal gills on gnathopod 2, and pereopods 3–7; peduncles
114	of pleopods 1–3 with facial setae; uropod 2 inner ramus longer than outer ramus; telson

115 longer than wide.

116

117 Description

118	<i>Female [holotype, KUZ Z2041].</i> Body smooth. Rostrum (Figure 2(a)) short, weakly
119	produced; lateral cephalic lobe mammilliform; inferior antennal sinus quadrate, corner of
120	sinus rounded, not incised; eyes sub-oval, large, 0.4 times as high as head. Epimeral plates 1-
121	3 (Figure 2(b–d)): lateral surface with many tiny setae; posterior margins without crenulation,
122	with seta; posterodistal corners slightly pointed, with seta; plate 1 with long seta on ventral
123	submargin; plate 3 with 1 or 2 short setae and short bifid seta on ventral submargin.
124	Antenna 1 (Figure 2(e), 2(f)): length 0.5 times as long as body length; peduncular articles
125	progressively shorter, length ratio of peduncular articles 1–3 1.0 : 0.7 : 0.5; peduncular article
126	1 with short setae on anterior margin, 2 single and 1 cluster of setae on posterior margin,
127	posterodistal corner with single seta and pair of setae; peduncular article 2 with short seta on
128	anterior margin, 2 clusters of setae on posterior margin, anterodistal and posterodistal corners
129	with cluster of setae; peduncular article 3 with cluster of setae on posterior margin,
130	anterodistal and posterodistal corners with cluster of setae; flagellum 17-articulate, about 1.9
131	times as long as peduncles, first article with 2 aesthetascs, articles 2, 4, 6, 8, 10, 12, 14, and 16
132	each with aesthetasc; accessory flagellum 1-articulate, scale-like, provided with 4 apical setae;
133	calceoli absent. Antenna 2 (Figure 2(g), 2(h)): length ratio of peduncular articles 3-5 1.0 :

134	1.9 : 1.9; gland cone length 0.8 times that of peduncular article 3, not prolonged, with 2 apical
135	setae; peduncular article 3 with pair of setae on anterior margin, 3 setae on medial face of
136	semi-circular elevation, single seta on lateral face, 3 setae on posterodistal corner; peduncular
137	article 4 with 3 pairs or clusters of setae on anterior margin, 3 pairs of setae on medial surface,
138	and a few short setae on posterior margin; peduncular article 5 with single seta and 2 pairs of
139	setae on anterior margin, short single seta on posterior margin, 2 pairs of setae on medial
140	surface, cluster of setae on anterodistal and posterodistal corners; flagellum with 10+ articles
141	(some distal articles broken); calceoli absent.
142	Upper lip (Figure 2(i)) ventral margin convex, rounded, with minute setae. Left and right
143	mandibular incisors (Figure 2(j), 2(k)) 6-dentate, with left lacinia mobilis 5-dentate and right
144	tridentate; left and right accessory setal rows with 6 and 5 blade setae, respectively; molar
145	process triturative with plumose seta; palp 3-articulate, length ratio of left and right palp
146	articles 1–3 1.0:2.7:2.4 and 1.0:2.5:2.2, article 1 bare, article 2 with 10 setae, article 3 with
147	pair of A-, 2 C-, 5 D- and 7-E setae, lateral surface with many fine setae. Lower lip (Figure
148	2(l)) outer lobes broad, setulose, mandibular lobes narrow; inner lobes indistinct. Maxilla 1
149	(Figure $2(m)$, $2(n)$) inner plate narrow with 3 plumose setae; outer plate rectangular with 10
150	serrate robust setae; palp 2-articulate; article 1 bare; article 2 with 6 robust and 1 slender setae
151	on apical and subapical margins, respectively, outer margin without setae. Maxilla 2 (Figure
152	2(o)) inner plate with oblique inner row of 2 plumose setae; outer plate with about 19–20

