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Abstract
We propose the concept of global temperature for spatially non-uniform heat conduction
systems. With this novel quantity, we present an extended framework of thermodynamics for
the whole system such that the fundamental relation of thermodynamics holds, which we call
“global thermodynamics” for heat conduction systems. Associated with this global thermo-
dynamics, we formulate a variational principle for determining thermodynamic properties of
the liquid-gas phase coexistence in heat conduction, which corresponds to the natural exten-
sion of the Maxwell construction for equilibrium systems. We quantitatively predict that the
temperature of the liquid–gas interface deviates from the equilibrium transition temperature.
This result indicates that a super-cooled gas stably appears near the interface.

Keywords Thermodynamics · Heat conduction · Liquid–gas transition · Super-cooled gas

1 Introduction

The behavior of liquids and gases close to equilibriumhave been extensively studied for a long
time. As a macroscopic universal theory describing these phases of matter, hydrodynamics is
believed to bewell-established [1], and the connection of the hydrodynamicswith the classical
and quantummechanics of atoms have been discussed for over a century [2,3]. Nevertheless,
in this paper, we construct a new universal theory for thermodynamic properties in the linear
response regime. There are two main messages. First, a new concept, global temperature, is
found, with which a novel framework of global thermodynamics is constructed to describe
the whole of non-uniform non-equilibrium systems with local equilibrium thermodynamics.
This outcome provides a fresh viewpoint for the description of systems out of equilibrium.
Second, this formulation provides non-trivial quantitative predictions. As an example, let us
consider pure water under a pressure of pex = 1.013 × 105 Pa, where two heat baths of
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Fig. 1 Example of the system under study

temperature T1 = 368.0 K and T2 = 378.0 K are in contact with the sides of the system. See
Fig. 1 for an illustration. Recall that the liquid-gas transition temperature is 373.1 K. Based
on global thermodynamics, in this paper, we predict that the interface temperature of the
liquid-gas coexistence is 368.3 K. This result means that super-cooled gas stably appears in
heat conduction, which may be tested in experiments.

In the remaining part of this introduction, we first present a brief summary of development
in non-equilibrium statistical mechanics, confirming that the phenomenon described above
has never been discussed by established theories.We then provide a reviewof extended frame-
works of thermodynamics so that readers can understand how the global thermodynamics
proposed in this paper is different from previous frameworks. At the end of the introduction,
we summarize the achievements of this paper.

1.1 Non-equilibrium Statistical Mechanics

In the universal theory of macroscopic irreversible dynamics built by Onsager, a steady-state
current is assumed to be linear in the thermodynamic forces [4,5]. The linear coefficients
form a non-negative symmetric matrix, which is referred to as the Onsager matrix. This
theory with a variational principle for determining a current and/or a thermodynamic force
is called irreversible thermodynamics, which is valid near equilibrium [6]. Onsager theory
can be interpreted as a universal theory for the dynamical fluctuations of thermodynamic
variables, where the properties of the Onsager matrix are connected to the stability of the
equilibrium state and the time-reversal symmetry in microscopic systems. In short, this fluc-
tuation theory is represented by a simple stochastic process with a symmetry property [4,5,7].
In accordance with this theory, statistical mechanics of trajectories has been studied based
on microscopic dynamics, which leads to the expression of probability densities, linear and
non-linear response formulas, and macroscopic deterministic dynamics [2,3,8–12].

After these developments, in the last two decades, our understanding of phenomena related
to thermodynamics has progressed greatly because of the following two reasons. First, the
development of experimental techniques for the measurement andmanipulation of biological
molecular machines [13–17] naturally leads to the extension of thermodynamics to meso-
scopic scales, which is now called stochastic thermodynamics [18–20]. Second, the newly
discovered relations, such as the fluctuation theorem [21] and the Jarzynski equality [22],
have emerged as universal [23–28], providing a new starting point for the re-organization
of previous theories with greatly simplified derivations of the formulas [29–33]. These two
developed directions, stochastic thermodynamics and new universal relations, are related to
each other and have given rise to a new connection with large deviation theory [34–38], and
information theory [39].
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Global Thermodynamics for Heat Conduction Systems 827

These results are quite useful when we specify a phenomenon under study. Indeed, the
phase coexistence in heat conduction can be studied through a tough calculation based on
the non-equilibrium statistical mechanics [40]. However, we could not conjecture the non-
trivial nature of this phenomenon immediately from principles of non-equilibrium statistical
mechanics. For example, although one expects a variational formulation for the phase coex-
istence in heat conduction by recalling the minimum entropy production principle [41], we
cannot obtain thermodynamic properties directly from the principle because the variational
principle basically determines the statistical ensemble in the linear response regime as the
minimizer of the entropy production [42]. In order to develop a variational principle for
thermodynamic quantities, we have to start with an extended framework of thermodynamics.

1.2 Extended Frameworks of Thermodynamics

Equilibrium thermodynamics provides a unified description of thermodynamic properties of
materials at equilibrium. It also formalizes the second law, which leads to a variational prin-
ciple for determining equilibrium states [43,44]. The variational principle naturally suggests
the law of fluctuation of thermodynamic variables [45], which is formulated as a large devi-
ation theory. From this viewpoint, a framework of statistical mechanics may be constructed
in a consistent manner with the fluctuation theory of thermodynamic variables [46].

Therefore, in order to establish a universal theory for thermodynamic properties out of
equilibrium, it is natural to consider an extended framework of thermodynamics. A naive
attempt is to extend the equilibrium fundamental relation of thermodynamics

dF = −SdT − pdV (1.1)

for the case of simple fluids, where F is the Helmholtz free energy and S is the entropy.
Examples of such attempts can be seen in Refs. [47–49]. The heart of the problem for
the extension is to confirm the two conditions: First, the theory is self-consistent and self-
contained; second, new predictions specific to the extension are presented. However, the two
conditions are not confirmed in many studies. The derivation of the extended thermodynam-
ics from the microscopic theory, regardless of its importance, does not make sense unless
the extended framework satisfies the above two conditions. Here, we do not give a com-
plete review of previous studies on the extended framework of thermodynamics, but study
heat conduction systems from the viewpoint of the extended framework of thermodynam-
ics.

Heat conduction is described as a spatially extended system in which thermodynamic
variables slowly vary in space. The local subsystems, which are small but macroscopic,
are regarded as a local equilibrium state [1,6,50]. If we followed this standard description,
we could not have a strong motivation to seek a thermodynamic framework because all
thermodynamic properties can be calculated by the heat conduction equation and the local
equilibrium thermodynamics. Nevertheless, we still have two possibilities for considering an
extended framework of thermodynamics.

The first attempt is to go beyond the local equilibrium thermodynamics. In this approach,
which may be adapted in Refs. [51,52], the equation of state for the local subsystems is
modified to contain the influence of the heat flux. Since such a contribution is quite small
in the linear response regime, the theory is not useful even if it is correct. Although this
approach may still be effective for spatially homogeneous driven systems, in which intensive
parameters may describe the balance of extensive variables [52–56], we do not deal with
such systems in this paper.
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In the second approach, we retain the standard description for a spatially extended system
with local equilibrium thermodynamics. On this basis, we then seek a thermodynamic frame-
work for the whole system. As an example, we first consider the extension of the second law,
bywhich a state variable “entropy” is defined, andwe then derive the thermodynamic relation
which corresponds to an extension of the fundamental relation of thermodynamics.A concrete
procedure of the first step was proposed by introducing the concept of excess heat [49,57,58].
This idea was also studied from semi-macroscopic and microscopic theories [59–65]. How-
ever, the fundamental relation of thermodynamics has not been derived from the extended
entropy. One reason may be that an interesting phenomenon associated with the extended
entropy was not addressed. Nevertheless, one can continue to seek a possible framework
without considering certain phenomena. Indeed, for a specific model of heat conduction, the
extended entropy was numerically estimated [66], which suggests that the extended entropy
is close to the spatial integration of the local equilibrium entropy density. Since the extended
entropy can be obtained in experiments, a natural question is “What is temperature?” If
the fundamental relation of thermodynamics is formulated, there should be a temperature
satisfying it. We consider this question seriously, putting aside specific phenomena.

1.3 Summary of Results

We first focus on single-phase systems (either liquid or gas) in heat conduction. By assuming
local equilibrium thermodynamics, we define the entropy S and the Helmholtz free energy
F in heat conduction by the spatial integration of the local density fields corresponding to
these variables. The pressure field p is homogeneous in space. Then, the problem is to find
a temperature T̃ satisfying the fundamental relation

dF = −SdT̃ − pdV (1.2)

in the linear response regime. In §3, we solve this problem by defining T̃ as the kinetic tem-
perature averaged over particles in the system. We call this temperature global temperature.
It should be noted that the local temperature T (r), which depends on the position r , satisfies
the thermodynamic relations for each point r . In contrast to the local relations, (1.2) is a
global relation applied for the whole system as if the system is at equilibrium. We call such
a thermodynamic framework global thermodynamics. This formulation is also interpreted
as a mapping of each heat conduction system to an equilibrium system through the novel
quantity of the global temperature, T̃ .

The formulation for a single-phase system is indeed derived fromfluid dynamicswith local
equilibrium thermodynamics. That is, this formulation is interpreted as a different formulation
for describing thermodynamic quantities in the linear response regime. The prediction by
using global thermodynamics can also be predicted by hydrodynamics with local equilibrium
thermodynamics, in principle. Here, we go one step further. We consider a thermodynamic
phenomenon that cannot be described by the standard hydrodynamics with local equilibrium
thermodynamics. This is the phenomenon of phase coexistence in heat conduction. In §4, we
study this phenomenon andwe showhowexisting theories are not appropriate for determining
the thermodynamic properties. The essential point is that the condition for the connection of
the two phases is outside of the local equilibrium thermodynamics.

We study the phase coexistence in heat conduction with the framework of global thermo-
dynamics. We first formulate a variational principle for determining the local temperature
of the liquid–gas interface. The idea is quite simple. Fixing the global temperature of the
whole system, we naturally extend the variational principle for equilibrium systems to that
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for heat conduction systems. This idea was proposed in our previous paper [67]. Remarkably,
by using the solution of the variational equation, in §5, we derive a universal relation among
the interface temperature θ , the equilibrium transition temperature Tc, the global temperature
T̃ , and the mean temperature of the two heat baths Tm, which is

θ − Tc = T̃ − Tm. (1.3)

We call this relation the temperature relation. From the temperature relation, we find that the
temperature of the liquid-gas interface deviates from the equilibrium transition temperature.
That is, super-cooled gas stably appears near the interface in heat conduction. This is a
qualitatively new phenomenon that has never been considered in previous studies.

Since the steady state as determined by the variational principle is expressed as a function
of the global temperature, the prediction of measurable quantities for given conditions is
indirect. Thus, in §6, we re-express all quantities in the steady state in terms of the two
temperatures of the heat baths. We present several formulas of the interface temperature
by directly using measurable quantities. Furthermore, we illustrate examples of quantitative
results for a van der Waals fluid and pure water.

For the steady state determined by the variational principle, we further develop thermo-
dynamics for heat conduction systems with phase coexistence. First, in §7, we derive the
fundamental relation associated with the Gibbs free energy G. At first sight, the result does
not seem to contain non-equilibrium extensions. This is because G is not differentiable at the
transition point at equilibrium. By performing a careful analysis near equilibrium, we find
that the fundamental relation holds in an appropriate equilibrium limit. The heat capacity
and the compressibility, which are singular at equilibrium, are also obtained as a regularized
form while breaking the additivity. In §8, we derive the fundamental relation associated with
the Helmholtz free energy F . Since the free energy F is defined for the coexistence phase
in equilibrium cases, its non-equilibrium extension can be written as a perturbation from the
equilibrium form. We derive this expression explicitly.

It should be noted that the quantitative prediction is made based on a fundamental assump-
tion of the variational principle. As is often observed in universal theories, one may replace
the fundamental assumption by another one. In §9, we formulate the theory starting from
assumptions other than the variational principle. For example, when we assume the funda-
mental relation of thermodynamics for the whole system by using the global temperature,
we can derive the results of the variational principle. As another example, one may focus
on how the volume change near the transition temperature at constant pressure exhibits the
singularity in the equilibrium limit. Supposing the simplest form of a singularity, we can
derive the results of the variational principle. These findings indicate that the theory itself
possesses an elegant structure.

In §10,we extend the theory in §3 to cover steady stateswith an arbitrarily shaped container
beyond the linear response regime, while restricting our attention to single-phase systems.
Our theory quantitatively predicts a new relation among the global quantities in this setup.

2 Preliminaries

2.1 EquilibriumThermodynamics

We consider a macroscopic material at equilibrium. As the simplest example, we focus on
a simple fluid whose thermodynamic state is characterized by temperature T , the volume V
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of a container, and the amount of material N . For a system in contact with a heat bath of
temperature T which may be controlled externally, there exists a state variable S(T , V , N ),
called entropy, which satisfies the Clausius equality

dS = d ′Q
T

(2.1)

for infinitesimal quasi-static heat d ′Q from the heat bath. The infinitesimal change of internal
energy U (T , V , N ) of the material is determined by

dU = d ′Q + d ′W , (2.2)

which is referred to as the first law of thermodynamics. d ′W is the infinitesimal quasi-static
work required in the infinitesimal change of the volume dV , which is given by

d ′W = −pdV . (2.3)

The substitution of (2.1) and (2.3) into (2.2) leads to the fundamental relation of thermody-
namics:

dU = TdS − pdV . (2.4)

From this expression, we find that it is useful to considerU as a function of (S, V , N ). Indeed,
a single functionU (S, V , N ) leads to all thermodynamic properties such as equation of state

p = p(T , V , N ) (2.5)

and heat capacity

CV = CV (T , V , N ). (2.6)

We then define chemical potential μ as

μ ≡
(

∂U

∂N

)
S,V

. (2.7)

Various thermodynamic functions equivalent to U (S, V , N ) can be defined by the Leg-
endre transformation of U (S, V , N ):

F(T , V , N ) ≡ min
S

[U (S, V , N ) − T S], (2.8)

H(S, p, N ) ≡ min
V

[U (S, V , N ) + pV ]. (2.9)

G(T , p, N ) ≡ min
S

[H(S, p, N ) − T S]. (2.10)

The fundamental relations associated with these functions are

dF = −SdT − pdV + μdN , (2.11)

dH = TdS + Vdp + μdN , (2.12)

dG = −SdT + Vdp + μdN . (2.13)

Substituting G(T , p, N ) = NG(T , p, 1) into (2.13), we find

G = μN . (2.14)

This form together with (2.13) leads to the Gibbs-Duhem relation

−SdT + Vdp − Ndμ = 0. (2.15)
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Global Thermodynamics for Heat Conduction Systems 831

The extensivity of thermodynamic quantity leads to the concept of density defined as
the quantity per unit volume, similarly to particle density ρ = N/V . For instance, entropy
density is defined as

s(T , ρ) ≡ S(T , V , N )

V
. (2.16)

By using ρ = ρ(T , p), which is obtained from (2.5), one may consider the entropy density
as a function of (T , p), which is expressed as

s(T , p) = s(T , ρ(T , p)), (2.17)

following the convention in thermodynamics. Similarly to the entropy density, for any exten-
sive quantity A, its density is defined as

a(T , ρ) ≡ A(T , V , N )

V
, (2.18)

a(T , p) = a(T , ρ(T , p)). (2.19)

We here consider free energy density g = G/V . SubstitutingG = gV into (2.14) and (2.15),
we obtain

g = μρ, (2.20)

sdT + ρdμ = dp, (2.21)

where u = U/V . From these, we have

dg = −sdT + μdρ + dp, (2.22)

where dT , dρ and dp are not independent, because T , ρ and p are connected by the equation
of state (2.5) such that

dρ =
(

∂ρ

∂T

)
p
dT +

(
∂ρ

∂ p

)
T
dp. (2.23)

Furthermore, we define extensive quantities per one particle, as

â(T , p) ≡ a(T , p)

ρ(T , p)
= A(T , p, N )

N
. (2.24)

Note that ĝ is equivalent to the chemical potential μ. We then have

μ = û − T ŝ + φ̂ p, (2.25)

dμ = −ŝdT + φ̂dp, (2.26)

where φ̂ is specific volume φ̂ = 1/ρ.

2.2 Setup of Heat Conduction Systems

Throughout this paper, we consider a system of N -particles, which are packed in a rectangular
container with lengths of side Lx , Ly and Lz , as shown in Fig. 2a. We ignore the effect of
gravity. Lx and Ly are fixed throughout this paper. Lz is fixed for a constant volume system,
or not fixed at constant pressure. We study heat conduction states driven by the temperature
difference between two heat baths. As schematically described in Fig. 2b, a heat bath of
temperature T1 is attached to the left end (x = 0) and another heat bath of temperature T2
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(a) (b)

Fig. 2 Schematic figures of heat conduction systems at constant pressure. a Shape of a container with a
movable top plate. b Layout of a system with two heat baths

to the right end (x = Lx ). Other four boundaries are thermally insulating. We take T1 ≤ T2
without loss of generality, and (T2−T1)/T2 is assumed to be so small that the system reaches
a unique nonequilibrium steady state in the linear response regime. In such an idealized
steady state without any convection, the system is regarded as a one-dimensional system.
Local states are homogeneous inside any section perpendicular to the x axis, and therefore,
local thermodynamic quantities are considered as functions of x .

We introduce a dimensionless parameter ε that indicates the degree of non-equilibrium as

ε ≡ Ξ

Tm
, (2.27)

where Ξ is the temperature difference and Tm is the mean temperature of the heat baths,
which are defined by

Ξ ≡ T2 − T1, (2.28)

Tm ≡ T1 + T2
2

. (2.29)

When we focus on the linear response regime around an equilibrium state, we ignore the
contribution of O(ε2).

