<table>
<thead>
<tr>
<th>Title</th>
<th>Log-ring size and value size of generators of subrings of polynomials over a finite field (Evolutionary Advancement in Fundamental Theories of Computer Science)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nishio, Hidenosuke</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1375: 8-14</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25569</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Log-ring size and value size of generators of subrings of polynomials over a finite field

Hidenosuke Nishio
西尾英之助 (元・京大理)
Iwakura Miyake-cho 204,
Sakyo-ku, Kyoto, 606-0022 Japan.
email: YRA05762@nifty.ne.jp

Abstract: In the paper we prove that

\[\log_q |(G)| = |V(G)|, \]

where \(G \) is any subset of a polynomial ring \(\mathbb{Q}[X] \) over a finite field \(\mathbb{Q} = GF(q) \) modulo \((X^q - X) \), \((G) \) is the subring of \(\mathbb{Q}[X] \) generated by \(G \) and \(V(G) \) is the set of values of \(G \). \(|A| \) means the cardinality (size) of a set \(A \). This research has its origin and gives another result in our study on the information dynamics of cellular automata where the cell state is a polynomial over a finite field. At the same time, it should be noticed that the equation (*) itself may serve as a powerful tool in the computer algebra—subring generation.

Keywords: polynomials over finite fields, subring, generator, cellular automaton

1 Preliminaries

This paper addresses an algebraic problem which arose in our study of the information dynamics of cellular automata, see the concluding remarks of [4]. However, its presentation here is self-contained and can be read without knowledge of the literature.

The problem is to investigate the structure of subrings of a polynomial ring \(\mathbb{Q}[X] \) modulo \((X^q - X) \) over \(\mathbb{Q} = GF(q), q = p^n \), where \(p \) is a prime number and \(n \) is a positive integer. Evidently \(|\mathbb{Q}| = q \). \(\mathbb{Q}[X] \) is considered to be the set of polynomial functions \(\{g : \mathbb{Q} \rightarrow \mathbb{Q}\} \), which are uniquely expressed by the following polynomial form.

\[g(X) = a_0 + a_1 X + \cdots + a_i X^i + \cdots + a_{q-1} X^{q-1}, \quad a_i \in \mathbb{Q}, \quad 0 \leq i \leq q - 1. \]

(1)

It is easily seen that \(|\mathbb{Q}[X]| = q^q \). For any element \(\alpha \in \mathbb{Q}[X] \), we note that \(\alpha^q - \alpha = 0 \) and \(p\alpha = 0 \). As for the literature of finite fields and polynomials over
them, we refer to the encyclopedia by Lidl and Niederreiter [3].

Notation: For a subset $G \subseteq Q[X]$, by (G) we mean the subring of $Q[X]$ which is generated by G. G is called a generator set of (G). Every element of G is called a generator of (G). For a ring, there may exist more than one generator sets. See Supplements below, where the general case of universal algebra is written, since the ring R with identity element 1 is an algebra $(R, +, -, 0, \cdot, 1)$.

It is an interesting topic to investigate the lattice structure (set inclusion) of subrings of $Q[X]$. Since we consider nontrivial subrings, the smallest subring is Q, while the largest one is $Q[X]$. In this paper we focus on the cardinality of subrings. The cardinality $|B|$ of an arbitrary subring $B \subseteq Q[X]$ is a power of q. For any $1 \leq i \leq q$, there exists a subring B such that $|B| = q^i$, see Theorem (4) below. There can be more than one subrings having the same cardinality, see Example 3 below.

Now we are going to enter the main topics. First, we need to define the following two notions.

2 Log-ring size of G

Taking into account the fact that the cardinality of any subring of $Q[X]$ is a power of q, we define the log-ring size of G by the following equation.

Definition 1. For any subset $G \subseteq Q[X]$, the *log-ring size* $\lambda(G)$ is defined by the following equation.

$$\lambda(G) = \log_q |\langle G \rangle|$$

Note that $1 \leq \lambda(G) \leq q$.