153	slender setae on subapically. Maxilliped (Figure 3(a)) inner plate not exceeding palp article 1,
154	with 3 robust setae subapically, medial face with oblique row of plumose setae; outer plate
155	exceeding palp article 1, with 2 thick plumose setae and robust setae apically; palp 4-
156	articulate, article 2 oblong, with a row of setae, article 3 unlobate, article 4 shorter than article
157	3, nail present and not spinose along the inferior margin but with 3 sub-apical setae.
158	Gnathopod 1 (Figure 3(d), 3(e)) shorter than gnathopod 2; coxa subrectangular, left and
159	right coxae with 6 and 4 short setae on ventral margins, respectively; basis length about 3
160	times longer than wide, with long setae on anterior and posterior margins, and inner surface;
161	ischium with setae on posterodistal corner; merus with long ventral setae; carpus 0.8 times as
162	long as propodus, with finely serrate setae on posterodistal corner; propodus subrectangular,
163	length 1.9 times longer than wide; left propodus with single seta, pair and cluster of setae on
164	anterior margin, single seta and 2 clusters of setae on posterior margin, right propodus single
165	seta and pair and cluster of setae on anterior margin, 2 clusters of setae on posterior margin,
166	palm (Figure 3(e)) oblique, about 0.6 times as long as posterior margin, smoothly connected
167	with posterior margin by 2 medial and 2 lateral robust setae; dactylus with seta on anterior
168	margin and 2 short setae subapically, nail indistinct. Gnathopod 2 (Figure 3(f), 3(g)) coxa with
169	6 setae on ventral margin; basis sub-linear, length about 3 times longer than wide, with
170	anterior and posterior marginal setae; ischium with 3 setae on posterodistal corner; merus with
171	long setae distally; carpus 1.2 times as long as propodus; propodus subrectangular, length 2.3

172	times longer than wide, with 2 pairs and cluster of setae on posterior margin, palm (Figure
173	3(g)) oblique, about 0.5 times as long as posterior margin, smoothly connected with posterior
174	margin by 3 medial and 1 lateral robust setae in left gnathopod 2, by 4 medial and 1 lateral
175	robust setae in right one; dactyl similar to that of Gnathopod 1.
176	Pereopod 3 (Figure 4(a)) coxa ovate, with 6 short setae on ventral margin and robust seta
177	on posterodistal corner; length ratio of from basis to propodus 1.0:0.2:0.6:0.5:0.6; basis sub-
178	liner, with long setae on anterior and posterior margins; ischium with 2 setae on posterodistal
179	corner; merus with 2 setae on anterior margin, single seta and cluster of setae on posterior
180	margin; carpus with seta on anterior and posterior margins; propodus with 2 setae on anterior
181	margin, 2 robust and 1 slender setae on posterior margin; dactyls 0.4 times as long as
182	propodus, bearing seta on anterior margin and 2 minute setae subapically. Pereopod 4 (Figure
183	4(b)) coxa with shallow posterior concavity, right ventral margins of left and right coxae with
184	10 and 8 short setae, respectively; length ratio from basis to propodus 1.0:0.3:0.6:0.6:0.6;
185	anterior and posterior margins of basis with long setae; ischium with 1 or 2 setae on
186	posterodistal corner; merus with 1 or 2 setae on anterior margin, 2 setae on posterior margin;
187	anterior and posterior margins of carpus with 1 and 2 setae, respectively; propodus with 2
188	setae on anterior margin, single and pair robust setae on posterior margin; dactyl 0.3 times as
189	long as propodus, bearing seta on anterior margin and 2 minute setae subapically. Pereopod 5
190	(Figure 4(c)) coxa bilobed, anterior lobe with small seta, posterior lobe with 2 robust and 1