2.3 Local EquilibriumThermodynamics

For such macroscopic non-equilibrium systems, the hypothesis of local equilibrium thermo-
dynamics works well. That is, local thermodynamic quantities are assumed to satisfy local
thermodynamic relations at each space and time [1,6]. Now, suppose that the temperature
profile T (x), the density profile ρ(x) and the pressure p(x) are determined by experimental
observation. Any local thermodynamic quantities, such as a(x) and â(x), are expressed as

a(x) = a(T (x), ρ(x)), (2.30)

â(x) = â(T (x), p(x)), (2.31)

where functions a(T , ρ) and â(T , p) are determined in thermodynamics, as described in the
previous subsection. According to (2.19), a(x)may be also written as a(x) = a(T (x), p(x))
via ρ(x) = ρ(T (x), p(x)). Then, local equilibrium thermodynamics means

g(x) = μ(x)ρ(x), (2.32)

s(x)dT (x) + ρ(x)dμ(x) = dp(x), (2.33)

dg(x) = −s(x)dT (x) + μ(x)dρ(x) + dp(x), (2.34)
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Global Thermodynamics for Heat Conduction Systems 833

which correspond to the relations (2.20), (2.21) and (2.22), respectively. For the quantities
per one particle, we also have

μ(x) = û(x) − T (x)ŝ(x) + φ̂(x)p(x), (2.35)

dμ(x) = −ŝ(x)dT (x) + φ̂(x)dp(x), (2.36)

which correspond to the local version of the thermodynamic relations (2.25) and (2.26).

2.4 Global Conditions for Steady States

For steady state heat conduction, the local pressure p(x) satisfies

p(x) = p(x ′) (2.37)

for any x and x ′. Especially, for the system at the constant pressure pex,

p(x) = pex (2.38)

holds for any x . These equalities for the local pressure may be regarded as global relations
because they are not obtained in the local thermodynamics. Furthermore, heat flux J (x) is
uniform in x as expressed in the form

J (x) = J (x ′) (2.39)

for any x and x ′, whichmaywork as another global relation for the local quantities. In order to
connect the heat flux with the local thermodynamic quantities, we assume a heat conduction
equation

J (x) = −κ(T (x), ρ(x))
∂T (x)

∂x
, (2.40)

in which κ(T , ρ) is heat conductivity as a function of (T , ρ). We assume that there is no
temperature gap at the boundaries, i.e.,

lim
x→+0

T (x) = T1, lim
x→Lx−0

T (x) = T2. (2.41)

Finally, the conservation of particle number is written as

LyLz

∫ Lx

0
dx ρ(x) = N . (2.42)

These global relations, (2.37), (2.38), (2.39), (2.42), together with the equation of state (2.5),
the heat conduction equation (2.40), and the boundary condition (2.41), are sufficient to
determine the profiles of the local temperature T (x) and the local density ρ(x) provided that
the systems consist of a single phase.

As we will see in §4, there is a case where liquid and gas coexist in the container. For this
special situation, the above global relations are not sufficient to determine the local states.
This problem will be seriously studied in later sections.

2.5 Global Thermodynamic Quantities

Since thermodynamic quantities in heat conduction are not uniform in the space, they are
basically described as local fields.Nevertheless, from the fact that the local states are governed
by the global relations as explained in §2.4, we expect that some properties of the heat
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834 N. Nakagawa, S. Sasa

conduction systems are explained from a global point of view. Toward the characterization
of global properties, we here define global thermodynamic quantities for heat conduction
systems.

For extensive variables A originally defined for equilibrium states, we define the following
global quantities as an extension to those for heat conduction states:

A = LyLz

∫ Lx

0
dx a(T (x), p), (2.43)

where we have used the same notation A as that for equilibrium states. When we interpret A
as a state function of heat conduction states, we explicitly write A(T1, T2, p, N ) which is in
contrast to A(T , p, N ) for equilibrium states. For instance, global entropy and global Gibbs
free energy are defined as

S = LyLz

∫ Lx

0
dx s(T (x), p), (2.44)

G = LyLz

∫ Lx

0
dx g(T (x), p). (2.45)

Here, we investigate the reference state dependence of these global thermodynamic quan-
tities. In equilibrium thermodynamics, entropy density and internal energy density are defined
up to an additive constant which depends on the choice of their reference state. Thus, the
entropy density s(x) and the internal energy density u(x) possess this property. Concretely,
let ŝ0 and û0 be the shift of the additive arbitrary constants of entropy and energy per one
particle, respectively, for the change of the reference state. We express this transformation
by

s(x) → s(x) + ŝ0ρ(x), (2.46)

u(x) → u(x) + û0ρ(x). (2.47)

The shift of other thermodynamic quantities are induced as

g(x) → g(x) − ŝ0ρ(x)T (x) + û0ρ(x), (2.48)

μ(x) → μ(x) − ŝ0T (x) + û0. (2.49)

Note that local thermodynamic relations are invariant under the transformation.
Now, we consider the transformation of the global thermodynamic quantities, which are

defined by the spatial integral of the local quantities. It is obvious that

S → S + ŝ0LyLz

∫ Lx

0
dx ρ(x) = S + ŝ0N , (2.50)

U → U + û0LyLz

∫ Lx

0
dx ρ(x) = U + û0N , (2.51)

while for the global Gibbs free energy G, we have

G → G − ŝ0LyLz

∫ Lx

0
dx ρ(x)T (x) + û0LyLz

∫ Lx

0
dx ρ(x). (2.52)

The ŝ0 dependence ofG is far from trivial. Here, we introduce the global temperature T̃ such
that the transformation is written as

G → G − ŝ0NT̃ + û0N . (2.53)
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Explicitly, T̃ is given as

T̃ =
∫ Lx
0 dx ρ(x)T (x)∫ Lx

0 dx ρ(x)
, (2.54)

which means that global temperature T̃ corresponds to the kinetic temperature averaged over
particles. The transformation (2.53) suggests the consistency among G, S and T̃ . Indeed, we
will show the global thermodynamic relations for these quantities. Similarly, we also define
the global chemical potential as

μ̃ =
∫ Lx
0 dx ρ(x)μ(x)∫ Lx

0 dx ρ(x)
. (2.55)

Since μ̃ = G/N , the global chemical potential corresponds to the Gibbs free energy per one
particle.

3 Global Thermodynamics for Single-Phase Systems in the Linear
Response Regime

In this section, we restrict ourselves to a single phase where the heat conduction system
is occupied by either liquid or gas at the constant pressure pex. When the environmental
parameters T1, T2, and pex are fixed, the steady state is uniquely determined from the equation
of state (2.5), the heat conduction equation (2.40), and the conservation law (2.42). That is,
the values of (T (x), ρ(x), Lz) are determined by

p(T (x), ρ(x)) = pex, (3.1)

∂

∂x

[
κ(T (x), ρ(x))

∂T (x)

∂x

]
= 0, (3.2)

Lz = N

Ly
∫ Lx
0 dx ρ(x)

. (3.3)

Since the local thermodynamic quantities obey equilibrium thermodynamics, the profile
(T (x), ρ(x)) leads to any local thermodynamic quantities such as s(x) and μ(x). Then, the
global quantities such as T̃ , μ̃, and S are calculated for the steady state.

Now, we show that the global thermodynamic functions satisfy

G(T1, T2, p, N ) = G(T̃ , p, N ) + O(ε2), (3.4)

S(T1, T2, p, N ) = S(T̃ , p, N ) + O(ε2). (3.5)

This means that the global free energy and entropy, which are functions of (T1, T2, p, N ),
are expressed as the equilibrium free energy and the equilibrium entropy when we use the
global temperature T̃ . This result leads to relations among the global quantities as

G = U − T̃ S + pV + O(ε2), (3.6)

dG = −SdT̃ + Vdp + μ̃dN + O(ε2), (3.7)

which represents the fundamental relation of thermodynamics extended to heat conduction
states in the linear response regime. We call such a framework the global thermodynamics
for heat conduction systems. These results indicate that, as schematically shown in Fig. 3, the
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Fig. 3 a Typical temperature profile T (x). The global temperature T̃ is shown in the red dotted line, which
satisfies T̃ = (T1 + T2)/2 + O(ε2). See (3.54). b Typical density profile ρ(x), where its spatial average
N/V is displayed by the red dotted line. The global version of the equation of state is given as pex =
p(T̃ , N/V ) + O(ε2) in (3.55). c Correspondence of the heat conduction system to the equilibrium system of
(T̃ , pex, N ) (Color figure online)

global nature of the heat conduction system is equivalent to that of the equilibrium system.
Any global quantity A defined by (2.43) is connected to a corresponding equilibrium quantity
A(T̃ , p, N ) as

A(T1, T2, p, N ) = A(T̃ , p, N ) + O(ε2). (3.8)

3.1 Proof of (3.4) and (3.5)

When the environmental parameters (T1, T2, pex) are slightly changed to (T1 + δT1, T2 +
δT2, pex + δ pex), the solution of the equations (3.1), (3.2), and (3.3) is modified slightly. We
express the corresponding change as

(T (x), ρ(x)) → (T (x) + δT (x), ρ(x) + δρ(x)), (3.9)

Lz → Lz + δLz, (3.10)

which leads to the change of any local thermodynamic quantity. For instance, the change of
the local Gibbs free energy density is given by

δg(x) = g(T (x) + δT (x), pex + δ pex) − g(T (x), pex). (3.11)

The change of the local quantities brings the change of the global quantities as

T̃ → T̃ + δT̃ , (3.12)

G → G + δG, (3.13)

where

δG = Ly

∫ Lx

0
dx [(Lz + δLz)g(T (x) + δT (x), pex + δ pex) − Lzg(T (x), pex)],

= Ly

∫ Lx

0
dx (Lzδg(x) + g(x)δLz). (3.14)
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Here, since (2.34) holds for the local densities, the variation of each density satisfies a
thermodynamic relation such as

δg(x) = −s(x)δT (x) + μ(x)δρ(x) + δ pex. (3.15)

By substituting the local relations (2.32) and (3.15) into (3.14), we have

δG = −SδT̃ + V δ pex −
∫ Lx

0
dx (ŝ(x)n(x)δη(x) − μ(x)δn(x)), (3.16)

where ŝ(x) = s(x)/ρ(x) and we have defined

η(x) ≡ T (x) − T̃ , n(x) ≡ LyLzρ(x). (3.17)

Note that n(x)dx is the particle number in [x, x + dx] and that n(x) is estimated as n(x) =
N/Lx+O(ε). η(x) is the deviation of the local temperature T (x) from the global temperature
T̃ , and is estimated as η(x) = O(ε).

Since any local thermodynamic quantity a(x) is regarded as a(T (x), pex) = a(T̃ +
η(x), pex), we may estimate a(x) = a(T̃ , pex) + O(ε). Then, the integrant in (3.16) is
estimated as

ŝ(x)n(x)δη(x) − μ(x)δn(x) = ŝ(x)δ(n(x)η(x)) − (ŝ(x)η(x) + μ(x))δn(x)

= ŝ(T̃ , p)δ(n(x)η(x)) − μ(T̃ , pex)δn(x) + O(ε2), (3.18)

where δn(x) = O(ε) for N and Lx fixed. We find that∫ Lx

0
dx n(x)η(x) = 0 (3.19)

holds from (2.54). Obviously, the conservation of the particle number leads to
∫ Lx

0
dx δn(x) = 0. (3.20)

Thus, the integral in (3.16) is estimated as
∫ Lx

0
dx (ŝ(x)n(x)δη(x) − μ(x)δn(x)) = O(ε2), (3.21)

and then (3.16) becomes

δG = −SδT̃ + V δ pex + O(ε2). (3.22)

We emphasize that the definition of T̃ in (2.54) is essential for this relation.
Here, let us recall that the value of G is determined for a given (T1, T2, pex, N ). Since

there is one-to-one correspondence between (T̃ , ε) and (T1, T2), G is given as a function of
(T̃ , pex, N , ε). The relation (3.22) implies that G is independent of ε in the linear response
regime, and thus given as a function of (T̃ , pex, N ). Therefore, we conclude (3.4). Next, we
show (3.5). From the relation (3.22), the left-hand side of (3.5) is expressed as

S(T1, T2, p
ex, N ) = −

(
∂G

∂ T̃

)
pex,N

+ O(ε2), (3.23)

while the equilibrium fundamental relation results in

S(T̃ , pex, N ) = −
(

∂G

∂ T̃

)
pex,N

. (3.24)
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Combining these two equalities, we obtain (3.5).
The definition (2.55) for the global chemical potential μ̃ indicates μ̃ = G/N . Then, (3.4)

leads to

μ̃(T1, T2, p) = μ(T̃ , p) + O(ε2). (3.25)

We thus find

dμ̃ = −ŝd T̃ + φ̂dp + O(ε2), (3.26)

where

ŝ ≡ S

N
, φ̂ ≡ V

N
, (3.27)

are entropy per one particle and specific volume of the heat conduction system.

3.2 Various Global Thermodynamic Functions

From a local relation f (x) = g(x) − p, we have

F = G − pV . (3.28)

By using (3.4), we obtain

F(T1, T2, V , N ) = F(T̃ , V , N ) + O(ε2). (3.29)

We thus have the fundamental relation for F

dF = −SdT̃ − pdV + μ̃dN + O(ε2) (3.30)

in the linear response regime.
Next, we consider the global internal energy U and the global enthalpy H . From local

thermodynamic relations u(x) = f (x) + T (x)s(x) and h(x) = g(x) + T (x)s(x), we write

U = F + T̃ S +
∫ Lx

0
dx ŝ(x)η(x)n(x), (3.31)

H = G + T̃ S +
∫ Lx

0
dx ŝ(x)η(x)n(x). (3.32)

Remembering that η(x) = O(ε), the integral is estimated as
∫ Lx

0
dx ŝ(x)η(x)n(x) = ŝ(T̃ , P)

∫ Lx

0
dx n(x)η(x) + O(ε2)

= O(ε2), (3.33)

where we have used (3.19). Thus, we obtain

U = F + T̃ S + O(ε2) (3.34)

H = G + T̃ S + O(ε2) (3.35)

Substituting (3.4),(3.5),(3.29) into (3.34) and (3.35), we have

U (T1, T2, V , N ) = U (S, V , N ) + O(ε2), (3.36)

H(T1, T2, p, N ) = H(S, p, N ) + O(ε2). (3.37)
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3.3 Clausius Equality

Since the thermodynamic relations are extended with keeping the same forms as those in
equilibrium thermodynamics, we may define quasi-static heat d ′Q in an infinitely small
quasi-static process (T1, T2, pex) → (T1 + δT1, T2 + δT2, pex + δ pex) as

d ′Q = T̃ δS. (3.38)

This d ′Q corresponds to the absorbed heat by the system, which is the sum of the heat from
the left and right heat baths during the infinitesimal change. There, by summing the two
heats, the net heat flow is canceled. If the heat absorbed from the right heat bath is exactly
the same as the heat released from the left heat bath at every moment during the process, the
net heat vanishes for the heat conduction. Such systems are thought to be adiabatic in the
sense of global thermodynamics, and

dS = 0 (3.39)

in such a quasi-static adiabatic process in the linear response regime.
Then, constant-pressure heat capacity is defined as

Cp ≡
(
d ′Q
dT̃

)
p
. (3.40)

Applying the thermodynamic relation, we obtain

Cp(T1, T2, p, N ) =
(

∂H

∂ T̃

)
p

+ O(ε2) (3.41)

= T̃

(
∂S

∂ T̃

)
p

+ O(ε2). (3.42)

Note that Cp is defined as the response to the change of the global temperature T̃ . By
changing the temperatures of heat baths, T̃ may change in accordance with absorbing heat
corresponding to CpδT̃ .

3.4 Correspondence of Global Thermodynamic Quantities to EquilibriumQuantities

In the previous subsections, we have obtained thermodynamic relations in the linear response
regime and found that they are equivalent to the equilibrium ones. The key concept for
extending thermodynamics is the global temperature T̃ and the global chemical potential
μ̃, by which the heat conduction system of (T̃ , μ̃) is mapped to the equilibrium system of
(T̃ , μ̃). The connection between the two thermodynamic frameworks becomes clearer in the
argument below by considering the estimation method of global thermodynamic quantities.

In a single phase system, local temperature T (x) is a continuous monotonic function of
x . Any extensive quantity A, which is defined as a spatial integral of local density a(x), can
be transformed into an integral over temperature:

A = LyLz

∫ Lx

0
dx a(T (x), p)

= V

T2 − T1

∫ T2

T1
dT ψ(T , p), (3.43)

123



840 N. Nakagawa, S. Sasa

where

ψ(T , p) ≡ a(T , p)

J (T )
, (3.44)

J (T ) ≡ Lx

T2 − T1

(
dx(T )

dT

)−1

. (3.45)

We expand ψ(T , P) around T = Tm in the form

ψ(T , p) = ψ(Tm, p) +
(

∂ψ

∂T

)
p

∣∣∣∣∣
Tm

(T − Tm) + O(ε2). (3.46)

The second term is canceledwhen the integral (3.43) is performed.We thus have an estimation

A = Vψ(Tm, p) + O(ε2)

= V
a(Tm, p)

J (Tm)
+ O(ε2). (3.47)

For A = V , we have a(x) = 1 for all x . By combining this with (3.47), we find

J (Tm) = 1 + O(ε2). (3.48)

We then have arrived at a universal estimation of the global quantity A as

A(T1, T2, p, N ) = A(Tm, p, N ) + O(ε2), (3.49)

where A(Tm, p, N ) = Va(Tm, p). The result (3.49) directly connects the global quantity in
the heat conduction state to the corresponding equilibrium quantity at Tm.