3 Value size of G

Definition 2. Suppose that a subset $G \subseteq Q[X]$ consists of r polynomials: $G = \{g_1, g_2, ..., g_r : g_i \in Q[X], 1 \leq i \leq r\}$. Then an r-tuple of values $(g_1(a), g_2(a), ..., g_r(a))$ for $a \in Q$ is called the value vector of G for a and denoted by $G(a)$. Note that $G(a) \in Q^r$. The value set $V(G)$ of G is defined by

$$V(G) = \{G(a) | a \in Q\}.$$

Finally we define the *value size* of G by $|V(G)|$. Note that $1 \leq |V(G)| \leq q$.

When G consists of one polynomial, say $G = \{g\}$, we simply denote (g) and $V(g)$ in stead of $(\{g\})$ and $V(\{g\})$, respectively.
4 Theorems

We state and prove the main theorem and one of its derivatives. The main theorem appeared without proof in the concluding remarks of our paper [4], page 416. It also gives another (much simpler) proof of Theorem 5.3 of the same paper as the special case of $|V(G)| = \lambda(G) = q$, which corresponds to the nondegeneracy and the completeness of a configuration.

Theorem 3. For any subset $G \subseteq Q[X]$, the log-ring size is equal to the value size.

$$\lambda(G) = \log_q |\langle G \rangle| = |V(G)|. \quad (4)$$

Proof. For given G we assume that $m = q - |V(G)| > 0 \ \dagger$. Then there are m elements $c_1, c_2, \ldots, c_m \in Q$ and a value vector $\gamma \in V(G)$ such that

$$G(c_i) = \gamma, \ 1 \leq i \leq m. \quad (5)$$

and

$$\gamma \neq G(a) \neq G(a') \neq \gamma \text{ for any } a \neq c_i, a' \neq c_i, 1 \leq i \leq m. \quad (6)$$

Such a G is called (c_1, c_2, \ldots, c_m)-degenerate. From the commutativity property of the substitution and the ring operations [4], it is seen that any polynomial function which is obtained from (c_1, c_2, \ldots, c_m)-degenerate functions by ring operations is also (c_1, c_2, \ldots, c_m)-degenerate. Therefore,

$$\langle G \rangle = \{h \in Q[X] \mid h \text{ is } (c_1, c_2, \ldots, c_m) \text{-degenerate}\}. \quad (7)$$

On the other hand, from Equations (5) and (6), the number of all (c_1, c_2, \ldots, c_m)-degenerate polynomials turns out to be $q^{m} = q^{|V(G)|}$. Therefore we see,

$$|\langle G \rangle| = q^{|V(G)|}. \quad (8)$$

Taking \log_q of both sides, we have the theorem. When $m = 0$, every values of G are different, G generates $Q[X]$ and therefore $|\langle G \rangle| = q$. So, taking \log_q we have the theorem.

Using Theorem (3) we have the following result.

Theorem 4. For any $1 \leq i \leq q$, there exits a subring B such that $|B| = q^i$.

Proof. Consider a function h such that $|V(h)| = i$. For example, take a function h such that

$$h(a_0) = a_0, h(a_1) = a_1, h(a_2) = a_2, \ldots,$$

$$h(a_{i-1}) = a_{i-1} = h(a_i) = h(a_{i+1}) = \cdots = h(a_{q-1}). \quad (9)$$

Then by the interpolation formula given in Supplement below, we obtain a polynomial g such that $g(c) = h(c)$, for any $c \in Q$. Therefore we see $|V(g)| = |V(h)|$. Then by Theorem (3) we have $|\langle g \rangle| = |V(g)| = |V(h)| = q^i$.

\dagger In the information dynamics, m is called the degree of degeneracy [4].
5 Polynomials in several indeterminates

Theorems (3) and (4) proved above can be generalized to the polynomial ring in several indeterminates \(X_1, X_2, \ldots, X_n \).