191	small setae; length ratio from basis to dactylus 1.0:0.3:0.7:0.7:0.8:0.3; basis ovate,
192	posteroventrally lobate; ischium with pair of setae on anterodistal corner; merus with single
193	and pair of setae on anterior margin, robust seta on posterior margin; carpus with single and
194	pair of robust setae on anterior margin, posterior margin with seta; propodus with 2 pairs of
195	robust setae on anterior margin, single and pair of setae on posterior margin; dactylus with
196	seta on posterior margin and 2 small subapical setae. Pereopod 6 (Figure 4(d)) coxa bilobate,
197	posterior lobe with 1 robust and 1 slender setae; length ratio from basis to dactylus
198	1.0:0.3:0.8:0.7:0.8:0.3; basis ovate, posteroventrally lobate; ischium with 2 setae on
199	anterodistal corner; merus with single and pair of setae on anterior margin, robust seta on
200	posterior margin; carpus with single and pair of robust setae on anterior margin, posterior
201	margin with 2 robust setae; propodus with 2 single and 1 pair of robust setae on anterior
202	margin, single and pair of robust setae on posterior margin; dactylus with seta on posterior
203	margin and 2 small subapical setae. Pereopod 7 (Figure 4(e)) coxa semicircular with 3 setae
204	on posteroventral margin; length ratio from basis to dactylus 1.0:0.2:0.6:0.6:0.7:0.2; basis
205	ovate, posteroventrally lobate; ischium with 2 setae on anterodistal corner; anterior and
206	posterior margins of merus and carpus with 2 robust setae; propodus with single and 2 pairs of
207	robust setae on anterior margin, 2 robust and 1 small setae on posterior margin; dactylus with
208	seta on posterior margin and small subapical seta.

209 Coxal gills (Figures 3(f), 4(a–c), 4(e)) ovate, on gnathopod 2 to pereopod 7. Sternal gill

and hump absent. Brood plates (Figure 3(h), 3(i)) on gnathopod 2, pereopods 3 and 4 large,

211 brood plate on pereopod 5 small, narrow, strap-like.

212	Pleopods 1–3 (Figure $5(a-c)$) peduncles with paired retinacula on inner distal margin, and
213	with facial setae; pleopods 1–3 inner ramui 7-, 8- and 7-articulate, respectively, with bifid
214	plumose setae (clothes-pin setae) on inner basal margins, terminal setae on rami length 0.7-
215	0.9 times that of rami; outer rami 10-, 10- and 9-articulate, respectively.
216	Uropod 1 (Figure 5(d)) not extending beyond peduncle of uropod 3; peduncle with 2 and
217	4–5 robust setae along medial and lateral ridges, respectively, basofacial seta absent; inner
218	ramus length 0.7 times that of peduncle, with 1–2 robust setae on inner margin; outer ramus
219	length 0.9 times that of inner ramus, with outer marginal robust seta. Uropod 2 (Figure 5(e))
220	length 0.7 times that of uropod 1; peduncle with 1 medial and 2 lateral robust setae dorsally;
221	inner ramus almost as long as peduncle, with 2 robust setae on inner margin; outer ramus
222	length 0.7 times that of inner ramus, with outer marginal robust seta. Uropod 3 (Figure 5(f))
223	length 0.6 times that of uropod 1; both rami equal in length, length 1.2 times that of peduncle,
224	uniarticulate, each ramus with 2 subterminal setae; inner ramus with 5 and 2 robust setae on
225	inner and outer margins, respectively; outer ramus with 2 and 3 robust setae on inner and
226	outer margins, respectively. Telson (Figure 5(g)) tapering distally, length 1.3 times longer than
227	wide, cleft for 58%, lateral margin not concave, with several sub-lateral and facial setae, each
228	lobe bearing 1 long and 1 short setae sub-apically, apex rounded.