We may apply the similar method to the global temperature. The global temperature is
also written as

T̃ = LyLz

N

∫ Lx

0
dx ρ(x)T (x) (3.50)

= V

N
ρ(Tm, p)Tm + O(ε2), (3.51)

in which

N = LyLz

∫ Lx

0
dx ρ(x) (3.52)

= Vρ(Tm, p). (3.53)

By substituting it into (3.51), we obtain

T̃ = Tm + O(ε2). (3.54)

Thus, in the linear response regime, the global temperature T̃ in the heat conduction system
is equal to the mean temperature Tm of the heat baths. The relation (3.49), together with
(3.54), concludes (3.8). We also note that (3.53), which is rewritten as ρ = ρ(T̃ , p)+ O(ε2)

with ρ = N/V , corresponds to the global version of the equation of state

p = p(T̃ , N/V ) + O(ε2). (3.55)

We here remark that the relation T̃ = Tm in the linear response regime is a specific feature
of systems in a rectangular container. We will show in §10.2 that the global temperature
deviates from the mean temperature when the shape of the container is not a rectangle,
whereas the relation (3.8) still holds.
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4 Liquid–Gas Coexistence in Heat Conduction

From now on, we study liquid-gas coexistence in heat conduction. In §4.1, we review thermo-
dynamics under equilibriumconditionswhile paying attention to the description ofmetastable
states. In §4.2, we describe heat conduction states based on local equilibrium thermodynam-
ics. We explain how the temperature profile and the density profile are determined for a given
position of the liquid–gas interface. In §4.3, we present global thermodynamic quantities as a
function of the interface position. In §4.4, we address the main problem of thermodynamics
for the heat conduction systems with the liquid-gas coexistence. Hereafter, superscripts L
and G are attached to quantities related to liquid and gas, respectively.

4.1 Thermodynamics Under Equilibrium Conditions

We first consider equilibrium thermodynamics. For a given (T , ρ), the pressure p is uniquely
determined even when phase coexistence is observed. This equation of state is expressed as

p = peq(T , ρ) (4.1)

so as to emphasize that the pressure is the equilibrium value. See Fig. 4a. A remarkable fact
is that there is a plateau region [ρG

s (T ), ρL
s (T )] for a given temperature T below the critical

temperature. From this equation of state, we find that the density ρ exhibits the discontinuous
change at T = Tc(p) when the temperature is changed with the pressure p fixed, as shown
in Fig. 4a. That is, the whole system is occupied by liquid when T < Tc(p), while by gas
when T > Tc(p).

In experiments, metastable states, which also may be called quasi-equilibrium states, are
often observed. The most typical approach to the description of such meta-stable states is to
employ the van der Waals equation of state:

p = pvdW(T , ρ)

= ρkBT

1 − ρb
− aρ2, (4.2)

where kB is the Boltzmann constant. The constants a and b are van der Waals parameters.
When T is fixed as that below the critical temperature, the equation of state contains the
unstable states (∂ρ/∂ p)T < 0. See Fig. 4b. Following the standard procedure of theMaxwell
construction, we obtain the equilibrium equation of state from (4.2). Here, we extract the two
stable branches satisfying (∂ρ/∂ p)T ≥ 0 from the curve defined by (4.2), each of which is
connected to the equilibrium liquid phase or to the equilibrium gas phase. By solving (4.2)
in ρ for each region, we obtain

ρ = ρL
vdW(T , p) for liquid, (4.3)

ρ = ρG
vdW(T , p) for gas. (4.4)

When ρG
vdW(T , p) > ρG

s (T ), the spatially homogeneous phase of (T , p) corresponds to a
meta-stable gas. Similarly, when ρL

vdW(T , p) < ρL
s (T ), the homogeneous phase of (T , p)

corresponds to a meta-stable liquid. By plotting ρ as a function of T with p fixed as shown
in Fig. 4b, one finds that the meta-stable gas and the meta-stable liquid are super-cooled gas
and super-heated liquid, respectively.

More generally, without using the van der Waals equation of state, we may obtain

ρ = ρL(T , P) for liquid, (4.5)
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(a)

(b)

(c)

Fig. 4 Three kinds of equation of state: a Equilibrium pressure, b van der Waals pressure, and c experimen-
tally measured pressure. ps(T ) is saturated pressure in liquid–gas transition for a given T below the critical

temperature. Tc(p) is transition temperature for a given p. ρL/G
s denotes saturated density, which is defined

by ρ
L/G
s = ρL/G(T , ps(T ))

ρ = ρG(T , P) for gas, (4.6)

by experimental measurements. See Fig. 4c. Below we assume (4.5) and (4.6), whereas one
may interpret them as (4.3) and (4.4). We then define densities for the liquid phase and the
gas phase as

aL(T , p) ≡ a(T , ρL(T , p)), aG(T , p) ≡ a(T , ρG(T , p)), (4.7)

and define quantities per one particle for the liquid phase and the gas phase as

âL(T , p) ≡ a(T , ρL(T , p))

ρL(T , p)
, âG(T , p) ≡ a(T , ρG(T , p))

ρG(T , p)
. (4.8)

4.2 Heat Conduction States

When T1 < Tc(pex) < T2, we may observe liquid–gas coexistence at the constant pressure
pex, which is in contrast with equilibrium cases. Concretely, the liquid occupies a lower
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(a)

(b)

(c)

Fig. 5 a Schematic figure of the liquid–gas coexistence with the interface position X . b Temperature profile
T (x; X) is continuous but not smooth at x = X , where the interface temperature satisfies θ(X) = T (X; X).
The global temperatures in the liquid region and the gas region, T̃L and T̃G, are displayedby the reddotted lines,
respectively. See (4.21). cDensity profile ρ(x; X) shows a jump at x = X , where ρL(x; X) ≡ ρL(T (x; X), p)
and ρG(x; X) ≡ ρL(T (x; X), p). Since global thermodynamics holds for each region, the equation of state
(3.55) leads to pex = p(T̃L, NL/VL) + O(ε2) = p(T̃G, NG/VG) + O(ε2) (Color figure online)

temperature region, while the gas does a higher temperature region, as shown in Fig. 5a. We
assume that both the interface width and the temperature gap at the interface are negligible.
See Fig. 5b. Then, let X denote the position of the interface. Although the value of X should
be uniquely determined under given conditions, we shall formally treat X as if it were an
independent variable in what follows. The density profile for a given X is then expressed as

ρ(x; X) =
{

ρL(T (x; X), pex) for 0 ≤ x < X ,

ρG(T (x; X), pex) for X < x ≤ Lx .
(4.9)

See Fig. 5b. The temperature profile T (x; X) is determined by the heat conduction equation

J (X) =

⎧⎪⎨
⎪⎩

−κL(T (x; X), pex)
∂T (x; X)

∂x
for 0 < x < X ,

−κG(T (x; X), pex)
∂T (x; X)

∂x
for X < x < Lx ,

(4.10)

where J (X) is the steady heat current which is constant in x due to the conservation of energy.
The boundary conditions for the equation (4.10) are

lim
x→+0

T (x; X) = T1, lim
x→Lx−0

T (x; X) = T2. (4.11)

Concretely, T (x; X) is obtained as follows. We first express the interface temperature as
θ(X):

θ(X) = T (X; X). (4.12)

By setting

κL/G
c ≡ κL/G(Tc(p

ex), pex), (4.13)

we find that the local heat conductivity is estimated as

κL/G(T (x), pex) = κL/G
c + O(ε). (4.14)
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Then, (4.10) leads to

J (X) = −κL
c

θ(X) − T1
X

+ O(ε2) = −κG
c
T2 − θ(X)

Lx − X
+ O(ε2). (4.15)

Solving the second equality of (4.15) in θ(X), we obtain

θ(X) = Tm + Ξ

2

(
X

κL
c

− Lx − X

κG
c

) (
X

κL
c

+ Lx − X

κG
c

)−1

+ O(ε2). (4.16)

Defining the scaled position ζ of the interface and an effective heat conductivity κeff (ζ ) as

ζ ≡ X

Lx
, κeff (ζ ) ≡

(
ζ

κL
c

+ 1 − ζ

κG
c

)−1

, (4.17)

we have

J (X) = −κeff (ζ )
Ξ

Lx
+ O(ε2), (4.18)

which is obtained by substituting (4.16) into (4.15).
By using θ(X) given by (4.16), the temperature profile is written as

T (x; X) =

⎧⎪⎨
⎪⎩
T1 + x

X
(θ(X) − T1) + O(ε2) for 0 < x < X ,

T2 − Lx − x

Lx − X
(θ(X) − T2) + O(ε2) for X < x < Lx .

(4.19)

Substituting this profile into the equation of state (4.9), we have ρ(x; X) explicitly as exem-
plified in Fig. 5(c).

4.3 Global Quantities as a Function of X

The system with the phase coexistence is interpreted as a composite system of a liquid region
and a gas region. For each subsystem, we may define global thermodynamic quantities
introduced in §3. In this section, we express global thermodynamic quantities as a function
of X .

First, the global temperatures in the liquid region and in the gas region are defined by

T̃ L =
∫ X
0 dx ρ(x)T (x)∫ X

0 dx ρ(x)
, T̃G =

∫ Lx
X dx ρ(x)T (x)∫ Lx

X dx ρ(x)
. (4.20)

In each region, the temperature profile and the density profile are smooth. We describe each
subsystem as a single phase system discussed in §3. The boundary temperatures of the liquid
are T1 and θ , and those of the gas are θ and T2. Thus, applying the trapezoidal rule explained
in §3.4 to (4.20), the global temperature in each region is expressed as

T̃ L(X) = T1 + θ(X)

2
+ O(ε2), T̃G(X) = θ(X) + T2

2
+ O(ε2), (4.21)

where we explicitly write the dependence on the interface position X . See Fig. 5b.
Next, the volume of the whole system V (X) is expressed as
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V (X) = Lx
N∫ Lx

0 dx ρ(x; X)

= N

ζρL(T̃ L(X), pex) + (1 − ζ )ρG(T̃G(X), pex)
+ O(ε2), (4.22)

and thus the volume of the liquid region V L(X) and the volume of the gas region VG(X) are
written as

V L(X) = ζV (X), VG(X) = (1 − ζ )V (X). (4.23)

Then, the particle number in the liquid region, NL, is obtained as

NL(X) = V L(X)ρL(T̃ L(X), pex)

= N
ζρL(T̃ L(X), pex)

ζρL(T̃ L(X), pex) + (1 − ζ )ρG(T̃G(X), pex)
+ O(ε2). (4.24)

The particle number in the gas region, NG, is immediately given by

NG(X) = N − NL(X). (4.25)

By using T̃ L(X), T̃G(X), and NL(X), we can express all global thermodynamic quantities
in the liquid region and the gas region. Explicitly, the extensive quantities are defined as

AL ≡ LyLz

∫ X

0
dx aL(T (x), pex), (4.26)

AG ≡ LyLz

∫ Lx

X
dx aG(T (x), pex). (4.27)

Noting (3.8) in §3 with (2.24), we conclude that the global extensive quantities are written
as

AL(X) = NL(X)âL(T̃ L(X), pex) + O(ε2), (4.28)

AG(X) = NG(X)âG(T̃G(X), pex) + O(ε2). (4.29)

Finally, we define the global temperature for the whole system by the formula (2.54), which
is rewritten as

T̃ (X) = NL(X)

N
T̃ L(X) + NG(X)

N
T̃G(X). (4.30)

4.4 Problem

We have shown that all thermodynamic quantities are determined for a given position X of
the liquid-gas interface. Since the liquid-gas interface in heat conduction may be at rest at
constant pressure, the position X is uniquely determined for (T1, T2, pex).

For equilibrium cases, the phase coexistence is observed in a container with V and T fixed.
Whenwe startwith the vanderWaals equation of state,we candetermine the interface position
of the two phases by the Maxwell construction, which is equivalent to the continuity of the
chemical potential at the interface. Recalling this theory, one may impose the continuity
of the local chemical potential μ(x) at the interface even in heat conduction [50]. Since
μL(Tc(p)) = μG(Tc(p)), it leads to θ = Tc(pex). That is, under this assumption, the
interface temperature is equal to the equilibrium transition temperature.
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Here, the important observation is that there is no justification of this condition for heat
conduction systems. To our best knowledge, there are no experimental measurements on this
issue, no numerical simulations of sufficiently large systems, and no reliable theory for sup-
porting this condition. To be more precise, although the continuity of the chemical potential
was reported in numerical simulations [68,69], the system sizewas too small to draw a definite
conclusion. One may also recall from a viewpoint of non-equilibrium statistical mechanics
that the local equilibriumdistributionmaybe the leading contribution [38].However, it should
be noted that in the standard approach, fluctuations are described as those around the most
probable profile, while the most probable profile itself is undetermined in the current prob-
lem. Therefore, the previous studies starting with the local equilibrium distribution do not
result in the continuity of the chemical potential without imposing an additional assumption.

Furthermore, as another theoretical approach, one may study the stationary solution of
the deterministic equation for the generalized Navier–Stokes equation with the interface
thermodynamics [70,71]. We can estimate the discontinuous jump of the chemical potential
at the interface as ε(w/Lx )Tc based on reasonable assumptions [40], where w represents the
interface width. This result indicates the validity of the continuity of the chemical potential
at the interface, because we may assume w/Lx � 1. However, as carefully argued in the
paper [40], fluctuation effects should be taken into account for the generalized Navier–Stokes
equation, so as to quantitatively describe the thermodynamic behavior.

Now, based on these facts, we reconsider the continuity of the chemical potential at the
liquid–gas interface within the framework of equilibrium thermodynamics. We then find that
the continuity is equivalent to the thermodynamic variational principle. If the principle were
applied to a local sub-system including the interface, the continuity of the chemical potential
would be concluded. However, the constraint of a variational principle is generally applied
to a whole system but not to the local subsystem, and therefore no variational principle is
expected for the local subsystem near the interface. Thus we cannot justify the continuity
of the chemical potential. This suggests an alternative approach to determine the interface
position X . Namely, we formulate a variational principle for the whole heat conduction
system as a natural extension of the equilibrium variational principle.

5 Variational Principle for Determining the Liquid–Gas Interface
Position

All our discussion on global thermodynamics so far has been firmly based onwell-established
local equilibrium thermodynamics. Now, we formulate the variational principle for deter-
mining the interface position X and solve the variational problem. In §5.1, we start with the
simplest example of the variational principle for equilibrium systems and naturally extend it
to that for heat conduction systems. In §5.2 we derive the steady-state value by solving the
minimization of the variational function. The solution is then reformulated as the temperature
relation in §5.3. By using these results, in §5.4, we express the global quantities in terms of
(T̃ , pex, Ξ).

5.1 Variational Principle

5.1.1 Equilibrium Systems

We start with an example of the variational principle for equilibrium systems. We consider
a system at the constant pressure pex in contact with a heat bath of the temperature T . Since

123



Global Thermodynamics for Heat Conduction Systems 847

the volume V of the system is not fixed, we determine V for a given (T , pex). When the
equation of state is assumed, it is determined from the pressure balance equation

pex = p(T , V /N ). (5.1)

We attempt to derive this condition from a variational principle. We take a variational
function G(V; T , pex, N ) as

G(V; T , pex, N ) = F(T ,V, N ) + pexV. (5.2)

This corresponds to the Helmholtz free energy minimum principle for the composite system
of the system and the volume reservoir whose Helmholtz free energy is pexV + const. We
then find that the minimization of G with respect to V for (T , pex, N ) fixed leads to (5.1).
The volume in the equilibrium state satisfies

V = argmin
V

G(V; T , pex, N ), (5.3)

with which the Gibbs free energy is determined as

G(T , pex, N ) = min
V

G(V; T , pex, N ) (5.4)

= F(T , V , N ) + pexV . (5.5)

It should be noted that this principle may be applied to the case that F(T , V , N ) is given by
the van der Waals free energy:

F(T , V , N ) = 3

2
NkBT − a

N

V
− NkBT log

T 3/2(V − Nb)

N 5/2
. (5.6)

The variational principle for this case is equivalent to the Maxwell construction.

5.1.2 Extension to Heat Conduction Systems

We study heat conduction systems at the constant pressure pex. First, we focus on single-
phase systems studied in §3. From the equivalence between a heat conduction system and
the corresponding equilibrium system, the volume V of this system is determined by the
minimization of

G(V; T̃ , pex, N ) = F(T̃ ,V, N ) + pexV, (5.7)

where T̃ is the global temperature of the system. Since F = F(T̃ , V , N )+O(ε2), we rewrite
(5.7) as

G(V; T̃ , pex, N ) = LyLz

∫ Lx

0
dx[ f (T (x), ρ(x)) + pex] + O(ε2), (5.8)

where Lz = V/(Lx L y) depends on V and T̃ should be fixed in the variation of V . Then, the
variational principle (5.3) holds for single-phase systems. Since this formula relies on the
equivalence to the equilibrium system, we do not need to fix the degree of nonequilibrium in
the variation.

Next, we consider a system with a liquid-gas interface. In this case, V is not determined
when we use the equation of state for each region, because the interface position X is not
determined yet as described in the previous section. We then assume that the minimization
of (5.8) is also valid for such cases, where Ξ = T2 − T1 is also fixed in the variation V . The
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Fig. 6 The variational function G(V) with (T̃ , pex, Ξ) fixed for the heat conduction system. T1 and T2 may
depend on V in order to fix T̃ and Ξ . The configuration corresponding to the minimum of G, the mid of the
three configurations in the bottom of the figure, is selected as the steady state for (T̃ , pex, Ξ)

last property is necessary to determine the value V uniquely. That is, we define a variational
function

G(V; T̃ , pex, N , Ξ) = LyLz

∫ Lx

0
dx[ f (T (x), ρ(x)) + pex] (5.9)

and propose that the volume of the system V is determined as

∂G(V; T̃ , pex, N , Ξ)

∂V

∣∣∣∣∣V=V

= 0, (5.10)

with

∂2G(V; T̃ , pex, N , Ξ)

∂V2

∣∣∣∣∣V=V

> 0. (5.11)

This variational principle was first proposed in Ref. [67].

