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ABSTRACT 

 High-speed atomic force microscopy (HS-AFM) can be used to observe the structural dynamics 

of biomolecules at the single-molecule level in real time under near-physiological conditions; 

however, its spatiotemporal resolution is limited. Complementarily, molecular dynamics (MD) 

simulations have higher spatiotemporal resolutions, albeit with some artifacts. Here, to integrate 

HS-AFM data and coarse-grained molecular dynamics (CG-MD) simulations, we develop a 

particle filter method that implements a sequential Bayesian data assimilation approach. We test 

the method in a twin experiment. First, we generate a reference HS-AFM movie from the CG-MD 

trajectory of a test molecule, a nucleosome; this serves as the "experimental measurement." Then, 

we perform a particle filter simulation with 512 particles, which captures the large-scale 

nucleosome structural dynamics compatible with the AFM movie. Comparing particle filter 

simulations with 8–8192 particles, we find that using greater numbers of particles consistently 

increases the likelihood of the whole AFM movie. By comparing the likelihoods for different ionic 

concentrations and timescale mappings, we find that the "true" concentration and timescale 

mapping can be inferred as the largest likelihood of the whole AFM movie but not that of each 

AFM image. The particle filter method provides a general approach for integrating HS-AFM data 

with MD simulations.  
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INTRODUCTION 

Biomolecular functions are generally realized via their structural dynamics. Albeit they are of 

central importance, characterizing protein structures at both high spatial and temporal resolutions 

remains a major unsolved challenge. On the one hand, X-ray crystallography, cryo-electron 

microscopy, and other techniques can provide structure models at high spatial resolution, i.e., 

atomic resolution, though these are limited mainly to static snapshot information without time 

resolution. On the other hand, time-resolved spectroscopies, fluorescent imaging, and other 

techniques can directly observe the temporal dynamics of proteins, though their spatial resolution 

is limited. Among the other possible techniques, high-speed atomic force microscopy (HS-AFM) 

has the unique feature of being able to directly observe biomolecular structural dynamics under 

near-physiological conditions and at the single-molecule level.1–7 However, the resolutions of the 

obtained AFM movies are typically limited in both time and space to ~sub-100 ms and ~1 nm (in 

the lateral direction to an AFM stage), respectively. Moreover, the HS-AFM data of biomolecules 

generally contain noise. Thus, HS-AFM data by themselves are not sufficient to model structural 

dynamics at near-atomic resolutions. 

On the other hand, molecular dynamics (MD) simulations provide information with a very high 

spatiotemporal resolution: ~1 Å in space and ~1 fs in time. However, MD simulations are limited 
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to reachable timescales; typically, these are ~1 μs for the standard all-atom model under standard 

computational capacities.8,9 More importantly, MD simulations are based on force fields that 

approximate to the "true" atomic forces. While recent progress in force fields has in many cases 

enabled MD simulations to estimate observables within experimental error margins, in some cases 

these MD simulation estimations deviate significantly from the experimental data. In such cases, 

it is crucial to systematically correct the MD simulation data using experimental data. In fact, many 

recent studies have attempted to develop methodologies to achieve this integration.10–20  

In this study, we develop a particle filter method to integrate HS-AFM data with MD simulations. 

Using this combination, we aim to exploit the advantages of both types of data to obtain high-

resolution structural dynamics insights. Our particle filter method uses a sequential Bayesian data 

assimilation approach.21–24 Compared against other data assimilation approaches, such as the 

Kalman filter method for linear dynamical system and the ensemble Kalman filter method, the 

particle filter method offers one of the most general yet computer-intensive approaches. The 

method represents the probability distribution of structures at a time as a finite set of structure 

samples—referred to as "particles"—for data assimilation. For all particles (i.e., structure samples), 

MD simulations are used to propagate protein structures for a short time period corresponding to 

the time interval between two consecutive HS-AFM image acquisitions in a procedure referred to 
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as "prediction." This is followed by a likelihood estimation of the HS-AFM still-images at the time 

and a resampling of particles according to the estimated likelihoods in the so-called "filtering" 

procedure. Then, we proceed to the next round of prediction and filtering procedures. Alternate 

iterations of these two procedures results in an ensemble of structural dynamics that are compatible 

with the experimental time-series data. Considering the gap between the reachable timescales of 

all-atom MD simulations and the time resolutions of HS-AFM measurements, we chose a coarse-

grained (CG) molecular model for the simulation; with this, we could accelerate the MD simulation 

by several orders of magnitude, achieving ~ms timescales.25,26 

The particle filter method has been successfully applied to nonlinear deterministic dynamical 

systems with relatively few degrees of freedom. Compared to many of these cases, the application 

of the particle filter method to HS-AFM data poses major challenges. First, AFM provides surface 

height data of molecules bound on the stage plane, which is displayed as a two-dimensional image. 

Thus, filtering is performed in the measurement space of the pixel numbers, which contains 

unusually numerous degrees of freedom.24,27,28 Second, biomolecular dynamics are Brownian and 

intrinsically stochastic. How this intrinsic stochasticity is reconciled with the particle filter method 

remains an open question. Recently, Matsunaga et al. successfully developed a particle filter 

method for the Förster resonance energy transfer data of a highly stochastic system—that of a 
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folding protein.14 Third, an order-of-magnitude difference exists between the timescales of a single 

MD step in CG-MD simulations (~1 ps per MD step) and the time interval between two consecutive 

frames in HS-AFM measurements (~sub-100 ms per frame). Data assimilation in such cases poses 

a major challenge.    