220

230	Variation
231	Antenna 1 of one paratype (KUZ Z2042) length 0.4 and 1.4 times that of body and antenna 2,
232	respectively.
233	
234	Distribution
235	Known only from the type locality.
236	
237	DNA sequences
238	In total, 3 sequences of the present paratype (KUZ Z1939) were determined by previous
239	studies (Tomikawa et al. 2014; Tomikawa et al. 2017; Nakano and Tomikawa 2018): nuclear
240	28S ribosomal RNA (AB778502; 787 bp), histone H3 (LC334142; 328 bp), mitochondrial
241	16S ribosomal RNA (LC334116; 418 bp), and cytochrome c oxidase subunit I (LC146870;
242	658 bp).
243	
244	Etymology
245	The specific name is an adjective derived from the name of the type locality of this new
246	species.
247	

Remarks

249	Paramoera shakotanensis sp. nov. is characterized by the antennal sinus without sharp
250	incision and the small number of setae on maxillae 1 and 2 (up to three on the inner plate of
251	the maxilla 1 and up to two on oblique inner row of the inner plate of the maxilla 2). The
252	present species shares these features with P. austrina (Bate, 1862), P. (H.) crassicauda Staude,
253	1995, P. hermitensis_Barnard, 1932, and P. tristanensis Barnard, 1932. Paramoera
254	shakotanensis sp. nov. can be distinguished from those five species by the following features
255	(Bate 1862; Barnard 1932; Staude 1995): from P. austrina [features of P. austrina in
256	parentheses], antennal sinus deep (shallow), epimeral plate 3 moderately (broadly) expanded
257	posteriorly, and ventral margin of coxa of pereopod 4 rounded (almost straight); from <i>P</i> .
258	crassicauda [features of P. crassicauda in parentheses], eyes large (small, reduced) and
259	pereopod 7 with coxal gill (lacking); from <i>P. hermitensis</i> [features of <i>P. hermitensis</i> in
260	parentheses], posterior margin of epimeral plate 3 smooth (posterior margin weakly serrate),
261	telson length 1.3 (1.8) times longer than wide with almost straight (concave) lateral margins,
262	and telson with sub-lateral and distal setae (distal setae only); and from P. tristanensis
263	[features of <i>P. tristanensis</i> in parentheses], posterior margin of epimeral plate 3 smooth
264	(posterior margin slightly crenulate) and lateral margins of telson almost straight (convex)
265	with (without) setae.

266 The original descriptions of *P. fasciculate* (Thomson, 1880), *P. fissicauda* (Dana, 1852),

267	and P. litoralis (Oldevig, 1959) lack information of antennal sinus and setal numbers of
268	maxillae 1 and 2 (Dana 1852; Thomson 1880; Oldevig 1959). However, P. shakotanensis sp.
269	nov. is distinguished from <i>P. fasciculate</i> and <i>P. litoralis</i> by the following features: palm of
270	propodus of gnathopods 1 and 2 with 4 and 5 robust setae, respectively on posteroproximal
271	corners (2–3 and 3 robust setae, respectively in <i>P. litoralis</i>), telson tapering distally (lateral
272	margins parallel in <i>P. fasciculate</i>) with sub-lateral setae (lacking lateral setae in <i>P. litoralis</i>).
273	The insufficient description of <i>P. fissicauda</i> makes difficult to compare with the present
274	new species. Bellan-Santini and Ledoyer (1974) described P. fissicauda based on materials
275	from the Kerguelen and Crozet. Paramoera fissicauda described by them has the sharply
276	incised antennal sinus and the maxillae 1 and 2 with many setae, and thus obviously differs
277	from P. shakotanensis sp. nov. However, Bellan-Santini and Ledoyer's P. fissicauda has been
278	considered to be an undescribed species (De Broyer and Jazdzewski 1993). Accordingly, the
279	taxonomic relationship between P. shakotanensis sp. nov. and P. fissicauda remains subject to
280	a future study.
281	Paramoera shakotanensis sp. nov. is also similar to P. anivae Labay, 2012 and P.
282	erimoensis Kuribayashi and Kyono, 1995 in having an inferior antennal sinus lacking an
283	incision, pereopod 7 with coxal gill, and rami of uropod 3 without plumose setae. However, <i>P</i> .
284	shakotanensis can be distinguished from these two species by the following features
285	(Kuribayashi and Kyono 1995; Labay 2012) [features of P. anivae and P. erimoensis in