Let \(Q[X_1, X_2, \ldots, X_n] \) be the polynomial ring modulo \((X_1^q - X_1)(X_2^q - X_2) \cdots (X_n^q - X_n)\) over \(Q \). The log-ring size and the value size of \(G \subseteq Q[X_1, X_2, \ldots, X_n] \) are defined in the same manner as the one indeterminate case. Note, however, that \(1 \leq \lambda(G) \leq q^n \) and \(1 \leq |V(G)| \leq q^n \). Then we have the following theorems which can be proved in the same manner as the one variable case.

Theorem 5. For any subset \(G \subseteq Q[X_1, X_2, \ldots, X_n] \),
\[
\lambda(G) = \log_q |\langle G \rangle| = |V(G)|.
\]

(10)

Theorem 6. For any \(1 \leq i \leq q^n \), there exits a subring \(B \) such that \(|B| = q^i \).

6 Examples

Example 1: \(Q = GF(3) = \{0, 1, 2\} \)

\(G_1 = \{a + bX\}, \) where \(b \neq 0 \). \(\langle G_1 \rangle = Q[X] \).

Since \(|Q[X]| = q^q \), \(\lambda(G_1) = q \)

Generally, for an arbitrary \(Q \), any polynomial of degree 1 generates \(Q[X] \) and is called a permutation of \(Q \). Note that \(|V(a + bX)| = q \), since \(Q \) is a field and \(a + bc = a + b'c' \) implies \(c = c' \).

\(G_2 = \{X^2\} \). We see that
\[
\langle G_2 \rangle = \{0, 1, 2, X^2, 2X^2, 1 + X^2, 2 + X^2, 1 + 2X^2, 2 + 2X^2\} \neq Q[X].
\]

So, \(|\langle G_2 \rangle| = 9 = 3^2 \) and \(\lambda(G_2) = 2 \). It is the only nontrivial subring of polynomials over GF(3). On the other hand we see \(|V(X^2)| = 2 \).

Example 2: \(Q = GF(4) = GF(2^2) = \{0, 1, \omega, 1 + \omega\} \). Note that \(\omega^2 = 1 + \omega \), \((1 + \omega)^2 = \omega \) and \(\omega(1 + \omega) = 1 \). \(2a = 0 \) for any \(a \in Q \).

\(X^2: \langle X^2 \rangle = Q[X] \)
\(\lambda(X^2) = 4 \), \(|V(X^2)| = 4 \).

\(X^3: \langle X^3 \rangle = \{a + bX^3 : a, b \in Q\} \).
\(|\langle X^3 \rangle| = 4^2 \) \((\lambda(X^3) = 2) \), \(|V(X^3)| = 2 \).
$X + X^3: \langle X + X^3 \rangle = \{ a + bX + cX^3 : a, b, c \in Q \}.
|\langle X + X^3 \rangle| = 4^3 \ (\lambda(X + X^3) = 3). \ |V(X + X^3)| = 3.$

Example 3: $Q = \text{GF}(5) = \{0, 1, 2, 3, 4\}$

We consider the following singleton subsets; $G_3 = \{X^4\}$, $G_4 = \{X^2\}$, $G_5 = \{X + X^3 + X^4\}$ and $G_6 = \{X^3\}$.

Then we have the following results on value size and log-ring size.

$G_3 = X^4 : \langle X^4 \rangle = \{ a + bX^4 : a, b \in Q \}.$
$|\langle X^4 \rangle| = 5^2 \ (\lambda(X^4) = 2).$ On the other hand $|V(X^4)| = 2.$

$G_4 = X^2:
\langle X^2 \rangle = \{ a + bX^2 + cX^4 : a, b, c \in Q \}.$
$|\langle X^2 \rangle| = 5^3 \ (\lambda(X^2) = 3).$ On the other hand $|V(X^2)| = 3.$

Problem: Show $|\langle X + X^3 + X^4 \rangle| = 5^4$.
Also, show $|\langle 4X + 4X^2 + 2X^3 + X^4 \rangle| = 5^4$.
Are they the same subring of cardinality 5^4?
On the other hand $|V(X + X^3 + X^4)| = 4$.

