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1. INTRODUCTION

In the following, all manifolds and maps are differentiable of class C*°.

Let M be an n-dimensional closed manifold, N an n-dimensional manifold and f: M — N a
map of M into N. We denote by S(f) the set of the points in M where the rank of the differential
of f is strictly less than n. We call S(f) the singular set of f and f(S(f)) the singular value
set of f. We say that a map f: M — N is a fold map if there exist local coordinate systems

(z1,Z2,...,2y,) around ¢ € M and (y1,¥2,...,¥n) around f(q) € N such that f has one of the
following forms:

(010,420 frre Une1 0 Um0 f) = {(:1:1,9:2, vveyTn—1,Tn), q: regular point,
(z1,22,...,%n-1,22), g: fold point.

Note that for a fold map f: M — N, S(f) is an (n — 1)-dimensional submanifold of M. If the

restricted map f|S(f) : S(f) + N is an immersion with normal crossings, we call f a stable fold

map. '

Let V be an (n — 1)-dimensional submanifold of M and f : M — N a fold map such that
S(f) = V. We denote by F(M, N;V) the set of such fold maps. Note that F(M, N;V) is the
subspace of C°°(M, N) having the Whitney C*-topology. Let T be a tubular neighborhood of
V in M such that there exists a fiber involution of it, h : T — T, whose fixed points set is V
and the composition (f|T) o h coincides with f|T'. Note that for any f € F(M, N;V), we may
assume that T’ does not depend on f but depends on M and V. For M = c(M\T), the closure
of M\T, f|]M : M = N is an immersion.

In {1, 2], Eliashberg studied the existence of a fold map f : M — N. In the appendix of (2],
he proved that the number of the connected components of F(S2, R2; S}) is strictly four, where
52 is an oriented 2-dimensional sphere, R2 is the oriented plane and S} is the equator of S%. We
denote by S1,8;,€; and & the connected components of F(S2, R?; S}). We call a fold map f
in S; a standard fold map and in &; an ezotic fold map (i = 1,2). In the same paper, he showed
the representative elements of each connected components of F(S2, R2;S}). Let e : 2 —+ R?
be the representative element of £; such that Eliashberg gave this map in [2] ([1]). This fold
map is constructed by using two immersed disks called Milnor’s ezamples. We can construct
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another exotic fold map € € £, by using these two Milnor’s examples. Then, there exists a
homotopy E : S2 x [=1,1] — R2 such that e_; = e, e;1 = € and e; € &1, where e; is defined by
et(z) = E(z,t) (z € S2,t € [~1,1]). We call such a homotopy a fold eversion between e and &.

In [2], Eliashberg only stated the existence of a fold eversion. As the theorem of sphere
eversion [7], it is difficult to give a fold eversion at first glance. In this report, we construct
a fold eversion between e and € concretely as Morin and Petit constructed a sphere eversion
concretely (see [6]).

‘The report is organized as follows.

In Section 2, we characterize each connected component of F(S2, R?; S}) and construct fold
maps e and €. We observe local behaviors of a homotopy of fold maps.

In Section 3, we give a fold eversion between e and € concretely.

The author would like to express his sincere gratitude to Prof. Goo Ishikawa, Prof. Syuichi
Izumiya, Prof. Toru Ohmoto and Prof. Osamu Saeki for invaluable comments and encourage-
ment.

2. PRELIMINARIES

In this section, we state each connected component of F(S% R?;S}) precisely. We also see
local behaviors of a homotopy of fold maps. .

Let S? be an oriented 2-dimensional sphere, R? the oriented plane and S3 the equator of
S2. Let T be a tubular neighborhood of S§ in S§? and we fix a trivialization 7' = S} x [-1,1]
such that S§ = S} x {0}. We have a fiber involution & : S§ x [-1,1] = 53 x [—1,1] such that
h(z,t) = (z, —t). Then we may assume that for any f € F(S?,R%; S}), we have

(2.1) (f1S5 x [=1,1])(=,8) = (f1S5 x [-1,1])(=, 1)
and
(2.2) £1S5 x {t} is sufficiently close to f|S§ x {1}

Here, R? has the Euclidean metric. We denote by D% and D% each connected component of
cl(S2\ 7).

Definition 2.1. Let f : §2 - R? be a fold map in F(S%,R?% S}). We say that f|D% and
f |D§ are the same extensions of f|OT if there exists an orientation reversing diffeomorphism
k : D% — D2 such that k|#D% = h and fID% o k = f|D%. Otherwise, we say that f|D% and
f|D% are the different extensions of floT.

Then, Eliashberg’s theorem is stated as follows.

Theorem 2.2 (Eliashberg [2]). Fach connected component of F(S?,R2;5}) = S1US;UE UE,
consists of all fold maps satisfying the following properties.