5.1.3 Remarks

Since the volume V is uniquely determined by the interface position X with (T̃ , pex, N , Ξ)

fixed, as explicitly shown in (4.22), the variational principle (5.10) with (5.11) is expressed
as

∂G(X ; T̃ , pex, N , Ξ)

∂X

∣∣∣∣∣X=X

= 0,
∂2G(X ; T̃ , pex, N , Ξ)

∂X 2

∣∣∣∣∣X=X

> 0. (5.12)

Similarly, since the particle number NL in the liquid region is uniquely determined by X , we
also have another variational principle

∂G(N L; T̃ , pex, N , Ξ)

∂N L

∣∣∣∣∣N L=NL

= 0,
∂2G(N L; T̃ , pex, N , Ξ)

∂(N L)2

∣∣∣∣∣N L=NL

> 0. (5.13)
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Fig. 7 Operational interpretation of the global temperature T̃ . A heat bath of T3 contacts to the movable top
plate. When T3 = T̃ , the heat current J3 from this heat bath may vanish. Then, the system behavior may be
equivalent to the behavior of the original system in Fig. 2

As the second remark, we provide a physical interpretation of (5.12). Let us consider
a fluctuation of the interface position, X → X + δX . We assume that the motion of the
interface is slowest and that the interface motion can be observed in a hypothetical system
where (T1, T2) is controlled such that T̃ and Ξ are fixed. See Fig. 6. It is then expected that
fluctuations in this hypothetical systemmay be described by equilibrium statisticalmechanics
for the system with (T̃ , pex). Thus, the most probable position is given by the left equation of
(5.12) and the stability of the interface position is expressed as the right inequality in (5.12).

Moreover, we interpret T̃ from an operational viewpoint. We virtually attach another heat
bath of the temperature T3 to the rigid top plate as shown in Fig. 7. Using the idealized
assumption that the motion of the top plate is sufficiently slower than the other dynamical
degrees of freedom, we control T1 and T2 with Ξ = T2 − T1 fixed such that the heat flux J3
to the heat bath of T3 is zero. Here, noting that the total kinetic energy in the bulk is given by
NdegkBT̃ /2 with the total degrees Ndeg of freedom in the system, J3 is proportional to T̃ −T3
in the linear response regime. That is, J3 = 0 is equivalent to T̃ = T3. When we focus on the
position of the top plate, the motion would be described as if it were in the equilibrium state
at the temperature T3. From this picture for the specific setting, it is expected that (5.12) is
equivalent to the equilibrium variational principle with T̃ .

As the last remark, we comment on the condition that Ξ is fixed. Since there are two
temperatures T1 and T2, two variables associatedwith (T1, T2) should be fixed in the variation
of V . Although we adopt Ξ as a fixed variable in addition to the global temperature T̃ , one
may conjecture that J would be a more plausible fixed-variable than Ξ . As is formulated in
(4.18), J is proportional toΞ but the proportional constant depends on the interface position.
Thus, the variational principle with J fixed results in a different steady state from the solution
of (5.10) with (5.11). There are two reasons for our choice. The first is that the final result
becomes simplest among our trials. Second, when J is fixed in the variation, the enthalpy
is conserved in the variation. In this case, the corresponding variational principle may be an
extension of the equilibrium variational principle for adiabatic (thermally isolated) systems.
From these two aspects, we assume that Ξ is fixed in the variation.

5.2 Steady State Determined from theVariational Principle

We solve the variational equation (5.13). Hereafter, we consider the variation of N L with
(T̃ , pex, Ξ) fixed. We abbreviate A(N L; T̃ , pex, Ξ) as A(N L) or A for the notational sim-
plicity.

We express the variational function G as

G(N L) ≡ FL(N L) + FG(N L) + pexV (N L), (5.14)
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where the free energy of the liquid FL(N L), the free energy of the gas FG(N L), and the
volume of the system V (N L) are given as functions ofN L with (T̃ , pex, Ξ) fixed. Here, for
any global quantity A in each region, such as T̃ L/G and V L/G, we define

δA ≡ A(N L + δN L) − A(N L). (5.15)

We then have

δG = δFL + δFG + pexδV . (5.16)

From the argument in §3, we obtain

FL/G = F(T̃ L/G, V L/G, NL/G). (5.17)

Since every global thermodynamic relation obtained in §3 holds in each region, we have

FL/G = μ̃L/GNL/G − pexV L/G (5.18)

with

μ̃L/G = μL/G(T̃ L/G, pex) + O(ε2). (5.19)

Since the variation of the free energy in each region obeys the fundamental relation of
thermodynamics for F , we have

δFL/G = −SL/GδT̃ L/G − pexδV L/G + μ̃L/GδN L/G, (5.20)

where

SL/G = N L/G ŝL/G(T̃ L/G, pex) + O(ε2). (5.21)

By using (5.20), we rewrite the variation of G in (5.14) as

δG = −SLδT̃ L − SGδT̃G + (μ̃L − μ̃G)δN L, (5.22)

where we used N L + NG = N and V L + VG = V .
The global temperature T̃ L in the liquid region and T̃G in the gas region satisfy the relation

T̃ L = T̃ − Ξ

2

NG

N
+ O(ε2), T̃G = T̃ + Ξ

2

N L

N
+ O(ε2), (5.23)

which are derived from the relations

T̃ = N L

N
T̃ L + NG

N
T̃G, (5.24)

and

T̃G − T̃ L = Ξ

2
+ O(ε2). (5.25)

Furthermore, (5.23) leads to

δT̃ L = δT̃ + Ξ

2
δ

(N L

N

)
− NG

2N
δΞ, (5.26)

δT̃G = δT̃ + Ξ

2
δ

(N L

N

)
+ N L

2N
δΞ. (5.27)
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We have used N L + NR = N in the first line. Especially, the formulas (5.26) and (5.27),
with T̃ , Ξ , and N fixed, bring

δT̃ L = δT̃G = Ξ

2

δN L

N
, (5.28)

which simplifies (5.22) as

δG =
(

μ̃L − Ξ

2N
SL − μ̃G − Ξ

2N
SG

)
δN L. (5.29)

Here, we confirm

μ̃L − Ξ

2N
SL = μL(T̃ L, pex) + Ξ

2

N L

N

(
∂μL

∂T

)
pex

+ O(ε2)

= μL
(
T̃ L + Ξ

2

N L

N
, pex

)
+ O(ε2), (5.30)

and

μ̃G + Ξ

2N
SG = μG

(
T̃G − Ξ

2

NG

N
, pex

)
+ O(ε2). (5.31)

Let us define a specific temperature T s as

T s(N L) ≡ T̃ + Ξ

(N L

N
− 1

2

)
. (5.32)

By using (5.23), we rewrite (5.32) as

T s(N L) = T̃ L(N L) + Ξ

2

N L

N
= T̃G(N L) − Ξ

2

NG

N
. (5.33)

Thus, the variation (5.29) is further simplified as

δG = (
μL(T s, pex) − μG(T s, pex) + O(ε2)

)
δN L. (5.34)

This is equivalent to

∂G(N L; T̃ , pex, Ξ)

∂N L = μL (
T s, pex

) − μG (
T s, pex

) + O(ε2). (5.35)

Since the functional form of μG is different from that of μL due to the crucial difference
between the liquid and the gas, μL (T s, pex) is not identically equal to μG (T s, pex). The
equality

μL(T s, pex)
∣∣N L=NL = μG(T s, pex)

∣∣N L=NL + O(ε2) (5.36)

holds only when

T s
∣∣N L=NL = Tc(p

ex) + O(ε2). (5.37)

Now, (5.32) and (5.37) yield the unique value NL as

NL(T̃ , pex, Ξ)

N
= 1

2
+ Tc(pex) − T̃

Ξ
+ O(ε). (5.38)

Thus we conclude that the variational principle (5.13) results in the unique steady value NL

formulated by (5.38).
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Fig. 8 Phase diagram for a given pex. For equilibrium cases (Ξ = 0), the system shows the first-order
transition at T̃ = Tc(pex). The system is occupied by the liquid when T̃ > Tc(pex)−Ξ/2 and by the gas when
T̃ < Tc(pex)+Ξ/2. The liquid and the gas coexist when Ξ > 0 and Tc(pex)−Ξ/2 < T̃ < Tc(pex)+Ξ/2
painted by pink. The ratio of the liquid and the gas is kept along the line corresponding to each value of r ,
which goes to T = Tc(pex) at Ξ = 0

Next, we consider the second derivative of G. By using (5.35) with (5.32), the second
derivative of G is obtained as

∂2G(N L; T̃ , pex, Ξ)

∂(N L)2
=

[(
∂μL

∂T s

)
pex

−
(

∂μG

∂T s

)
pex

]
dT s

dNL + O(ε2)

= (ŝG(T s, pex) − ŝL(T s, pex))
Ξ

N
+ O(ε2). (5.39)

At the steady state satisfying (5.37), the above entropy difference is connected to the latent
heat q̂ per one particle

q̂(pex) = Tc(p
ex)

[
ŝG(Tc(p

ex), pex) − ŝL(Tc(p
ex), pex)

]
. (5.40)

Therefore, we estimate the second derivative as

∂2G(N L; T̃ , pex, Ξ)

∂(N L)2

∣∣∣∣∣N L=NL

= q̂(pex)

N

Ξ

Tc(pex)
+ O(ε2), (5.41)

Since Ξ > 0 and q̂(pex) > 0, we conclude that

∂2G(N L; T̃ , pex, Ξ)

∂(N L)2

∣∣∣∣∣N L=NL

> 0 (5.42)

in the linear response regime.

5.2.1 Careful Analysis of " → 0

The solution (5.38) of the variational principle includes an undetermined term of O(ε).
Nevertheless, (5.38) provides additional information to equilibrium behavior. To clarify the
situation, we consider the limit ε → 0 with keeping the phase coexistence. This may be
formalized by fixing a parameter r defined as

r ≡ T̃ − Tc(pex)

Ξ
, (5.43)
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Fig. 9 Super-cooled gas stabilized by the steady heat current

whereas (5.38) indicates

NL

N
= 1

2
− r . (5.44)

As 0 < NL < N , r satisfies

−1

2
< r <

1

2
. (5.45)

In Fig. 8, we draw straight lines connecting from (T̃ , Ξ) = (Tc + rΞ,Ξ) to (Tc, 0) for
several values of r in the parameter region where the liquid-gas coexistence is observed.
The convergence of these lines at (Tc, 0) indicates that the equilibrium state (Tc, 0) behaves
as a singular point. By specifying the value of r , we identify the corresponding line which
undoes the degeneration at equilibrium. NL is determined by considering the equilibrium
limit ε → 0, while it is not uniquely determined at equilibrium.

5.3 Temperature Relation

We obtained the steady state value of NL as (5.38) by solving the variational principle (5.13).
Substituting this solution into (5.33) with (5.37), we have the global temperature for each
region as

T̃ L/G(T̃ , pex, Ξ) = Tc(pex) + T̃

2
∓ Ξ

4
+ O(ε2). (5.46)

We sum up the two relations in (5.46) and substitute (4.21) into T̃ L/G. We then obtain

T̃ − Tm = θ − Tc(p
ex) + O(ε2), (5.47)

which we call the temperature relation. This non-trivial relation, which results from the
variational principle, is a simple condition that the steady states satisfy. Generally, T̃ is not
equal to Tm, because the particle density of liquid is larger than that of gas, ρL > ρG.
Therefore, the relation (5.47) implies that the liquid-gas coexistence temperature θ in a
heat conduction system must be strictly lower than the equilibrium coexistence temperature
Tc(pex). This means that metastable states stably appear near the liquid-gas interface as
schematically shown in Fig. 9.

Now, suppose that (5.47) holds. Summing up the two equalities in (5.23), we obtain

Tm + θ = 2T̃ + Ξ

2

(
2NL

N
− 1

)
. (5.48)
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Here, it should be noted thatwe do not use the variational principle for the derivation of (5.23).
By substituting the temperature relation (5.47) into this result, we derive (5.38) without
the variational principle. In this sense, we may say that the temperature relation (5.47) is
equivalent to the variational principle.

5.4 Global Quantities as Functions of (T̃, pex, 4)

We determine the steady state values of several quantities. Let V L/G
s (pex) denote the equi-

librium saturated volume defined as

V L/G
s (pex) = N

ρ
L/G
c (pex)

(5.49)

with

ρL/G
c (pex) = ρL/G(Tc(p

ex), pex). (5.50)

The volume of the liquid (gas) region is given by

V L/G(T̃ , pex, Ξ) = NL/G

N
V L/G
s (pex) + O(ε). (5.51)

Since NL is determined with an error of O(ε) in (5.38), (5.51) is the best estimate of V L/G

in ε → 0. Substituting (5.38) into (5.51), we obtain

V (T̃ , pex, Ξ)

=
(
1

2
− T̃ − Tc(pex)

Ξ

)
V L
s (pex) +

(
1

2
+ T̃ − Tc(pex)

Ξ

)
VG
s (pex) + O(ε). (5.52)

which corresponds to the solution of the variational principle (5.10). Then, the steady position
X of the liquid–gas interface,

X

Lx
= V L

V
, (5.53)

is determined as

X(T̃ , pex, Ξ)

Lx
=

1

2
− T̃ − Tc(pex)

Ξ

1

2

(
ρL
c

ρG
c

+ 1

)
+ T̃ − Tc(pex)

Ξ

(
ρL
c

ρG
c

− 1

) + O(ε), (5.54)

which is the solution of the variational principle (5.12).
Then, the interface temperature is obtained from the elimination of Tm from (5.47) and

(4.16) as

θ(T̃ , pex, Ξ) = Tc(pex) + T̃

2
+ Ξ

4

(
X

κL
c

− Lx − X

κG
c

)(
X

κL
c

+ Lx − X

κG
c

)−1

+ O(ε2).

(5.55)

The deviation of θ from Tc and the relation between X and θ will be demonstrated in §6 for
explicit examples.
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6 Properties of the Steady States with a Liquid–Gas Interface

In §5.4, we derived the steady state values for given (T̃ , Ξ) such as NL = NL(T̃ , pex, Ξ)

in (5.38), V = V (T̃ , pex, Ξ) in (5.52) and X = X(T̃ , pex, Ξ) in (5.54). However, the
global temperature T̃ is not easily controlled in experiments, differently from the heat bath
temperatures T1 and T2. In this section, we express any quantity in the steady state as a
function of (T1, T2, pex). In §6.1, we derive (T̃ , X) as a function of (T1, T2, pex). Since we
already have

A = A(X; T̃ , pex, Ξ), (6.1)

the relations

T̃ = T̃ (T1, T2, p
ex), (6.2)

X = X(T1, T2, p
ex), (6.3)

lead to the expression

A = A(T1, T2, p
ex, Ξ). (6.4)

Particularly, we consider the interface temperature θ and the jump of the chemical potential
Δμ at the interface as a function of (T1, T2, pex) in §6.2 as (6.12) and §6.3 as (6.27), respec-
tively. In §6.4, we discuss how the super-cooled gas appears near the interface quantitatively.
The last subsection §6.5 is devoted to the demonstration of examples. In what follows, we
use the notations

u ≡ ρL
c (pex)

ρG
c (pex)

, v ≡ κL
c (pex)

κG
c (pex)

, ζ ≡ X

Lx
(6.5)

for simplicity.

6.1 T̃ and � as Functions of (T1, T2, pex)

Substituting (5.55) into (5.47), we obtain

T̃ = 2Tm − Tc(p
ex) + Ξ

2

ζ − v(1 − ζ )

ζ + v(1 − ζ )
+ O(ε2), (6.6)

where the dimensionless position ζ of the steady interface is

ζ =
1

2
− T̃ − Tc(pex)

Ξ

1

2
(1 + u) − T̃ − Tc(pex)

Ξ
(1 − u)

+ O(ε), (6.7)

as is derived in (5.54). Eliminating T̃ from (6.6) and (6.7), we have

Tm − Tc(p
ex) = −Ξ

2

uζ 2 − v(1 − ζ )2

[uζ + (1 − ζ )][ζ + v(1 − ζ )] + O(ε2). (6.8)

Solving this equation in ζ , we derive

ζ(T1, T2, p
ex) = tu + (1 − t)v + t(u − 1)(v − 1) − √

(uv − 1)2t2 + uv

v − u + 2t(u − 1)(v − 1)
+ O(ε), (6.9)
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with

t ≡ Tm − Tc(pex)

Ξ
. (6.10)

(6.9) provides a concrete functional form of (6.3).
Substituting (6.8) into (6.6), we obtain a concrete form of (6.2),

T̃ (T1, T2, p
ex) = Tm − Ξ

2

(uv − 1)ζ(1 − ζ )

[uζ + (1 − ζ )][ζ + v(1 − ζ )] + O(ε2), (6.11)

with the form of ζ in (6.9).

6.2 Interface Temperature as a Function of (T1, T2, pex)

Applying the temperature relation (5.47) to (6.11), we find that the interface temperature is
written as

θ(T1, T2, p
ex) = Tc(p

ex) − Ξ

2

(uv − 1)ζ(1 − ζ )

[uζ + (1 − ζ )][ζ + v(1 − ζ )] + O(ε2), (6.12)

where ζ is given by (6.9). This formula clarifies that the interface temperature θ(T1, T2, pex)
generally deviates from Tc(pex)when the temperature gradient is imposed. Since the particle
density satisfies ρL > ρG, i.e., u > 1, and the heat conductivity is expected to be κL 	= κG,
the interface temperature θ is deviated from the equilibrium transition temperature Tc(pex)
in the order of ε, which is not negligible.