$G_6 = X^3 : \langle X^3 \rangle = Q[X]$, since $(X^3)^2 = X^2$ and $X^3 \cdot X^2 = X$.
$\lambda(X^3) = 5$. It is seen that $|V(X^3)| = 5$.

$G_7 = X + X^2: |V(X + X^2)| = 3. \ |\langle G_7 \rangle| = 3 ?$

$G_8 = G_4 \cup G_7 = \{X^2, X + X^2\}: V(G_8) = \{(0, 0), (1, 2), (4, 1), (4, 2), (1, 0)\}$.
So, $|V(G_8)| = 5$. On the other hand $\langle G_8 \rangle = Q[X]$. So, $\lambda(G_8) = 5$.

It is clear that the subrings of a polynomial ring constitutes a lattice (set inclusion) structure. In order to calculate the complete diagram, even for small q, we need a computer software. However, as far as we know, there does not exist such a program that generates every subring of a polynomial ring over a finite field modulo $X^q - X$.

Here are shown partial inclusion relations of the above Example 3, $q = 5$.

$Q \subset \langle X^4 \rangle \subset \langle X^2 \rangle \subset Q[X].$

$Q \subset \langle X + X^2 \rangle \subset Q[X].$

Note that $\langle X^2 \rangle \neq \langle X + X^2 \rangle$ and $\langle X^4 \rangle$ is not included by $\langle X + X^2 \rangle$.
In fact, from (11) we see that in any polynomial in $\langle X^2 \rangle$ the coefficient of the term X^3 is zero, while in $\langle X + X^2 \rangle$ we see for example $(X + X^2)^2 = X^2 + 2X^3 + X^4$.

7 Supplements

7.1 Interpolation formula

Given a function $h(x) : Q \to Q$, the following interpolation formula gives a unique polynomial function $f(x)$ over Q such that $f(c) = h(c), \forall c \in Q$. In Chapter 5, page 369 of the encyclopedia by Lidl and Niederreiter [3], Equation (7.20) gives the interpolation formula for several indeterminates. Here we cite its one indeterminate version.

$$f(x) = \sum_{c \in Q} h(c)(1 - (x - c)^{q-1})$$

(12)

By this formula we can compute the coefficients $a_i, 0 \leq i \leq q - 1$ in formula (1) from the value set of h, though inefficient.

7.2 Generators

A (universal) algebra 2 is a pair $A = (A, O)$, where A is a nonempty set called a universe and O is a set of operations f_1, f_2, \ldots on A. For a nonnegative integer n, an n-ary operation on A is a function $f : A^n \to A$. A subuniverse of an algebra A is a subset of A closed under all of the operations of A. The collection of subuniverses of A is denoted by Sub(A). For any subset B of A, we define

$$\langle B \rangle^A = \bigcap \{S \in \text{Sub}(A) | B \subseteq S\}$$

called the subuniverse of A generated by B. If $\langle B \rangle^A = A$, then we say that B is a generating set for A.

Classification: According to Schmid [5], the elements of A is classified into three categories:

(1) irreducibles: elements that must be included in every generating set.
(2) nongenerators: elements that can be omitted from every generating set.
(3) relative generators: elements that play an essential role in at least one generating set.

This classification is closely related to the information contained by a polynomial in a configuration.

2 For the universal algebra, the reader is referred to [2]
Decision problems: Bergman and Slutzki asked and answered the following questions [1]:

(2): What is the size of the smallest generating set of a given (finite) algebra? Answer: NP-complete.

These results give an answer to the computational complexity problem whether a configuration is complete or not.

8 Acknowledgements

The main body of this research was carried out during my stay at Faculty of Informatics, University of Karlsruhe, September-October, 2003. The simulation program of $CA[X]$ made by T. Saito was helpful in calculating subrings of $Q[X]$ given in Examples. Many thanks are due to them.

References