(1) The connected component Sy (resp. S3) consists of all fold maps f : S2 — R? in
F(S?,R?%;S}) such that fID% and f|D% are the same extensions of f|0T. We set the
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orientation of S? so that f|D% is the orientation preserving (resp. reversing) immersion
and f|D% is the orientation reversing (resp. preserving) immersion.

(2) The connected component & (resp. £2) consists of all fold maps f : S?2 —» R? in
F(S2,R?; S}) such that f|D%, and f|D% are the different extensions of f|0T. We set the
orientation of S? so that f| D% is the orientation preserving (resp. reversing) immersion

and f|D?% is the orientation reversing (resp. preserving) immersion.

Let 7 : R3 — R? be the canonical projection defined by m(z1,z2,23) = (x1,%2) and i :
$2 - R3 the inclusion defined by i(S2) = {(z1,z3,x3) € R? | &2 + 23 + 2§ = 1} and i(S}) =
{(z1, z2,z3) € i(S%) | 23 = 0}. If we choose a suitable orientation on 5%, s = moi is a stable
fold map in S;. The images of s(D%) and s(D%) are depicted as in FIGURE 1.

In [2] ([1]), Eliashberg gave a representative element, e : S? — R2, of £;. Let D? be an oriented
2-dimensional disk. Let m; and mg : D? 9 R2? be two orientation preserving immersions called
Milnor’s exzamples (see FIGURE 2). Note that m; and my are the different extensions of
m1|8D? = my|0D2.

Let gn : D12v — D? be an orientation preserving diffeomorphism and gg : D% — D% an
orientation reversing diffeomorphism such that gg o h|dD% = gNIBD%, holds. Then, we have
the desired fold map e € & such that e|D% = m; o g, e|D% = my o gg and e|T satisfies the
conditions (2.1) and (2.2). The image of e(D%) is depicted as in FIGURE 3 (a) and e(D2%) is
depicted as in FIGURE 3 (b).

If we exchange these two Milnor’s examples on Dlzv and D%, we have another exotic fold map
€ € £ such that &|D% = maogn, €|D% = mjogg and €|T satisfies the conditions (2.1) and (2,2).
The image of &(D%,) is depicted as in FIGURE 4 (a) and &(D%) is depicted as in FIGURE 4 (b).

Note that e and & are stable fold maps. In FIGURES 3 and 4, gray strips are the image of
rectangles properly embedded in D?V and D?S, respectively. We draw these gray strips so that
they help the readers to understand how to extend e|dT (resp. €|8T) to e|D% and e|D% (resp.
€|D% and € D%). They also help the readers to understand e| D% and e|D% (resp. g|D% and
€|D2%) are the different extensions of e|0T (resp. €]07). '

Let f and g be fold maps in F(S%,R?; S3) such that f is a stable fold map. Let y, € g(S(g))
be a singular value of g. Suppose that there exists a singular value y € f(S(f)) such that a map
germ g : (S2, 97 1(y,)NS(g)) — (R?,y,) is A-equivalent to a map germ f : (S, 2y )NS(f)) —
(R%,y;). Then, we call y, a stable fold singular value of g.

Let f and g : S2 — R? be two stable fold maps such that they are in the same connected
component of F(S2,R?;S}). By the relative version of the parameterized multi-transversality
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theorem, there exists a homotopy F : §% x [-1,1] — R? such that F satisfies the following

properties.

(1) For any t € [~1,1], f; : S? — R2? is a fold map such that f_; = f, fi = g and f;
and f are in the same connected component of F(S?, R2; S}). Here, f; is defined by
fi(z) = F(z,t).

(2) There is a finite set of parameter values —1 <t <2 < --- < t; < 1 (possibly empty) in
the open interval (—1,1) such that the following conditions hold.

(2-1) For any t € [-1,1]\ {t1,...,t;}, fs : M — R2 is a stable fold map.
(2-2) For each t; (i =1,...,1), fi, has the unique singular value y; € f;,(S(ft,)) which is
not stable fold singular value of f;, (i = 1,...,1). The map germ

F: (Sz X (ti —&ti+ 5)) (ft:l(yi) N S&) X {ti}) — (R27yi)

is A-equivalent to one of the l-parameter unfoldings in TABLE 1, where ¢ is a

sufficiently small positive real number.

We call such an F' a generic fold homotopy between f and g. We say that each t; a codimension
1 bifurcation value of F and each f;, a codimension 1 fold map in F(S%,R%:8}) (i =1,...,1).
We say that f is the initial stable fold map of F and g is the terminal stable fold map of F. We
denote by I'; the set of all codimension 1 fold maps in F(S2,R?;S}). By using local normal
forms in TABLE 1, I'; is classified into five strata, J¥ and T\ (* = +, — and * = 1, 2). Note that

each stratum may not necessarily be connected.