286	parentheses]: from <i>P. anivae</i> , peduncular article 2 gland cone of antenna 2 with 2 setae (with
287	6 setae), inner plate of maxilla 1 with 3 plumose setae (5 plumose setae), outer margin of palp
288	article 2 of maxilla 1 without seta (with seta), inner plate of maxilla 2 with oblique inner row
289	of 2 plumose setae (3 plumose setae); and from <i>P. erimoensis</i> , inner plate of maxilla 1 with 3
290	plumose setae (5 plumose setae), inner plate of maxilla 2 with oblique inner row of 2 plumose
291	setae (3 plumose setae), and carpus of female gnathopod 2 longer than propodus (shorter than
292	propodus).
293	Paramoera shakotanensis sp. nov. possesses large eyes despite this species inhabits
294	interstitial habitats. Unlike the epigean species, the previously known hypogean Paramoera
295	amphipods can be characterised by their eyes, which are vestigial or completely lacking,
296	among other characteristics, and thus, four subgenera have been erected for those species
297	(Staude 1995; Sidorov 2010). Of the four described subgenera, three subgenera, Moanamoera
298	Staude, 1995, Humilomoera Staude, 1995 and Rhithromoera Staude, 1995, were erected by
299	Staude (1995) for the subterranean and/or interstitial species distributed in the North Pacific.
300	The subgenus Moanamoera was established for the Paramoera amphipod inhabiting brackish
301	lava ponds in the Hawaiian Islands (Barnard 1977; Staude 1995), and the remaining two
302	subgenera, i.e. Humilomoera and Rhithromoera, were erected from the interstitial subtidal
303	and/or brackish pool species inhabiting the eastern coast of the North Pacific (Staude 1995).
304	Recently, an additional subgenus, Ganigamoera Sidorov, 2010, was described for the

305	stygobitic Paramoera species inhabiting inland freshwater habitats in the Russian Far East
306	(Sidorov 2010). The remaining species which were not included in those four subgenera have
307	been assigned to the subgenus Paramoera (Staude 1995).
308	As described above, the new species bears morphological characteristics mostly consistent
309	with the diagnosis of Humilomoera as defined by Staude (1995). However, the new species
310	possesses large eyes and a coxal gill on pereopod 7, two characteristics that are at odds with
311	Staude's (1995) definition of this subgenus. Eye reduction is a character that can differ even
312	among two populations of the same species of amphipod if, for example, one population lives
313	underground and the other inhabits surface waters (Culver et al. 1995). Therefore, the absence
314	of eyes in the previously known Humilomoera species is deemed to be a highly derived
315	character that is related to their interstitial habitats. Moreover, another subgenus,
316	Rhithromoera, also contains species with and without a coxal gill on pereopod 7 (Staude
317	1995).
318	It was stated that the subgenus-level classification of Paramoera remained unresolved,
319	when the two subgenera Humulomoera and Rhithromoera were erected (Staude 1995).
320	Moreover, it was implied that the other subgenus Ganigamoera might not be a monophyletic
321	taxon (Sidorov 2010). The subterranean P. relicta was once classified within the genus
322	Relictomoera Barnard and Karaman, 1982, of which the type species is P. relicta. According
323	to a systematic revision of <i>P. relicta</i> (Nakano and Tomikawa 2018), however, <i>P. relicta</i> was