We have another formula for the interface temperature θ , which is expressed solely by
experimentally accessible quantities:

θ = Tc(p
ex) − ζ(1 − ζ )

2

[
−J Lx

(
1

κG
c

− 1

κL
c

)
+ Ξφ̄

(
ρL
c − ρG

c

)] + O(ε2), (6.13)

where φ̄ = V /N . The derivation of this formula is shown in §6.2.1.
Up to here, we have studied the systems with T1 < T2, where Ξ > 0 and J < 0. More

generally, from the left–right symmetry of the system in Fig. 2, we notice that the interface
temperature is invariant for the transformation (Ξ, ζ ) to (−Ξ, 1 − ζ ). That is, (6.13) is
expressed as

θ = Tc(p
ex) − ζ(1 − ζ )

2

[
|J |Lx

(
1

κG
c

− 1

κL
c

)
+ |Ξ |φ̄ (

ρL
c − ρG

c

)] + O(ε2) (6.14)

for any Ξ .
One might guess that the coexistence temperature θ is uniquely determined by local

quantities that characterize the phase boundary, namely, the pressure pex and the heat current
per unit area. Rather interestingly, this is not the case. Reflecting the global nature of our
variational principle, the coexistence temperature θ explicitly depends on global conditions
of the system, namely, the temperatures of the two heat baths.

6.2.1 Derivation of (6.13)

We first recall (4.15) and (4.16). From these,

Ξ = −J Lx

(
ζ

κL
c

+ 1 − ζ

κG
c

)
+ O(ε2), (6.15)
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Tm − θ = J Lx

2

(
ζ

κL
c

− 1 − ζ

κG
c

)
+ O(ε2). (6.16)

Combining these two relations, we have another form of Tm as

Tm − θ = Ξ

2
+ ζ

J Lx

κL
c

= −Ξ

2
− (1 − ζ )

J Lx

κG
c

(6.17)

with an error of O(ε2).
Second, the result of the variational principle (5.38) is written as

T̃ − Tc(p
ex) = Ξ

2
− Ξ

NL

N
+ O(ε2) = −Ξ

2
+ Ξ

NG

N
+ O(ε2). (6.18)

As NL = ζVρL(T̃ L, pex) and NG = (1−ζ )VρG(T̃G, pex)with ρL(T̃ L, pex) = ρL
c +O(ε)

and ρG(T̃G, P) = ρG
c + O(ε), the relation (6.18) is further expressed as

T̃ − Tc(p
ex) = Ξ

2
− ζΞφ̄ρL

c = −Ξ

2
+ (1 − ζ )Ξφ̄ρG

c (6.19)

with an error of O(ε2). By subtracting (6.17) from (6.19) and using the temperature relation
(5.47), we have two forms of the interface temperature:

θ − Tc(p
ex) = −ζ

2

(
J Lx

κL
c

+ Ξφ̄ρL
c

)
, (6.20)

θ − Tc(p
ex) = 1 − ζ

2

(
J Lx

κG
c

+ Ξφ̄ρG
c

)
. (6.21)

By substituting (6.20) and (6.21) into the first term and the second term of the right-hand
side of the trivial identity

θ − Tc(p
ex) = (1 − ζ )(θ − Tc(p

ex)) + ζ(θ − Tc(p
ex)), (6.22)

we obtain (6.13).

6.3 1� as a Function of (T1, T2, pex)

Next, we discuss the chemical potential jump

Δμ ≡ μG(θ, pex) − μL(θ, pex) (6.23)

at the interface. Note that

μG(Tc(p
ex), pex) = μL(Tc(p

ex), pex), (6.24)

which gives the definition of the transition temperature Tc. Thus, θ 	= Tc means the imbalance
of the chemical potential at the interface, which is quantitatively expressed as

Δμ = −[ŝG(Tc(p
ex), pex) − ŝL(Tc(p

ex), pex)](θ − Tc(p
ex)) + O(ε2). (6.25)

Since the entropy difference is connected to the latent heat q̂ per one particle as

ŝG(Tc(p
ex), pex) − ŝL(Tc(p

ex), pex) = q̂

Tc(pex)
, (6.26)
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(a) (b)

Fig. 10 Theoretical results for the parameter values (u, v) = (5, 5), (20, 5) and (5, 1). a The position of the
liquid-gas interface in (6.9) when Tm deviates from Tc(pex). b The deviation of the interface temperature θ

in (6.12). All the three cases show θ < Tc(pex), which indicates the stabilization of the super-cooled gas near
the interface in the heat conduction (Color figure online)

the jump of the chemical potential is proportional to q̂. Now, substituting (6.12) into (6.25),
the amount of the jump is estimated as

Δμ = q̂

2

Ξ

Tc(pex)

(uv − 1)ζ(1 − ζ )

[uζ + (1 − ζ )][ζ + v(1 − ζ )] + O(ε2), (6.27)

Another expression of Δμ is also obtained by substituting (6.13) into (6.25). The result is

Δμ = ζ(1 − ζ )

2

q̂

Tc(pex)

[
−J Lx

(
1

κG
c

− 1

κL
c

)
+ Ξφ̄

(
ρL
c − ρG

c

)] + O(ε2). (6.28)

6.4 Super-Cooled Gas in the Liquid–Gas Coexistence

When T1 < Tc(pex) < T2, we find the position Xc at which the local temperature satisfies
T (Xc; T1, T2, pex) = Tc(pex). Suppose θ < Tc(pex). Then, the position X of the interface
satisfies

0 < X < Xc < Lx . (6.29)

We observe the liquid in the region 0 < x < X and the gas in X < x < Lx . Then the local
temperature of the gas in X < x < Xc is less than Tc(pex). This means that a super-cooled
gas is observed in X < x < Xc, which is not stable in equilibrium.

We plot (6.9) and (6.12) in Fig. 10 for three sets of (u, v). It is clearly seen that the interface
temperature θ deviates from the equilibrium transition temperature Tc(pex). The deviation of
the global temperature T̃ from Tm shows the same figure with Fig. 10b due to the temperature
relation (5.47). The jump of the chemical potential at the interface also exhibits the same
dependence on ζ = X/Lx since it is proportional to θ − Tc(pex) as shown in (6.27). In the
presented three sets of (u, v), a super-cooled gas region appears near the right side of the
interface, as shown schematically in Fig. 9.

According to Fig. 10a, the stable position of the interface is shifted continuously as we
increase the temperature of both heat baths. This feature is different from the numerical
solution of the variational equation reported in Ref. [67], where the interface discontinuously
appears. Amore accurate numerical calculationwas necessary for the caseswith high ρL

c /ρG
c .
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(a) (b)

Fig. 11 a The interface temperature θ and b volume fraction of the super-cooled gas for CO2 under pex =
4× 106 Pa. Ξ = 10 K. See the main text for parameter values. In (a), θ (red solid line), Tc (black dotted line),
T1 and T2 (blue dotted lines) are depicted simultaneously as a function of the interface position (Color figure
online)

6.5 Examples

In this subsection, we illustrate some examples of the liquid–gas coexistence in heat conduc-
tion quantitatively, where the particle density is measured in mol.

First, we consider the van der Waals equation of state

p = RTρ

1 − bρ
− aρ2 (6.30)

of a = 0.365 Pa m6/mol2 and b = 4.28 × 10−5 m3/mol for CO2 at a high pressure
pex = 4× 106 Pa [72]. The gas constant is R = 8.31 J/Kmol. Substituting these parameters
into (6.30), we obtain the transition temperature as Tc = 262.7 K, and the mol density at
Tc as ρL

c = 1.38 × 104 mol/m3 and ρG
c = 2.70 × 103 mol/m3, which results in u = 5.1.

From the database [73], we set the heat conductivity of the liquid as κL = 0.1 W/m K and
that of the gas as κG = 0.02 W/m K, which yields v = 5. The result is close to the result
(u, v) = (5.5) which was already shown in Fig. 10. The temperature profile becomes linear
both in the liquid and gas regions in this example due to the constant heat conductivity. Then
the volume fraction of the super-cooled gas is simply obtained as

V scG

V
= Lx − X

Lx

Tc − θ(X)

T2(X) − θ(X)
, (6.31)

where V scG is the volume of the super-cooled gas, i.e., V scG = (X − Xc)/Lx . The interface
temperature θ(X) is given by (6.12) and T2 results from (6.8) as

T2(X) = Tc(p
ex) + Ξ

2
− Ξ

2

uζ 2 − v(1 − ζ )2

[uζ + (1 − ζ )][ζ + v(1 − ζ )] + O(ε2), (6.32)

where ζ = X/Lx . In Fig. 11, we show the interface temperature θ and the volume fraction
V scG/V as a function of the position of the interface when Ξ = 10 K. We notice that the
interface temperature θ may deviate about 3.3 K from Tc, and that the volume fraction of the
super-cooled gas may exceed 1/3.

Second, more importantly, we do not need the equation of state, but have only to know the
value of u, v, Tc(pex), when we obtain the phase diagram for a given material. For example,
consider pure water at 1.013 × 105 Pa, where Tc(pex) = 373.1 K. From the database [73],
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Fig. 12 a The interface temperature θ and b volume fraction of the super-cooled gas for H2O under pex =
1.013× 105 Pa. Ξ = 10 K. See the main text for parameter values. In (a), θ (red solid line), Tc (black dotted
line), T1 and T2 (blue dotted lines) are depicted simultaneously as a function of the interface position (Color
figure online)

we have u = 1604 and v = 27.06. From these, we can predict the interface temperature θ

and the volume fraction V scG/V as a function of the position of the interface as shown in
Fig. 12. As an example, when T1 = 368.0 K and T2 = 378.0 K, we obtain θ = 368.3 K and
X/Lx = 0.4086.

7 Global Thermodynamics for Systems with a Liquid–Gas Interface

Hereafter, all the quantities are defined in the steady state. When a global quantity A is
determined for (T̃ , p, N , Ξ), we express this relation as

A = A(T̃ , p, N , Ξ). (7.1)

Recall that A(T̃ , p, N , Ξ) = A(T̃ , p, N ) + O(ε2) for single-phase systems, where
A(T̃ , P, N ) is the equilibrium function, as discussed in §3. For the systems with a liquid–
gas interface, Ξ dependence appears even in the linear response regime. In this section, we
extend the global thermodynamics introduced in §3 so as to describe the liquid–gas coex-
istence determined in the previous sections. In §7.1, we derive formulas as preliminaries
for later sections. In §7.2, we formally derive a fundamental relation of thermodynamics
for systems with a liquid–gas interface. However, since the derivative of G is not defined at
(Tc(p), p), the formal expression is not properly defined. Then, in §7.3, we perform a careful
analysis of the limit ε → 0. In §7.4, we show the form of the entropy and the volume in
the appropriate limit. In §7.5, we present formulas for constant pressure heat capacity and
compressibility.

7.1 Preliminaries

We first study global extensive quantities

A = LyLz

∫ Lx

0
dx a(T (x), p). (7.2)
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It is obvious that they possess the additivity

A = AL + AG, (7.3)

where AL and AG are defined as global thermodynamic quantities in the liquid region and
the gas region, respectively. By using T̃ L and T̃G, we write

AL = NLâL(T̃ L, p) + O(ε2), (7.4)

AG = NGâG(T̃G, p) + O(ε2). (7.5)

Now, we consider an infinitely small change (T1, T2, p, N ) → (T1 + δT1, T2 + δT2, p +
δ p, N + δN ), which results in

(T̃ , p, N , Ξ) → (T̃ + δT̃ , p + δ p, N + δN , Ξ + δΞ). (7.6)

Accordingly, any quantity φ for the steady state (T̃ , p, N , Ξ) changes as

δφ = φ(T̃ + δT̃ , p + δ p, N + δN , Ξ + δΞ) − φ(T̃ , p, N , Ξ). (7.7)

Then, (7.4) and (7.5) bring the following relations among the infinitely small changes:

δAL = NL
(

∂ âL

∂ T̃ L

)
p
δT̃ L + NL

(
∂ âL

∂ p

)
T̃ L

δ p + âLδNL + O(ε2), (7.8)

δAG = NG
(

∂ âG

∂ T̃G

)
p
δT̃G + NG

(
∂ âG

∂P

)
T̃G

δ p + âGδNG + O(ε2). (7.9)

We sum up the above two relations (7.8) and (7.9) and substitute (5.26) and (5.27) into them.
Then, the sum becomes

δA =
(
NL

(
∂ âL

∂ T̃ L

)
p

+ NG
(

∂ âG

∂ T̃G

)
p

) (
δT̃ + Ξ

2
δ

(
NL

N

))

+
(
NL

(
∂ âL

∂ p

)
T̃ L

+ NG
(

∂ âG

∂ p

)
T̃G

)
δ p

− NLNG

2N

((
∂ âL

∂ T̃ L

)
p

−
(

∂ âG

∂ T̃G

)
p

)
δΞ

+ âLδNL + âGδNG + O(ε2). (7.10)

The fourth line is transformed into

âLδNL + âGδNG =
(
NL

N
âL + NG

N
âG

)
δN + (âL − âG)Nδ

(
NL

N

)
. (7.11)

By summarizing the terms proportional to δ(NL/N ) in (7.10) and (7.11), the coefficient of
Nδ(NL/N ) becomes

âL + Ξ

2

NL

N

(
∂ âL

∂ T̃ L

)
p

− âG + Ξ

2

NG

N

(
∂ âG

∂ T̃G

)
p

= â

(
T̃ + Ξ

2

NL − NG

N
, p

)
− â

(
T̃ + Ξ

2

NL − NG

N
, p

)
+ O(ε2). (7.12)
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Here, we note that the sum of the two relations for T̃ L and T̃G in (5.23) results in

T̃ + Ξ

2

NL − NG

N
= T̃ L + T̃G − T̃

= Tm − T̃ + θ + O(ε2), (7.13)

where the transformation from the first line to the second line is found by noting T̃ L =
(T1 + θ)/2+O(ε2) and T̃G = (T2 + θ)/2+O(ε2) from (3.54). Now, using the temperature
relation (5.47), we find that the right-hand side of (7.13) is Tc(p). We thus obtain

δA =
(
NL

(
∂ âL

∂ T̃ L

)
p

+ NG
(

∂ âG

∂ T̃G

)
p

+ O(ε2)

)
δT̃

+
(
NL

(
∂ âL

∂ p

)
T̃ L

+ NG
(

∂ âG

∂ p

)
T̃G

+ O(ε2)

)
δ p

+
(
NL

N
âL + NG

N
âG + O(ε2)

)
δN

− NLNG

2N

((
∂ âL

∂ T̃ L

)
p

−
(

∂ âG

∂ T̃G

)
p

+ O(ε)

)
δΞ

+ (
âL(Tc(p), p) − âG(Tc(p), p) + O(ε2)

)
Nδ

(
NL

N

)
. (7.14)

Here, the last term should be expressed as a linear combination of δT̃ , δ p, δN and δΞ .
Indeed. from (5.38) which gives NL as a function of (T̃ , p, Ξ), we derive

Nδ

(
NL

N

)
=

(
N

Ξ
+ O(ε0)

)(
−δT̃ + dTc

dp
δ p + NG − NL

2N
δΞ

)
. (7.15)

We leave the formula (7.14) and (7.15) as they are for later convenience.

7.2 Formal Derivation of Fundamental Relation

We set

A = G, â = μ (7.16)

in the formulas in the previous subsection. Then, we recall the thermodynamic relations(
∂μL/G

∂ T̃ L/G

)
p

= −ŝL/G,

(
∂μL/G

∂ p

)
T̃ L/G

= φ̂L/G, (7.17)

where φ̂ is the specific volume. We also define

Ψ ≡ q̂

Tc

NLNG

2N
, (7.18)

where q̂ is the latent heat defined in (5.40). By using them, we rewrite (7.14) as

δG = − (SL + SG + O(ε2))δT̃ + (V + O(ε2))δ p + (μ̃ + O(ε2))δN

− (Ψ + O(ε)) δΞ + (μL(Tc(p), p) − μG(Tc(p), p) + O(ε2))Nδ

(
NL

N

)
. (7.19)
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Here, μ̃ is the global chemical potential defined by (2.55). It should be noted that

μ̃ = NL

N
μ̃L + NG

N
μ̃G, (7.20)

where μ̃L/G is the global chemical potential in each region such that μ̃L = μL(T̃ L, p)+O(ε2)

and μ̃G = μG(T̃G, p) + O(ε2).
Now, noting the relations

μL(Tc(p), p) = μG(Tc(p), p), (7.21)

and (7.15), we obtain

δG = − (S + O(ε2))δT̃ + (V + O(ε2))δ p + (μ̃ + O(ε2))δN − (Ψ + O(ε)) δΞ

+ (O(ε))

(
−δT̃ + dTc

dp
δ p + NG − NL

2N
δΞ

)
. (7.22)

By formally considering the infinitely small change δ, we obtain

dG = −(S + O(ε))dT̃ + (V + O(ε))dp + (μ̃ + O(ε2))dN − (Ψ + O(ε)) dΞ, (7.23)

which corresponds to the fundamental relation of thermodynamics.
At first sight, one may be afraid that the relation (7.23) does not provide a non-equilibrium

extension because the relation involves the error of O(ε). However, it includes non-trivial
information. The point is that some equilibrium thermodynamic quantities are singular at
T = Tc(p). For example, S and V are not uniquely defined at (T , p) = (Tc(p), p) in
equilibrium. Nevertheless, (7.23) provides a definition of S at T = Tc(p) as the limit ε → 0
of the derivative ofGwith respect to T̃ while fixing (p, Ξ, N ).We study (7.23)more carefully
by going back to (7.22).