Remark 2.3. The relative multi-transversality theorem is stated and proved in [4] and the param-
eterized relative multi-transversality theorem is stated in [8]. The .A-equivalence classification of
map germs g : (R2%,5) - (R2,0) and their 1-parameter unfoldings has been studied by Gibson
and Hobbs [3]. Here, S consists of finitely many isolated points of g~1(0).

type | normal form G(z,y,t)
J* | (@1, +1), (22,23 + 43)
Jr | (2, _y% +1), (22, m% + y%)
Jy (ml:y%+t)a($2)w%_yg)
1 | (m +y%,x1 _y% +'t),(:1:2,y%),(—y§,:1:3)
Ty | (z1+43 21— 9] +1),(22,93), (45, 23)
TABLE 1. l-parameter unfoldings

Let G : (R* x R, S x {0}) — (R?,0) be a l-parameter unfolding in TABLE 1. We define
gt : R? - R2 by g4(z) = G(x,t) and suppose that S C S (g0). Using the local normal forms in
TABLE 1, we see that the deformations of set germs g;(R?) around 0 € R? are as depicted in
FIGURE 5.
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Let F : §2 x [~1,1] — R? be a generic fold homotopy such that 0 € [~1,1] is the unique
codimension 1 bifurcation value of F. Then we say that F' crosses I'; positively at fg if one of
the following holds.

(1) When fo € J*,Ji and J; , the number of normal crossing points of f1(S(f1)) is greater
than that of f_1(S(f-1))-

(2) When fo € T} and T, the number of preimage over a point in the new-born triangle of
f1(S(f1)) is greater than that over a point in the vanishing triangle of f_1(S(f-1))-

If a generic fold homotopy F' does not satisfy the above property, then we say that F' crosses
I'1 negatively at fg.

3. FOLD EVERSION BETWEEN e AND €

In this section, we concretely construct a fold eversion E : §2 x [—1,1] — R? between e and
€ such that F is a generic fold homotopy.

To describe a variant of such a fold eversion E, we describe a finite series of images of stable
fold map, et(Dlzv) and et(Dg), through which the reader can imagine the smooth fold eversion.
Note that for any t € [—1,1], €T satisfies the conditions (2.1) and (2.2) and e; is defined by
et(z) = E(z,1).

The initial stable fold map of E is e = e_; and see FIGURE 6.

The stable fold map e;,, FIGURE 7, is obtained from e by crossing J* positively four times.

FIGURE 7
The stable fold map e,,, FIGURE 8, is obtained from ey, by crossing J*, J;” and T} positively

twice, Ty positively four times and J; negatively twice.
FIGURE 8
The stable fold map e,,, FIGURE 9, is obtained from ey, by crossing J* and Tj positively

twice and J; negatively once.

FIGURE 9
The stable fold map e,,, FIGURE 10, is obtained from e,, by crossing T5 positively twice.
IGURE 1

The stable fold map eg,, FIGURE 11, is obtained from e,, by crossing J* positively twice,

2|
o

T, positively four times and J; negatively twice.

3
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The stable fold map e;;, FIGURE 12, is obtained from e,, with the rotation of /2. We see
that ez (D%) = es(D%) and eq(D%) = e45(D%) hold if we ignore the orientations on D% and
Di. :

=
Q
o
=
=
[
no

We obtain the terminal stable fold map, e; = €, of E (FIGURE 13) from e,, by reversing the
generic fold homotopy between e and e, constructed in FIGURES 6-11
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FIGURE 13

Then, we have the desired fold eversion E : 52 x [~1,1] — R? between e and €. In FIG-
URES 6-13, we omit the orientations on et(Dlzv),et(ng) and R2?. Gray strips are the im-
age of rectangles properly embedded in DJ2V and Dg., respectively. We draw the gray strips
so that they help the readers to understand how to extend €8T to e:|D% and e|D% (t =

{_1731132? -+ 86 1})
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s(DR) s(D3)

FIGURE 1. The stable fold map s

my(D?) my(D?)

FIGURE 2. Milnor’s examples m; and m;
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(2) e(D5) (b) e(D3)

FIGURE 3. The stable fold map e

(a) &(D%) (b) &(D?)

FIGURE 4. The stable fold map €



(1) if 0 corresponds to J*

(5) if O corresponds to 1>

FIGURE 5
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FIGURE 6. The stable fold map e

€s (DI2V) €sy (D%)

FIGURE 7. The stable fold map ey,
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€sg (Dlzv ) €sq (Dg')

FIGURE 12. The stable fold map e,

FIGURE 13. The stable fold map ¢