324	genetically close to the epigean <i>P. koysama</i> synonymizing <i>Relictomoera</i> with <i>Paramoera</i> .
325	Since the precise phylogenetic relationships among <i>P. relicta</i> and the other hypogean species
326	classified within the three subgenera remained unresolved, Relictomoera was not treated as a
327	valid subgenus in Nakano and Tomikawa (2018). Therefore, the new species from Hokkaido
328	is not assigned to the subgenus Humilomoera as well as other subgenera, so as to avoid
329	additional taxonomic confusion. To clarify the subgeneric assignment of <i>P. shakotanensis</i> sp.
330	nov., as well as to test the validity of subgenus-level classification of Paramoera, a molecular
331	phylogenetic study should be necessary along with evaluating morphological characteristics
332	of all Paramoera species.
333	A few Paramoera species show sexual dimorphism in their pleopods (Kuribayashi and
334	Kyono 1995; Sidorov 2010). The outer ramus of pleopod 2 in their males is modified as more
335	or less shortened and broadened with thickened short setae distally, whereas that of the
336	females shows usual form common in Paramoera (Kuribayashi and Kyono 1995; Sidorov
337	2010). However, it remains unclear whether P. shakotanensis sp. nov. exhibits sexual
338	dimorphism in its pleopods, since any males of the new species have not been collected. The
339	morphological characteristics of the males of <i>P. shakotanensis</i> sp. nov. should be documented
340	by a future taxonomic study; the DNA sequences provided from the paratype of the new
341	species will greatly help identify male individuals of the new species.

343 **References**

- Barnard JL. 1977. The cavernicolous fauna of Hawaiian lava tubes. 9. Amphipoda (Crustacea)
- from brackish lava ponds on Hawaii and Maui. Pac Insects. 17:267–299.
- 347 Barnard JL, Karaman GS. 1982. Classificatory revisions in gammaridean Amphipoda
- 348 (Crustacea), part 2. Proc Biol Soc Wash. 95: 167–187.
- Barnard KH. 1932. Amphipoda. Discovery Rep. 5: 1–326.
- Bate CS. 1862. Catalogue of the Specimens of Amphipodous Crustacea in the Collection of
- 351 the British Museum. London: British Museum.
- 352 Bellan- Santini D, Ledoyer M. 1974. Gammariens (Crustacea-Amphipoda) des Iles Kerguelen
- 353 et Crozet. Tethys. 5:635–707.
- 354 Culver DC, Kane TC, Fong DW. 1995. Adaptation and natural selection in caves: the
- Evolution of *Gammarus minus*. Cambridge (MA): Harvard University Press.
- 356 Dana JD. 1852. Conspectus Crustaceorum quae in Orbis Terrarum circumnavigatione, Carolo
- 357 Wilkes e Classe Reipublicae Faederatae Duce. Proc. Amer. Acad. Arts Sci. 2: 201–220.
- 358 De Broyer C, Jazdzewski K 1993. Contribution to the marine biodiversity inventory. A
- 359 checklist of the Amphipoda (Crustacea) of the Southern Ocean. Doc Trav L'Inst Roy Sci
- 360 Nat Belgique. 73:1–154.
- 361 Hirayama A. 1990. A new species of the genus *Paramoera* (Crustacea: Amphipoda) from the

- 362 intertidal zone of Hokkaido, northern Japan. Zool Sci. 7:955–959.
- 363 Jung TW, Kim JG, Yoon SM. 2016. Two new species of pontogeneiid amphipods (Crustacea,
- 364 Senticaudata, Calliopioidea) from Korean waters. ZooKeys. 635:53–79.
- 365 Kuribayashi K, Kyono M. 1995. Two new species of the genus Paramoera (Amphipoda,
- 366 Gammaridea) from Hokkaido, northern Japan, with special reference to their strangely
- transformed second pleopod. Crustaceana. 68:759–778.
- 368 Labay VS. 2012. Paramoera anivae a new species of Eusiridae Stebbing, 1888 (Crustacea:
- 369 Amphipoda: Gammaridea) from the Okhotsk Sea. Zootaxa. 3475:69–85.
- 370 Miers EJ. 1875. Descriptions of new species of Crustacea collected at Kerguelen's Island by
- the Rev. A. E. Eaton. Ann Mag Nat Hist Ser 4. 16:73–76.
- 372 Nakano T, Tomikawa K. 2018. Reassessment of the groundwater amphipod Paramoera
- 373 relicta synonymizes the genus Relictomoera with Paramoera (Crustacea: Amphipoda:
- Pontogeneiidae). Zool Sci. 35: 459–467.
- 375 Oldevig H. 1959. Arctic, Subarctic and Scandinavian Amphipods in the collections of the
- 376 Swedish Natural History Museum in Stockholm. Goteborgs Kungl Vetenskaps- och
- 377 Vitterhets-Samhalles Handlingar, sjatte foljden, ser B. 8:1–132
- 378 Sidorov DA. 2010. A new subgenus of eusirid amphipod (Crustacea: Amphipoda: Eusiridae)
- 379 from subterranean waters and springs of the Eastern Sikhote-Alin Mountain Ridge, with
- comments on the morphology of sternal humps, genital papillae and pleopods. Zootaxa.