7.3 Careful Analysis of " → 0

We consider the limit ε → 0 with keeping the phase coexistence. The parameter r defined
in (5.43) identifies the line terminating to the equilibrium state as exemplified in Fig. 8, and
undoes the degeneration of the equilibrium state. Since (5.43) is rewritten as

T̃ = Tc(p) + Ξr , (7.24)

a global quantity A is considered as a function of r through

A(r , p, N , Ξ) = A(T̃ (r , p, N , Ξ), p, N , Ξ). (7.25)

Then, let us define the equilibrium limit of entropy and volume by

Seq(r) ≡ lim
ε→0+ S(r , p, N , Ξ), (7.26)

Veq(r) ≡ lim
ε→0+ V (r , p, N , Ξ), (7.27)

where we explicitly write only the r dependence for Seq and Veq.
Substituting (7.24) into (7.22), we obtain

δG = − (S + O(ε2))Ξδr +
(
V − S

dTc
dp

+ O(ε2)

)
δ p + (μ̃ + O(ε2))δN

− (Ψ + Sr + O(ε)) δΞ + (O(ε)) (−Ξδr) (7.28)
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where we have used (5.44). This relation leads to

lim
ε→0

1

Ξ

(
∂G

∂r

)
p,N ,Ξ

= −Seq(r). (7.29)

Since we find from (7.24) that the left-hand side is equal to(
∂G

∂ T̃

)
p,N ,Ξ

, (7.30)

we obtain

lim
ε→0

(
∂G

∂ T̃

)
p,N ,Ξ

= −Seq(r). (7.31)

Similarly, (7.28) leads to

lim
ε→0

(
∂G

∂ p

)
r ,N ,Ξ

= Veq(r) − Seq(r)
dTc
dp

. (7.32)

Here, from

G(r , p, N , Ξ) = G(T̃ (r , p, N , Ξ), p, N , Ξ) (7.33)

with (7.24), we have the identity(
∂G

∂ p

)
r ,N ,Ξ

=
(

∂G

∂ T̃

)
p,N ,Ξ

dTc
dp

+
(

∂G

∂ p

)
T̃ ,N ,Ξ

. (7.34)

Substituting this into (7.32), we obtain

lim
ε→0

(
∂G

∂ p

)
T̃ ,N ,Ξ

= Veq(r). (7.35)

Combining (7.31) and (7.35), we may write

dG = − (Seq(r) + O(ε))dT̃ + (Veq(r) + O(ε))dp + (μ̃ + O(ε2))dN

− (Ψ + O(ε)) dΞ, (7.36)

which is the more precise expression of (7.23) and convey non-trivial information of ther-
modynamics.

7.4 Explicit Forms of Seq and Veq

By using (5.44), we express any extensive quantity A as

A = NLâL(T̃ L, p) + NGâL(T̃G, p) + O(ε2)

= N

[
âL(T̃ L, p) + âG(T̃G, p)

2
+ r(âG(T̃ L, p) − âL(T̃ L, p))

]
+ O(ε2). (7.37)

Letting âL/G
c (p) ≡ âL/G(Tc(p), p), we have

lim
ε→0

A(r , p, N , Ξ) = N

[
âLc (p) + âGc (p)

2
+ r(âGc (p) − âLc (p))

]
. (7.38)
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This leads to

Seq(r) = N

[
ŝLc (p) + ŝGc (p)

2
+ r(ŝGc (p) − ŝLc (p))

]

= N

[
ŝLc (p) + ŝGc (p)

2
+ r

q̂

Tc
,

]
(7.39)

where we have used the formula (5.40) for the latent heat q̂. Similarly, we obtain

Veq(r) = N

[
φ̂L
c (p) + φ̂G

c (p)

2
+ r(φ̂G

c (p) − φ̂L
c (p))

]

= N

[
φ̂L
c (p) + φ̂G

c (p)

2
+ r

q̂

Tc

dTc
dp

]
, (7.40)

where we have used the Clausius–Clapeyron relation

(φ̂G
c − φ̂L

c ) = dTc
dP

q̂

Tc
. (7.41)

Note that Veq(r) in (7.40) is consistent with V (T̃ , p, Ξ) in (5.52) at the limit ε → 0.

7.5 Heat Capacity and Compressibility

Let H(T̃ , p, N , Ξ)be the enthalpy for the heat conduction systemwith the phase coexistence.
Since H is given by the spatial integral of the local enthalpy, it satisfies

H(T̃ , p, N , Ξ) = U (T̃ , p, N , Ξ) + pV (T̃ , p, N , Ξ). (7.42)

This leads to

δH = δU + pδV (7.43)

in an infinitely small quasi-static process at constant pressure. We interpret this δH as the
quasi-static heat d ′Q in this process. We thus define heat capacity at constant pressure as

Cp ≡
(

∂H

∂ T̃

)
p,N ,Ξ

. (7.44)

Substituting A = H into (7.14) with (p, N , Ξ) fixed, we have
(

∂H

∂ T̃

)
p,N ,Ξ

= NLĉLp + NGĉGp + (ĥL(Tc) − ĥG(Tc) + O(ε2))

(
∂NL

∂ T̃

)
p,N ,Ξ

, (7.45)

where the specific heat for the liquid (gas) is defined as

ĉL/G
p =

(
∂ ĥL/G

∂ T̃ L/G

)
p

. (7.46)

By using (5.38) and (7.44), we rewrite (7.45) as

Cp = NLĉLp + NGĉGp + Nq̂

Ξ
+ O(ε) (7.47)
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super-cooled gas

V = V(T̃, p,N, Ξ)

T1 T2

p

T1 T2
p

super-cooled gas

Fig. 13 Equivalence of the steady states for different environments. The top figure shows the steady state in
the system at the constant pressure p, whose volume is V (T̃ , p, N , Ξ). The bottom figure shows the steady
state in the constant volume system where the volume V is chosen as V = V (T̃ , p, N , Ξ). The resulting
pressure p(T̃ , V , N , Ξ) is equal to p

with the latent heat q̂ = ĥGc − ĥLc . Note that the third term mainly contributes to Cp in
(7.47) because it diverges as Ξ → 0. This is consistent with the singularity at Tc(p) for
equilibrium cases, whereCp is given by the derivative of a discontinuous function (enthalpy)
at T = Tc(p). The first and the second terms correspond to the heat capacity of the liquid
region and the gas region, respectively. Thus, the third termmay be interpreted as the interface
contribution. The expression (7.47) also clarifies the violation of additivity for Cp .

Similarly to the heat capacity, we can also study the additivity of other response functions.
As one example, we show the singular nature of the compressibility from the viewpoint of
the violation of the additivity. The compressibility in heat conduction is defined as

αT̃ = − 1

V

(
∂V

∂ p

)
T̃ ,N ,Ξ

. (7.48)

By taking A = V in the formula (7.14), we obtain

−VαT̃ = NL

(
∂φ̂L

∂ p

)
T̃ L

+ NG

(
∂φ̂G

∂ p

)
T̃G

− (φ̂G(Tc) − φ̂L(Tc))

(
∂NL

∂ p

)
T̃ ,Ξ

= NL

(
∂φ̂L

∂ p

)
T̃ L

+ NG

(
∂φ̂G

∂ p

)
T̃G

− (φ̂G(Tc) − φ̂L(Tc))
dTc
dp

N

Ξ
. (7.49)

Similarly to Cp , the main contribution in Ξ → 0 is the non-additive term, which diverges
in the equilibrium limit.

8 Thermodynamic Relations in (T̃,V,N, Ξ)

The fundamental relation (7.23) derived in the previous section is expressed in terms of the
state variable (T̃ , p, N , Ξ). As is familiar with thermodynamics, one may consider other
fundamental relations. The most familiar one to physicists may be the form using the state
variable (T̃ , V , N , Ξ), because this form is directly related to experimental configurations
with (T̃ , V , N , Ξ) fixed, instead of (T̃ , p, N , Ξ) fixed in the previous sections. Since the
same steady state can be realized when the fixing condition is replaced from p = const to
V = const, there is one-to-one correspondence between (T̃ , V , N , Ξ) and (T̃ , p, N , Ξ).
See Fig. 13. In this section, we show thermodynamic relations with volume V . In §8.1, we
derive the fundamental relation in (T̃ , V , N , Ξ). In §8.2, we express the free energy F by
using the saturated pressure ps(T ) for equilibrium systems. Since the value of T̃ is not easily
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controlled in experiments, in §8.3, we formulate T1 and T2 as functions of T̃ and V . Below,
we fix N without loss of generality and sometimes abbreviate A(T̃ , N ) as A(T̃ ).

8.1 Fundamental Relation

Since F and G are given as the spatial integral of the local free energies, the uniformity of
the pressure leads to

G = F + pV . (8.1)

Substituting this into (7.22), we have

δF = − (S + O(ε2))δT̃ − (p + O(ε2))δV + (μ̃ + O(ε2))δN

− (Ψ + O(ε)) δΞ + (O(ε2))Nδ

(
NL

N

)
, (8.2)

where the error of O(ε2)δ p in (7.22) is regarded as O(ε2)δ p(T̃ , V , N , Ξ) which results
in the error of O(ε2)δV besides O(ε2)δT̃ and so on. The most important thing here is the
order estimate of Nδ(NL/N ), which has been estimated as O(ε−1) when NL is a function
of (T̃ , p, N , Ξ). See (7.15). As a function of (T̃ , V , N , Ξ), Nδ(NL/N ) becomes of O(ε0)

because the liquid–gas coexistence stably appears at equilibrium (ε = 0) in a certain range
of (T̃ , V , N ) and, therefore, the term is not singular in the limit ε → 0. Indeed, the second
line is estimated as(

∂NL

∂ T̃

)
V ,Ξ

=
(

∂NL

∂ T̃

)
p,Ξ

+
(

∂NL

∂ p

)
p,Ξ

(
∂ p

∂ T̃

)
V ,Ξ

= − N

Ξ

dTc
dp

(
dps

dT̃
−

(
∂ p

∂ T̃

)
V ,Ξ

)
= O(ε0), (8.3)

where we have used (
∂ p

∂ T̃

)
V ,Ξ

= dps

dT̃
+ O(ε). (8.4)

Thus, the last term in (8.2) remains to be negligible as O(ε2) term, and we conclude

dF = −(S + O(ε2))dT̃ − (p + O(ε2))dV + (μ̃ + O(ε2))dN − (Ψ + O(ε)) dΞ. (8.5)

It should be noted that there are the errors of O(ε2) in contrast to (7.23).

8.2 Free Energy for the Coexistence Phase

In the equilibrium coexistence phase, as shown in Fig. 14, the saturated volumes, V L
s (T ) and

VG
s (T ), and the saturated pressure ps(T ) are defined for a given temperature T . Even for

the coexistence phase in heat conduction, we define the saturated volumes, V L
s (T̃ , Ξ) and

VG
s (T̃ , Ξ), at which the liquid and the gas start to coexist. Note that the pressure is not kept

constant in V L
s (T̃ , Ξ) < V < VG

s (T̃ , Ξ), differently from the equilibrium case.
We first express V L

s (T̃ , Ξ), VG
s (T̃ , Ξ) and p(T̃ , V , Ξ) in terms of V L

s (T̃ ), VG
s (T̃ ) and

ps(T̃ ). Since the steady state satisfies (5.38), we have

Tc(p) = T̃ + Ξ

2

NL − NG

N
+ O(ε2). (8.6)
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Fig. 14 p-V curves with T̃ fixed
for Ξ = 0 (black line) and for
Ξ 	= 0 (red line). For the
equilibrium case (Ξ = 0), the
pressure is kept constant to be a
saturated pressure ps(T̃ ) in the
region VL

s (T̃ ) < V < VG
s (T̃ ),

where the liquid and the gas
coexist (Color figure online)

Fig. 15 Dependence of the steady state on V for a given T̃ . The liquid region and the gas region in the container
are painted by light blue and yellow, respectively. The pressure changes with increasing V according to (8.9).
The temperatures of the two heat baths, T1 and T2, are controlled to realize fixing (T̃ , V , Ξ) as formulated in
(8.33) and (8.34)

Solving this in p, we obtain

p(T̃ , V , Ξ) = ps

(
T̃ + Ξ

2

NL − NG

N

)
+ O(ε2). (8.7)

For equilibrium cases, the relations NL + NG = N and NLV L
s + NGVG

s = NV lead to

NL = N
VG
s (T̃ ) − V

VG
s (T̃ ) − V L

s (T̃ )
, NG = N

V − V L
s (T̃ )

VG
s (T̃ ) − V L

s (T̃ )
. (8.8)

By using these expressions, we rewrite (8.7) as

p(T̃ , V , Ξ) = ps

(
T̃ − Ξ

V − Vm(T̃ )

VG
s (T̃ ) − V L

s (T̃ )

)
+ O(ε2), (8.9)

where Vm(T̃ ) = (V L
s (T̃ ) + VG

s (T̃ ))/2. Figure 14 shows a p-V curve described by (8.9), in
which p(T̃ , V , Ξ) is linearly decreasing with V in the range V L

s (T̃ , Ξ) < V < VG
s (T̃ , Ξ).

Configurations in the phase coexistence are exemplified in Fig. 15. Then, the saturated vol-
umes under heat conduction are expressed as
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V L
s (T̃ , Ξ) = V L

(
T̃ , ps

(
T̃ + Ξ

2

))
, VG

s (T̃ , Ξ) = VG
(
T̃ , ps

(
T̃ − Ξ

2

))
, (8.10)

where V = V L(T , p) and V = VG(T , p) are the equilibrium equation of state for the liquid
and the gas, respectively.

Next, we study the free energy F(T̃ , V , Ξ). We first consider the free energy difference

ΔLGF ≡ F(T̃ , VG
s (T̃ , Ξ),Ξ) − F(T̃ , V L

s (T̃ , Ξ),Ξ). (8.11)

Since the saturated state is in a single phase, we have

F(T̃ , V L/G
s (T̃ , Ξ),Ξ) = FL/G(T̃ , V L/G

s (T̃ , Ξ)) + O(ε2). (8.12)

We then transform

ΔLGF =FG(T̃ , VG
s (T̃ , Ξ)) − FL(T̃ , V L

s (T̃ , Ξ)) + O(ε2)

=FG(T̃ , VG
s (T̃ )) − FL(T̃ , V L

s (T̃ ))

− ps(T̃ )Ξ

((
∂VG

s (T̃ , Ξ)

∂Ξ

)
T̃

−
(

∂V L
s (T̃ , Ξ)

∂Ξ

)
T̃

)
+ O(ε2)

= − ps(T̃ )(VG
s (T̃ , Ξ) − V L

s (T̃ , Ξ)) + O(ε2), (8.13)

where we have used the Taylor expansion in Ξ to obtain the second line, and substituted the
equilibrium relation

FG(T̃ , VG
s (T̃ )) − FL(T̃ , V L

s (T̃ )) = −ps(T̃ )(VG
s (T̃ ) − V L

s (T̃ )) (8.14)

to obtain the last line.
Second, from (8.5), we have

F(T̃ , V , Ξ) = FL(T̃ , V L
s (T̃ , Ξ)) −

∫ V

V L
s (T̃ ,Ξ)

P(T̃ , V ′, Ξ) dV ′. (8.15)

Performing the integration with (8.9), we obtain

F(T̃ , V , Ξ) = FL(T̃ , V L
s (T̃ , Ξ)) − ps(T̃ )(V − V L

s (T̃ , Ξ)) − BΞ (8.16)

with

B = dps(T̃ )

dT̃

VG
s (T̃ ) − V L

s (T̃ )

2

⎡
⎣1

4
−

(
V − Vm(T̃ )

VG
s (T̃ ) − V L

s (T̃ )

)2
⎤
⎦ + O(ε). (8.17)

Here, by using (8.8), we can confirm

NLNG

N 2 = 1

4
−

(
V − Vm(T̃ )

VG
s (T̃ ) − V L

s (T̃ )

)2

. (8.18)

Combining it with the Clausius–Clapeyron relation

dps(T̃ )

dT̃
(VG

s (T̃ ) − V L
s (T̃ )) = N

q̂

T̃
, (8.19)

we derive

B = Ψ , (8.20)
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Fig. 16 Schematic figure of the global Helmholtz free energy F with T̃ fixed when T̃ is less than the critical
temperature. a Equilibrium cases. F is a linear function in the light blue area, VL

s (T̃ ) < V < VG
s (T̃ ), where

the system shows the liquid–gas coexistence. b Heat conduction cases with Ξ > 0. The solid line becomes
a quadratic curve in VL

s (T̃ , Ξ) < V < VG
s (T̃ , Ξ) painted by light blue and green, where the system shows

the liquid–gas coexistence. F is smooth at V = VL/G
s (T̃ , Ξ). The dotted line represents F at equilibrium in

(a). The solid and dotted lines are the same in V < VL
s (T̃ , Ξ) and V > VG

s (T̃ , Ξ)

(b)(a)

Fig. 17 Schematic figure of the global Gibbs free energy G with T̃ fixed, where T̃ is less than the critical
temperature. a Equilibrium cases. G exhibits the first order transition at p = ps(T̃ ), at which G is continuous
but not smooth. b Heat conduction cases with Ξ > 0. G contains a quadratic curve in ps(T̃ + Ξ/2) <

p < ps(T̃ − Ξ/2), in which the system shows the liquid-gas coexistence (solid line). G is smooth at p =
ps(T̃ ± Ξ/2). The dotted line represents G at equilibrium in (a). The solid and dotted lines are the same in
p < pLs (T̃ + Ξ/2) and p > pGs (T̃ − Ξ/2)

whereΨ was introduced in (7.18). Summarizing these, we schematically draw the graph F in
Fig. 16. For equilibrium cases, the free energy of the liquid-gas coexistence phase is expressed
as a common tangent at V L

s (T̃ ) and VG
s (T̃ ) as shown in Fig. 16a. For heat conduction cases,

the free energy of the coexistence phase is expressed as a common tangential quadratic curve
at V L

s (T̃ , Ξ) and VG
s (T̃ , Ξ) as shown in Fig 16b, and therefore F keeps the convexity on V .

Since the convexity of F is concluded, theGibbs free energyG is expressed as theLegendre
transform of F :

G(T̃ , p, Ξ) = min
V

[F(T̃ , V , Ξ) + pV ]. (8.21)

The graph F in Fig. 16b yields the graph G in Fig. 17b, while it contains an error of O(ε2)

as well as F formulated explicitly in (8.16). The liquid-gas coexistence states are expressed
as a common tangential quadratic curve to the graph G at ps(T̃ + Ξ/2) and ps(T̃ − Ξ/2).
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8.3 T1, T2 and� as Functions of (T̃,V,N,Ξ)

We have studied the dependence of the steady states on V for (T̃ , Ξ) fixed. However, when
we fix values of T1 and T2, the change of V yields the change of T̃ . Here we propose a
protocol to control T1 and T2, by which T̃ is fixed when changing V . In other words, we
derive T1 and T2 as functions of (T̃ , V , N , Ξ). We also give the interface temperature θ and
its deviation from Tc as functions of (T̃ , V , N , Ξ).

In (6.8), Tm is expressed in terms of Tc(p), Ξ , u, v, and ζ , where the value of u and
v are determined for each p. For the coexistence phase in heat conduction, the pressure is
determined as (8.9) and can be replaced by ps(T̃ ) for the argument of u and v. We thus
represent u = u(ps(T̃ )) and v = v(ps(T̃ )), and simply write u(T̃ ) and v(T̃ ). Then, we
rewrite (6.8) as

Tm = Tc(p(T̃ , V , Ξ)) − Ξ

2

uζ 2 − v(1 − ζ )2

[uζ + (1 − ζ )][ζ + v(1 − ζ )] + O(ε2) (8.22)

with

u(T̃ ) = VG
s (T̃ )

V L
s (T̃ )

, v(T̃ ) = κL
c (T̃ )

κG
c (T̃ )

. (8.23)

Furthermore, from

ζ = NL

N

V L
s

V
, (8.24)

and NLV L
s + NGVG

s = NV at equilibrium, we obtain

ζ = (VG
s (T̃ ) − V )V L

s (T̃ )

(VG
s (T̃ ) − V L

s (T̃ ))V
+ O(ε). (8.25)

These expressions of u, v and ζ lead to

1

uζ + (1 − ζ )
= V

VG
s

, (8.26)

1

ζ + v(1 − ζ )
= V (VG

s − V L
s )

V L
s (VG

s − V ) + vVG
s (V − V L

s )
, (8.27)

uζ 2 − v(1 − ζ )2 = VG
s [V L

s (VG
s − V )2 − vVG

s (V − V L
s )2]

V 2(VG
s − V L

s )2
, (8.28)

with which (8.22) is rewritten as

Tm = Tc(p) − Ξ

2

1

VG
s − V L

s

V L
s (VG

s − V )2 − vVG
s (V − V L

s )2

V L
s (VG

s − V ) + vVG
s (V − V L

s )
. (8.29)

Here, let us recall that Tc(p) = T̃ − Ξr defined in (5.43) and that

r = V − Vm(T̃ )

VG
s (T̃ ) − V L

s (T̃ )
+ O(ε) (8.30)

as used in (8.9). Substituting this formula into (8.29) and noting

V − Vm(T̃ ) = V − VG
s (T̃ )

2
+ V − V L

s (T̃ )

2
, (8.31)
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we finally arrive at

Tm(T̃ , V , Ξ) = T̃ − Ξ

2

(V − V L
s )(VG

s − V )(V L
s − vVG

s )

(VG
s − V L

s )(V L
s (VG

s − V ) + vVG
s (V − V L

s ))
+ O(ε2). (8.32)

Since Tm = (T1 + T2)/2 and Ξ = T2 − T1, we obtain

T1(T̃ , V , Ξ) = T̃ − Ξ

2
− Ξ

2

(V − V L
s )(VG

s − V )(V L
s − vVG

s )

(VG
s − V L

s )(V L
s (VG

s − V ) + vVG
s (V − V L

s ))
+ O(ε2),

(8.33)

T2(T̃ , V , Ξ) = T̃ + Ξ

2
− Ξ

2

(V − V L
s )(VG

s − V )(V L
s − vVG

s )

(VG
s − V L

s )(V L
s (VG

s − V ) + vVG
s (V − V L

s ))
+ O(ε2).

(8.34)

These formulas inform how to operate T1 and T2 in order to fix the global temperature T̃
when changing V and Ξ .

Substituting the temperature relation (5.47) into (8.29),we obtain the interface temperature
as

θ(T̃ , V , Ξ) = T̃ + Ξ

2

1

VG
s − V L

s

V L
s (VG

s − V )2 − vVG
s (V − V L

s )2

V L
s (VG

s − V ) + vVG
s (V − V L

s )
. (8.35)

Similarly, (8.32) and (5.47) lead to the deviation from the transition temperature,

θ(T̃ , V , Ξ) − Tc(p(T̃ , V , Ξ))

= Ξ

2

(V − V L
s )(VG

s − V )(V L
s − vVG

s )

(VG
s − V L

s )(V L
s (VG

s − V ) + vVG
s (V − V L

s ))
+ O(ε2). (8.36)

9 Other Assumptions Leading to the Results of the Variational Principle

To this point, it has been assumed that the steady states are determined by the variational
principle proposed in §5. In this section,we introduce other assumptions fromwhich the result
of the variational principle is obtained. First, in §9.1, we formulate the variational principle
for the constant volume systems and show that its solution is equivalent to the previous one
(5.38). In §9.2, we start with the fundamental relation of thermodynamics without assuming
the variational principle. We then derive the result of the variational principle. In §9.3, we
notice a singularity relation which is a simple assumption for the singularity in the limit
ε → 0. We confirm that this is equivalent to the result of the variational principle. Finally,
in §9.4 we argue some scaling behavior of the system which also leads to the result of the
variational principle.

9.1 Variational Principle for Constant Volume Systems

In this subsection, we study constant volume systems, where the steady state is characterized
by (T̃ , V , N , Ξ). As shown in Fig. 13, this steady state is equivalent to the steady state
of the system at the constant pressure pex when the value of pex is chosen as the pressure
p(T̃ , V , N , Ξ). We assume the mechanical balance everywhere. That is,

p(x) = p(x ′) (9.1)
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for any x and x ′ in [0, Lx ], where p(x) = p(T (x), ρ(x)). This condition determines V L

and VG = V − V L when NL and NG = N − NL are determined. The problem is then to
determine NL. After briefly reviewing the corresponding variational principle for equilibrium
cases, we propose the variational principle for heat conduction systems and determine the
value of NL.

9.1.1 Equilibrium Systems

We define the variational function as

F(N L; T , V , N ) = FL(T , V L,N L) + FG(T , V − V L, N − N L), (9.2)

in which FL/G(T , V , N ) is the Helmholtz free energy of the liquid (gas). V L and VG are
determined by

p(T ,N L/V L) = p(T , (N − N L)/VG), (9.3)

and V L + VG = V . Then, the variational principle for determining N L is

∂F(N L; T , V , N )

∂N L

∣∣∣∣N L=NL
= 0,

∂2F(N L; T , V , N )

∂(N L)2

∣∣∣∣N L=NL
> 0, (9.4)

which is equivalent to the equality of the chemical potential.

9.1.2 Heat Conduction Systems

Let us consider a variational principle for the heat conduction systems characterized by
(T̃ , V , N , Ξ). We assume that the steady state with a liquid-gas interface is determined by
the variational function

F(N L; T̃ , V , N , Ξ) ≡ LyLz

∫ Lx

0
dx f (T (x), ρ(x))

= FL(T̃ L, V L,N L) + FG(T̃G, V − V L, N − N L) + O(ε2), (9.5)

where we have used a similar formula as (7.3) with (7.4) and (7.5) to obtain the second line.
As we formulated in §4, thermodynamic quantities are expressed as a function of N L such
that T̃ L/G = T̃ L/G(N L; T̃ , V , N , Ξ). The variation of F is then written as

δF = δFL + δFG. (9.6)

Remembering that the relation (5.20) holds in each region, we have

δFL/G = −SL/GδT̃ L/G − pδV L/G + μ̃L/GδN L/G. (9.7)

Substituting δNG = −δN L, δV L + δVG = 0 and (5.28) into (9.7), we rewrite (9.6) as

δF = (μL(T s, p) − μG(T s, p) + O(ε2))δN L, (9.8)

where T s is given in (5.32). Then, the variational principle

∂F(N L; T̃ , V , N , Ξ)

∂N L

∣∣∣∣∣N L=NL

= 0,
∂2F(N L; T̃ , V , N , Ξ)

∂(N L)2

∣∣∣∣∣N L=NL

> 0 (9.9)
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determines N L as that satisfying

μL(T s, p) = μG(T s, p) + O(ε2). (9.10)

This is equivalent to (5.36) so that (9.10) leads to (5.38). Therefore, the variational principle
for the constant volume system is equivalent to that for the system at constant pressure.

9.2 Thermodynamic Relation

In this subsection, we do not assume any variational principles, but assume the fundamental
relation of thermodynamics

dF = −SdT̃ − pdV + μ̃dN − Ψ dΞ (9.11)

for the liquid–gas coexistence phase in the linear response regime.
First of all, it should be noted that (7.10), (7.11), (7.12) and (7.13) hold regardless of the

variational principle. Then, we have

δA =
(
NL

(
∂ âL

∂ T̃ L

)
p

+ NG
(

∂ âG

∂ T̃G

)
p

+ O(ε2)

)
δT̃

+
(
NL

(
∂ âL

∂ p

)
T̃ L

+ NG
(

∂ âG

∂ p

)
T̃G

+ O(ε2)

)
δ p

+
(
NL

N
âL + NG

N
âG + O(ε2)

)
δN

− NLNG

2N

((
∂ âL

∂ T̃ L

)
p

−
(

∂ âG

∂ T̃G

)
p

+ O(ε)

)
δΞ

+
(
âL(Tm − T̃ − θ, p) − âG(Tm − T̃ − θ, p) + O(ε2)

)
Nδ

(
NL

N

)
(9.12)

instead of (7.14). Letting A = G and â = μ̃, and using G = F + pV , we obtain

δF = − (S + O(ε2))δT̃ − (p + O(ε2))δV + (μ̃ + O(ε2))δN

− (Ψ + O(ε)) δΞ + (D + O(ε2))Nδ

(
NL

N

)
, (9.13)

where

D ≡ μL(Tm − T̃ − θ, p) − μG(Tm − T̃ − θ, p). (9.14)

Since Nδ(NL/N ) = O(ε0), the assumption (9.11) leads to

D = 0. (9.15)

This means the temperature relation (5.47). As shown in §5.3, (5.47) leads to (5.38) so that
the thermodynamic relation is equivalent to the variational principle.

123



Global Thermodynamics for Heat Conduction Systems 875

(a) (b)

(c)

Fig. 18 a Phase diagram for a given p. The line depicted as NL = N corresponds to T̃ = Tc(p) − Ξ/2 from
(9.22), at which the gas region starts to appear as shown in (b). Similarly, the line as NL = 0, i.e., NG = N ,
is T̃ = Tc(p) − Ξ

2 , at which the liquid region disappears as shown in (c)

9.3 Singularity Relation

We here consider a protocol to shift the liquid–gas interface from X = Lx to X = 0 with
fixing Ξ and p. This protocol is obtained by varying (T1, T2) as

(Tc(p) − Ξ, Tc(p)) → (Tc(p), Tc(p) + Ξ) , (9.16)

as shown in Fig. 18b and c, where (T̃ , NL) is changed as
(
Tc(p) − Ξ

2
, N

)
→

(
Tc(p) + Ξ

2
, 0

)
. (9.17)

On the phase diagram of (T̃ , Ξ) for a given p, the change occurs along the line displayed by
the arrow in Fig. 18a when Ξ is sufficiently small. Therefore, it is natural to assume that

(
∂ T̃

∂NL

)
p,Ξ

= −Ξ

N
+ O(ε2) (9.18)

for sufficiently small Ξ . This differential equation (9.18) is written as
(

∂NL

∂ T̃

)
p,Ξ

= − N

Ξ
+ O(ε0), (9.19)

which we call a singularity relation. Solving (9.18) with the boundary conditions

T̃ (NL = N − 0, p, Ξ) = Tc(p) − Ξ

2
+ O(ε2) (9.20)

in Fig. 18b and

T̃ (NL = +0, p, Ξ) = Tc(p) + Ξ

2
+ O(ε2) (9.21)

in Fig. 18c, we obtain

T̃ = Tc(p) + Ξ

2

NG − NL

N
+ O(ε2), (9.22)

which is the same form as the result of the variational principle (5.38).
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Fig. 19 Scaling to extend the gas region with keeping the state in the liquid region and the horizontal length
Lx . In order to fix T̃L, the temperature of the left heat bath is changed from T1 to T ′

1

The relation (9.19) indicates ∣∣∣∣∣
(

∂NL

∂ T̃

)
p,Ξ

∣∣∣∣∣
Ξ→0−−−→ ∞, (9.23)

which corresponds to an expression of the singularity associatedwith the first-order transition
for equilibrium cases. This singularity is consistent with the discontinuous change of NL at
T = Tc(p). It should be noted that (9.23) is connected to the singularity of constant pressure
heat capacity Cp and compressibility αT as shown in §7.5.

9.4 Scaling Relation

We characterize the coexistence phase by (pex, NL, Ξ, N ). As examples, we write

T̃ L = T̃ L(pex, NL, Ξ, N ), (9.24)

T̃G = T̃G(pex, NL, Ξ, N ). (9.25)

From the homogeneity in the direction perpendicular to x , T̃ L and T̃G are invariant for
(pex, NL, Ξ, N ) → (pex, λNL, Ξ, λN ). We thus write

T̃ L = T̃ L(pex, s, Ξ), (9.26)

T̃G = T̃G(pex, s, Ξ), (9.27)

where

s = NL

N
. (9.28)

By noting T̃G − T̃ L = Ξ/2, we express T̃ L and T̃G as

T̃ L = Tc(p
ex) − τ(pex, s)

Ξ

2
+ O(ε2), (9.29)

T̃G = Tc(p
ex) + (1 − τ(pex, s))

Ξ

2
+ O(ε2). (9.30)

Now, we attempt to extend the gas region while keeping the thermodynamic state in the
liquid region. See Fig. 19. First, we increase Ξ as Ξ → λΞ with T̃ L fixed, where we
take λ � ε−1 such that the system is still in the linear response regime. We estimate the λ

dependence of quantities in this asymptotic regime. First, the heat flux is proportional to λ

as a common value to the liquid and the gas region. Since T̃ L is fixed, it is plausible that the
temperature difference in the liquid region remains to be O(λ0), and then this leads that the
horizontal length of the liquid region is proportional to 1/λ. On the other hand, in the gas

123



Global Thermodynamics for Heat Conduction Systems 877

region, the temperature difference is proportional to λ and the horizontal length is Lx in the
leading order estimate. Thus, the total volume saturates at the finite value with which the
whole system is occupied by the gaswith the temperature less than Tc(pex)+λΞ . From these,
we find that the volume of the liquid region is proportional to 1/λ. Although its proportional
coefficient is not determined in the asymptotic region, we assume the scaling relation that
the volume of the liquid is V L/λ as it is consistent with the case λ = 1. Since pex and T̃ L

is fixed in this operation, the density of the liquid is also fixed. Thus, the particle number of
the liquid becomes NL/λ. Next, we increase N as N → λN . Then, we have NL/λ → NL

and V L/λ → V L. That is, for a series of processes

(pex, NL, Ξ, N ) → (pex, NL, λΞ, λN ), (9.31)

we have
T̃ L(pex, NL, λΞ, λN ) = T̃ L(pex, NL, Ξ, N ). (9.32)

Since this condition cannot be concluded from the local equilibrium thermodynamics, we
impose (9.32) as a requirement for the steady state.

By using (9.29) for (9.32), we have

τ
(
pex,

s

λ

)
λ = τ(pex, s) (9.33)

for 1 � λ � ε−1. Expanding

τ(pex, s) = a0 + a1s + a2s
2 + O(s3), (9.34)

and substituting it to (9.33), we obtain

a0(λ − 1) + a2s
2(λ−1 − 1) + · · · = 0 (9.35)

for 1 � λ � ε−1. This gives a0 = a2 = an = 0 for n ≥ 3. Thus,

τ
(
pex, s

) = a1s, (9.36)

which restricts the s dependence of τ .
Next, we extend the liquid region while keeping the gas region. In this case, we consider

the transformation (Ξ, N ) → (λΞ, λN ), while fixing (T̃G, NG). From (9.30), we have[
1 − τ

(
pex, 1 − NG

λN

)]
λ = 1 − τ

(
pex, 1 − NG

N

)
. (9.37)

Expanding
τ(pex, 1 − u) = b0 + b1u + O(u2) (9.38)

in the limit u → 0, we obtain b0 = 1 and bn = 0 for n ≥ 2. This leads to

b1 (1 − s) = 1 − τ
(
pex, s

)
. (9.39)

By combining (9.36) and (9.39), we obtain

b1(1 − s) = 1 − a1s. (9.40)

Since this holds for any s, we obtain b1 = a1 = 1. By substituting (9.36) with a1 = 1 into
(9.29), we have arrived at

T̃ L = Tc(p
ex) − Ξ

2

NL

N
+ O(ε2). (9.41)

Substituting (5.23) into this relation, we obtain the solution (5.38) of the variational principle.
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10 Generalization for Single Phase Systems

In previous sections, global thermodynamics has been developed for systems in a rectangular
container as shown in Fig. 2. In this section, we consider an arbitrarily shaped containerD in
contact with two heat baths of T1 and T2. Here, we assume that the response of a local quantity
is not singular for the changeof the systemparameters (T1, T2, V ) → (T1+δT1, T2+δT2, V+
δV ), where V is the volume of the container. We also assume that local steady states inside
the container are well described by the local equilibrium thermodynamics of local quantities
T (r), u(r), s(r), and so on. In §10.1, we define global thermodynamic quantities as they
are consistent with the definitions given in §3. We construct global thermodynamics in the
linear response regime in §10.2. Then, we extend the thermodynamic formulas beyond the
linear response regime in §10.3. In what follows, we restrict to single-phase systems without
liquid-gas interfaces.