381 2518:1–31.

382	Staude CP. 1995. The amphipod genus Paramoera Miers (Gammaridea: Eusiroidea:
383	Pontogeneiidae) in the eastern north Pacific. Amphipacifica. 1:61–102.
384	Stebbing TRR. 1906. Amphipoda I. Gammaridea. Berlin: R. Friedländer und Sohn. (Das
385	Tierreich. Eine Zusammenstellung und Kennzeichnung der rezenten Tierformen; 21).
386	Tomikawa K, Kyono M, Kuribayashi K, Nakano T. 2017. The enigmatic groundwater
387	amphipod Awacaris kawasawai revisited: synonymisation of the genus Sternomoera, with
388	molecular phylogenetic analyses of Awacaris and Sternomoera species
389	(Crustacea : Amphipoda : Pontogeneiidae). Invertebr Syst. 31:125–140.
390	Tomikawa K, Kobayashi N, Kyono M, Ishimaru S, Grygier MJ. 2014. Description of a new
391	species of Sternomoera (Crustacea: Amphipoda: Pontogeneiidae) from Japan, with an
392	analysis of the phylogenetic relationships among the Japanese species based on the 28S
393	rRNA gene. Zool Sci. 31:475–490.
394	Uéno M. 1971. The fauna of the insular lava caves in west Japan VII. Subterranean
395	Amphipoda. Bull Natl Sci Mus Tokyo. 14: 163–170.
396	

397 Figure captions

Figure 1. *Paramoera shakotanensis* sp. nov., paratype, female, KUZ Z2042, lateral view.
Scale bar, 1.0 mm.

402	Figure 2. Paramoera shakotanensis sp. nov., holotype, female, KUZ Z2041. (a) Head, lateral
403	view. (b-d) Epimeral plates 1-3, lateral views. (e) Antenna 1, medial view. (f) Accessory
404	flagellum of antenna 1, medial view. (g) Antenna 2, medial view. (h) Gland cone of
405	peduncular article 2 of antenna 2, medial view. (i) Upper lip, anterior view. (j), (k) Left and
406	right mandible, medial views. (l) Lower lip, ventral view. (m) Right maxilla 1, anterior view.
407	(n) Palp of left maxilla 1, anterior view. (o) Maxilla 2, anterior view. Scale bars, 0.1 mm.
408	
409	Figure 3. Paramoera shakotanensis sp. nov., holotype, female, KUZ Z2041. (a) Maxilliped,
410	anterior view. (b), (c) Inner and outer plates of maxilliped, anterior views. (d) Gnathopod 1,
411	medial view. (e) Palmar margin of propodus and dactylus of gnathopod 1, medial view. (f)
412	Gnathopod 2, medial view. (g) Palmar margin of propodus and dactylus of gnathopod 2,
413	medial view. (h), (i) Brood plates of gnathopod 2 and pereopod 5, medial views. Scale bars,
414	0.1 mm.

- **Figure 4.** *Paramoera shakotanensis* sp. nov., holotype, female, KUZ Z2041. (a–e) Pereopods
- 417 3–7, lateral (a), (c) and medial (b), (d), (e) views. Scale bars, 0.1 mm.

- **Figure 5.** *Paramoera shakotanensis* sp. nov., holotype, female, KUZ Z2041. (a–c) Pleopods
- 420 1–3, lateral (a), (c) and medial (b) views. (d–f) Uropods 1–3, ventral views. (g) Telson, ventral
- 421 view. Scale bars, 0.1 mm.