10.1 Global Thermodynamic Quantities in an Arbitrarily Shaped Container

Wedefine all global thermodynamic quantities similarly to the case of rectangular containers.
Explicitly, the global temperature and the global chemical potential are defined as

T̃ ≡
∫
D d3r T (r)ρ(r)∫

D d3r ρ(r)
, (10.1)

and

μ̃ ≡
∫
D d3r μ(r)ρ(r)∫

D d3r ρ(r)
. (10.2)

More generally, global extensive quantities A are defined by the spatial integration of local
thermodynamic quantities a(r) per unit volume or â(r) per one particle as

A(T̃ , V , N , Ξ) ≡
∫
D
d3r a(r) =

∫
D
d3r â(r)ρ(r). (10.3)

It should be noted that all global quantities transform consistently for the change of the
reference state on entropy and internal energy as discussed in §2.5.

Due to the mechanical balance, the local pressure p(r) is homogeneous. That is,

p(r) = p. (10.4)

We here note that the pressure p(r) does not satisfy the local equilibrium equation of state
beyond the linear response regime. Concretely, the contribution out of the local equilibrium
pressure was explicitly calculated in the kinetic regime by analyzing the Boltzmann equation
[74], and also the long-range correlation yields the additional pressure depending on the
system size [75–77]. Thus, we express

p(r) = pLE(r) + O(ε2), (10.5)

where pLE(r) is the pressure determined from the local equilibrium equation of state such
that

pLE(r) ≡ −
(

∂ f (r)

∂φ̂(r)

)
T (r)

(10.6)
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with φ̂(r) = 1/ρ(r). Let us introduce a global version of the local equilibrium pressure as

pLE ≡ 1

V

∫
D
d3r pLE(r) (10.7)

This may deviate from the global pressure as

pLE = p + O(ε2). (10.8)

10.2 Equivalence of Non-equilibrium Global Quantities with EquilibriumQuantities

We show that the results in §3 hold in the container with an arbitrary shape in the linear
response regime. As we did in §3.1, we introduce a function η(r) = O(ε) as

η(r) ≡ T (r) − T̃ . (10.9)

From the definition of T̃ , we have
∫
D d3r η(r) = 0.Any local quantity â(r) = â(T (r), p(r))

per one particle is expanded in η(r) as

â(T (r), p(r)) = â(T̃ , p) +
(

∂ â(T̃ , p)

∂ T̃

)
p

η(r) + O(ε2). (10.10)

We then derive

A =
∫
D
d3r â(T (r), p(r))ρ(r) = â(T̃ , p)N + O(ε2). (10.11)

This indicates that all global thermodynamic quantities are equivalent to those in equilibrium
by adopting the global temperature T̃ in (10.1), and that global thermodynamics for heat
conduction systems are generally mapped to equilibrium thermodynamics, regardless of the
shape of the container. It should be noted that we cannot apply the trapezoidal rule argued in
§3.4 to such general configurations. Thus, in contrast to the case of rectangular containers,
we have

T̃ 	= Tm, (10.12)

even in the linear response regime.

10.3 Fundamental Relation Beyond the Linear Response Regime

Since global thermodynamics relies on local equilibrium thermodynamics, its validity
depends on the extent how the local states are close to the local equilibrium. For instance, the
local equilibrium thermodynamic relations may be valid up to O(ε) and a non-equilibrium
driving may bring a slight deviation of O(ε2) from the local equilibrium.We here expect that
the deviation from the local equilibrium is small even beyond the linear response regime, and
attempt to extend the global thermodynamics to the second order of ε. Indeed, in §10.3.1 and
§10.3.2, we prove

δF = −SδT̃ − pLEδV + μ̃δN − Ψ δΞ + O(ε3δν, ε2δΞ), (10.13)

F = U − T̃ S − Ψ Ξ + O(ε3), (10.14)
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where δν is either δT̃ , δV or δN . Ψ is the conjugate variable to Ξ , which is identified as

Ψ = α
Nĉp

T̃
Ξ. (10.15)

This is a quantity of O(ε) with constant pressure specific heat ĉp . α is a geometrical factor
independent of T̃ and p as examined in §10.3.3. That is, we can extend the thermodynamic
framework with an error of O(ε3) beyond the linear response regime.

10.3.1 Derivation of (10.13)

Any local density â(r) = â(T (r), pLE(r)) per one particle is expanded as

â(T (r), pLE(r))

= â(T̃ , pLE) +
(

∂ â(T̃ , pLE)

∂ T̃

)
p

η(r) + 1

2

(
∂2â(T̃ , pLE)

∂ T̃ 2

)
p

η(r)2

+
(

∂ â(T̃ , pLE)

∂ p

)
T

(pLE(r) − pLE) + O(ε3). (10.16)

Then, we have∫
D
d3r â(T (r), pLE(r))ρ(r)

= â(T̃ , pLE)N + 1

2

(
∂2â(T̃ , pLE)

∂ T̃ 2

)
p

∫
D
d3r η(r)2ρ(r)

+
(

∂ â(T̃ , pLE)

∂ p

)
T̃

∫
D
d3r pLE(r)

(
ρ(r) − N

V

)
+ O(ε3) (10.17)

from the definition of η(r) and pLE. Since pLE(r) = p + O(ε2) and ρ(r) = N/V + O(ε),
the integral of the third term in the right-hand side of (10.17) is expressed as

p
∫
D
d3r

(
ρ(r) − N

V

)
+ O(ε3). (10.18)

As the integral of (10.18) vanishes, the third term is estimated as O(ε3). Next, by applying
ρ(r) = N/V + O(ε) to the second term of (10.17), we obtain

∫
D
d3r â(r)ρ(r) =

⎡
⎣â(T̃ , pLE) + α

2

(
∂2â(T̃ , pLE)

∂ T̃ 2

)
p

Ξ2

⎤
⎦ N + O(ε3), (10.19)

where

α ≡ 1

V

∫
D
d3r

(
T (r) − T̃

T2 − T1

)2

. (10.20)

α is a geometrical factor depending on the configuration of the container as will be examined
in §10.3.3. Because α = O(ε0), we conclude that global quantities are extended to those
including O(ε2) contribution:
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A(T̃ , pLE, N , Ξ) = â(T̃ , pLE)N + αN

2

(
∂2â(T̃ , pLE)

∂ T̃ 2

)
p

Ξ2 + O(ε3). (10.21)

With this formula, we write the global thermodynamic quantities as

S

N
= ŝ(T̃ , pLE) + α

2

(
∂2ŝ

∂ T̃ 2

)
p
Ξ2 + O(ε3), (10.22)

V

N
= φ̂(T̃ , pLE) + α

2

(
∂2φ̂

∂ T̃ 2

)
p

Ξ2 + O(ε3), (10.23)

μ̃(T̃ , pLE, Ξ) = μ(T̃ , pLE) + α

2

(
∂2μ

∂ T̃ 2

)
p
Ξ2 + O(ε3). (10.24)

Performing the spatial integration of the local relation f (r) = μ(r)ρ(r) − pLE(r), we
have the global relation

F = μ̃N − pLEV . (10.25)

For the later purpose, we define a new quantity Ψ as

Ψ ≡ −N

(
∂μ̃

∂Ξ

)
T ,p

. (10.26)

Using (10.24), we obtain

Ψ = −αN

(
∂2μ

∂ T̃ 2

)
p
Ξ = α

Nĉp

T̃
Ξ, (10.27)

which is the form given in (10.15).
Now, consider a parameter change V → V + δV , T1 → T1 + δT1 and T2 → T2 + δT2.

Accordingly, the local quantities are changed as

T (r) → T (r) + δT (r), ρ(r) → ρ(r) + δρ(r), (10.28)

for r ∈ D, and the global quantities as

T̃ → T̃ + δT̃ , pLE → pLE + δ pLE, Ξ → Ξ + δΞ. (10.29)

This leads to

δF = Nδμ̃ − pLEδV − V δ pLE, (10.30)

where we have used (10.25). From (10.24), we derive

δμ̃ =
[(

∂μ

∂ T̃

)
p

+ α

2

(
∂3μ

∂ T̃ 3

)
p
Ξ2 + O(ε3)

]
δT̃

+
[(

∂μ

∂ p

)
T̃

+ α

2

(
∂2

∂ T̃ 2

(
∂μ

∂P

)
T

)
p
Ξ2 + O(ε3)

]
δ pLE

+
[
α

(
∂2μ

∂ T̃ 2

)
p
Ξ + O(ε2)

]
δΞ,

= −
[
ŝ + α

2

(
∂2ŝ

∂ T̃ 2

)
p
Ξ2 + O(ε3)

]
δT̃ +

[
φ̂ + α

2

(
∂2φ̂

∂ T̃ 2

)
Ξ2 + O(ε3)

]
δ pLE
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+
[
α

(
∂2μ

∂ T̃ 2

)
p
Ξ + O(ε2)

]
δΞ,

= −
(
S

N
+ O(ε3)

)
δT̃ +

(
V

N
+ O(ε3)

)
δ pLE −

(
Ψ

N
+ O(ε2)

)
δΞ. (10.31)

Substituting this into (10.30), we obtain

δF = −SδT̃ − pLEδV − Ψ δΞ + O(ε3δT̃ , ε3δV , ε2δΞ), (10.32)

where δ pLE is rewritten by the linear combination of δT̃ , δV and δΞ . Moreover, for the
change N → N + δN with (T̃ , V , Ξ) fixed, (10.25) leads to

δF = Nδμ̃ + μ̃δN − V δ pLE. (10.33)

Substituting (10.31) into this, we obtain

δF = μ̃δN + O(ε3δ pLE)

= μ̃δN + O(ε3δN ). (10.34)

By combining (10.32) and (10.34), we have arrived at the formula (10.13).

10.3.2 Derivation of (10.14)

Since u(x) = f (x) + T (x)s(x), we have

U = F + T̃ S +
∫
D
d3r ŝ(r)η(r)ρ(r). (10.35)

Substituting the expansion

ŝ(r) = ŝ(T (r), pLE(r)) = ŝ(T̃ , pLE) + η(r)
(

∂ ŝ

∂ T̃

)
p

∣∣∣∣∣
T=T̃

+ O(ε2)

= ŝ(T̃ , pLE) + η(r)
cp(T̃ , p)

T̃
+ O(ε2), (10.36)

and ρ(r) = N/V + O(ε) into (10.35), we obtain
∫
D
d3r ŝ(r)η(r)ρ(r)

= ŝ(T̃ , p)
∫
D
d3r η(r)ρ(r) + cp(T̃ , p)

T̃

N

V

∫
D
d3r η(r)2 + O(ε3)

= α
Nĉp

T̃
Ξ2 + O(ε3), (10.37)

where the first term in the right-hand side of the first line turns out to be zero from the
definition of T̃ . Thus, (10.35) is rewritten as

U = F + T̃ S + Ψ Ξ + O(ε3), (10.38)

which corresponds to (10.14).
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Fig. 20 An arbitrarily shaped container in contact with two heat baths. The value of T̃ is unchanged with
respect to the scale transformation of the container with fixing T1 and T2

10.3.3 Factor˛ Determined by the Geometry of Containers

Hereafter, we show that α is a function of the geometry of the container and independent of
T̃ and p. We consider a container as shown in Fig. 20, which is in contact with the first heat
bath of T1 in a region of the surface B1 and with the second bath of T2 in B2. The rest of the
surface of the container is thermally insulating. The steady profiles of temperature, density,
and heat flux are T (r), ρ(r), and j(r) = −κ(T (r), p)∇T , respectively.

The profile T (r) is determined by the condition ∇ · j = 0 for the steady state, which is
written as {

∇ ·
(
κ(T̃ , p)∇T (r)

)
= 0,

T (r ∈ B1) = T1, T (r ∈ B2) = T2,
(10.39)

with an error of O(ε2). By introducing a scale transformation r → r ′

r =
√

κ(T̃ , p) r ′, (10.40)

as shown in Fig. 20, we express (10.39) as
{

Δ′t(r ′) = 0,
t(r ′ ∈ B′

1) = T1, t(r ′ ∈ B′
2) = T2,

(10.41)

where t(r ′) = T

(√
κ(T̃ , p) r ′

)
. Letting the solution of (10.41) be t∗(r ′), the global tem-

perature is written as

T̃ =
∫
D′ d3r ′ ρ(t∗(r ′), p)t∗(r ′)∫

D′ d3r ′ ρ(t∗(r ′), p)
. (10.42)

We here expand t∗(r ′) in Ξ/Tm:

t∗(r ′) = Tm

(
1 + Ξ

Tm
Φ(r ′) + O(ε2)

)
, (10.43)

T1 = Tm − Ξ

2
, T2 = Tm + Ξ

2
. (10.44)

With these expansions, (10.41) is written as

Δ′Φ(r ′) = 0,

Φ(r ′ ∈ B′
1) = −1

2
, Φ(r ′ ∈ B′

2) = 1

2
. (10.45)
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It is obvious that the solution of (10.45) depends only on the geometry of the surface but is
independent of the scale of the container and all physical parameters. More explicitly, we
confirm that Φ(r ′) is independent of T̃ and p. (10.42) yields

T̃ − Tm = Ξ

∫
D′ d3r ′ ρ(t∗(r ′), p)Φ(r ′) + O(ε)∫

D′ d3r ′ ρ(t∗(r ′), p)

= Ξ

∫
D′

d3r ′ Φ(r ′) + O(ε2), (10.46)

which indicates T̃ − Tm is independent of T̃ and p.
At last, we examine the parameter α which is rewritten as

α = 1

V ′

∫
D′

d3r ′
(
t∗(r ′) − T̃

Ξ

)2

. (10.47)

Using (10.43) and (10.46), we have

α = 1

V ′

∫
D′

d3r ′
[
Φ(r ′) −

∫
D′

d3r ′ Φ(r ′)
]2

, (10.48)

which is determined by the function Φ given by (10.45). For instance, calculating α for
rectangular containers, we obtain

α = 1

12
. (10.49)

11 Concluding Remarks

In this long paper, we have developed a thermodynamic framework for heat conduction states,
which we call global thermodynamics. The key concept of the framework is the global tem-
perature defined by (2.54). We describe spatially inhomogeneous systems by a set of global
thermodynamic variables. Although themethod is rather different from a standard continuum
description, global thermodynamics is built on local equilibrium thermodynamics and the
transportation equation. Thus, it is not contradictory with established theories. Nevertheless,
our framework provides a new prediction on the thermodynamic properties of a liquid–gas
interface in heat conduction. As we explained in §4.4, the rule of connecting two phases at
the interface is out of the standard hydrodynamics with local equilibrium thermodynamics.
Even for this case, global thermodynamics can determine the way how to connect the two
phases by the variational principle that is a natural extension of the Maxwell construction for
equilibrium cases.

Although global thermodynamics is self-consistent, self-contained, and natural, it does
not ensure the validity of the framework. Similarly to other universal theories such as ther-
modynamics, hydrodynamics, and statistical mechanics, global thermodynamics involves
a fundamental assumption on the determination of the steady state. In other words, if our
quantitative prediction on the phase coexistence is denied by experiments, global thermody-
namics could not be valid. In this case, we will attempt to understand the experimental results
carefully so that we have a correct description of phenomena out of equilibrium. This is of
course quite stimulating, and we sincerely wait for experiments. Numerical simulations of
microscopic dynamics such as molecular dynamics also provide useful materials for further
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studies. To the present, no deviation of the interface temperature from the transition tempera-
ture was observed [68,69]. We conjecture that this is due to the insufficiency of the separation
of scales, because the deviation should be observed in systems with enough separation of
scales, as discussed in Ref. [40].

Putting aside the ultimate validity of global thermodynamics,we emphasize that the frame-
work itself is quite fruitful. This paper presents only the minimum backbone, but exhibits
non-trivial simple relations among several quantities. These somewhatmiraculous statements
may suggest a deeper structure behind global thermodynamics. Moreover, importantly, the
story does not end. We did not discuss the Clausius equality for the cases with a liquid-gas
interface, while we confirmed it for single-phase systems in §3.3. The equality connects
“heat” to the entropy change, and the “heat” should be defined as the renormalized one,
called “excess heat”, after subtracting the persistent heat as we reviewed in Introduction. It
is quite natural to study the liquid–gas coexistence by considering an extended form of the
Clausius relation. Since we find that this provides another source of further development of
the framework, we have decided to argue it in a separate paper.

From a theoretical viewpoint in a broad context, we expect that we may derive global ther-
modynamics based on a more microscopic description. Since we know the basic framework
of non-equilibrium statistical mechanics, e.g. the linear response theory, we obtain a linear
response formula of the temperature of the interface. It is quite formal, and it is not evident
that the result satisfies the temperature relation (5.47). Related to this problem, recently, we
have calculated the temperature of the interface for a stochastic order parameter equation
describing the phase coexistence in heat conduction [40]. The result shows that the inter-
face temperature deviates from the equilibrium transition temperature. It should be noted
that global thermodynamics can be formulated for systems that exhibits an order-disorder
transition in heat conduction. By finding a connection between the two theories, we will
understand a microscopic mechanism of the interesting macroscopic phenomenon.

Our theorymay be naturally generalized to that for heat conduction systemswhere a liquid
flows in and a gas flows out. When a steady state is observed, the system exhibits perpetual
evaporation at the interface. The latent heat is persistently generated at the interface and as a
result additional heat flux occurs from the interface to the liquid region and gas region. This
phenomenon was experimentally studied for pure water [78], and a macroscopic temperature
gap as much as about 8K was found at the liquid–gas interface. As a related phenomenon,
the temperature gradient in the inverse direction to the imposed temperature difference was
observed for the liquid–gas coexistence of a heat conducting Helium far from equilibrium
[79]. These phenomena may be closely related to our prediction on the phase coexistence
in heat conduction. We will attempt to explain such phenomena in global thermodynamics.
Furthermore, we also expect that the description of global quantities may be useful for more
complicated systems. Even for phenomena far from equilibrium such as motility-induced
phase separation [80], there may be an appropriate set of global variables on the basis of
local variables whose space-time evolution may be described by another evolution rule. We
will accumulate such examples.

We hope that this paper is a good starting point of many studies.
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