 

THEORY AND METHODS 

In this section, we first introduce the general theory of the particle filter method. Then, the specific 

procedures for particle filter simulations using AFM measurement data and CG-MD simulations 

are described. Next, details of the CG-MD simulation are provided. Finally, the protocol of the 

twin experiment used to test the method is presented. 

 

Particle Filter: General Theory 

The particle filter method—also referred to as sequential Monte Carlo—is a general Bayesian data 

assimilation approach that integrates experimental time-series data with a simulation model. We 

begin this subsection with a brief introduction to the general theory (see, e.g., Refs. 22 and 23 for 

a thorough description). For a simpler explanation of the particle filter theory, we use a discrete 

time description, in which time takes the integer values 𝑡𝑡 =  0, 1,⋯ , T. In the current context, one 
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integer corresponds to the time interval between two consecutive experimental data acquisitions, 

which is considerably longer than the time for a single MD step. We denote the molecular structure 

of interest at time 𝑡𝑡 as a state-space vector 𝒙𝒙𝑡𝑡  and model the system time propagation as a 

stochastic simulation model, as follows:  

 𝒙𝒙𝑡𝑡 = 𝒇𝒇𝑡𝑡(𝒙𝒙𝑡𝑡−1,𝒗𝒗𝑡𝑡). (1) 

Here, 𝒇𝒇𝑡𝑡 defines the system time propagation, and  𝒗𝒗𝑡𝑡 is a system noise vector. Next, we define 

the experimental measurement at time 𝑡𝑡 as a vector 𝒚𝒚𝑡𝑡; this vector depends on the state-space 

vector 𝒙𝒙𝑡𝑡 and can be written as 

 𝒚𝒚𝑡𝑡 = 𝒉𝒉(𝒙𝒙𝑡𝑡,𝒘𝒘𝑡𝑡), (2) 

where 𝒉𝒉 denotes the measurement model and 𝒘𝒘𝑡𝑡 is a measurement noise vector.  

Under the sequential approach, the molecular system 𝒙𝒙𝑡𝑡  at time 𝑡𝑡  is estimated from the 

experimental data 𝒚𝒚1:𝑡𝑡 using the conditional probability distribution 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡); here, the time-

series experimental data from time 1  to 𝑡𝑡  are abbreviated as 𝒚𝒚1:𝑡𝑡 = {𝒚𝒚1,𝒚𝒚2,⋯ ,𝒚𝒚𝑡𝑡} . Using 

Bayes' theorem, we obtain 

 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) = 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚𝑡𝑡,𝒚𝒚1:𝑡𝑡−1) 

=
𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡,𝒚𝒚1:𝑡𝑡−1)𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1)

𝑝𝑝(𝒚𝒚𝑡𝑡|𝒚𝒚1:𝑡𝑡−1)  

=
𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡)𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1)

∫ 𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡)𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1)𝑑𝑑𝒙𝒙𝑡𝑡
, (3) 
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where we have used Eq. (2) to derive the third from the second line. Using this formula, the prior 

distribution 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) is updated to the posterior distribution 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) by incorporating the 

new experimental data 𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡,𝒚𝒚1:𝑡𝑡−1)  as a likelihood function and the denominator 

𝑝𝑝(𝒚𝒚𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) as a normalization factor. This procedure is referred to as "filtering," and 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) 

is termed the filtering distribution. The prior 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) in Eq. (3) can be calculated using the 

time propagation of the system probability distribution from 𝑝𝑝(𝒙𝒙𝑡𝑡−1|𝒚𝒚1:𝑡𝑡−1), as 

 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) = �𝑝𝑝(𝒙𝒙𝑡𝑡,𝒙𝒙𝑡𝑡−1|𝒚𝒚1:𝑡𝑡−1)𝑑𝑑𝒙𝒙𝑡𝑡−1 

= �𝑝𝑝(𝒙𝒙𝑡𝑡|𝒙𝒙𝑡𝑡−1,𝒚𝒚1:𝑡𝑡−1)𝑝𝑝(𝒙𝒙𝑡𝑡−1|𝒚𝒚1:𝑡𝑡−1)𝑑𝑑𝒙𝒙𝑡𝑡−1 

= �𝑝𝑝(𝒙𝒙𝑡𝑡|𝒙𝒙𝑡𝑡−1)𝑝𝑝(𝒙𝒙𝑡𝑡−1|𝒚𝒚1:𝑡𝑡−1)𝑑𝑑𝒙𝒙𝑡𝑡−1, (4) 

where we have assumed 𝒙𝒙𝑡𝑡 to have the Markovian property when deriving the third line. Eq. (4) 

is referred to as "prediction," and 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) is termed the predictive distribution. Thus, the 

time evolution from 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) to 𝑝𝑝(𝒙𝒙𝑡𝑡+1|𝒚𝒚1:𝑡𝑡+1) can be performed in one round of the two-step 

procedure: prediction followed by filtering (Figure 1a). By repeating these rounds, we can 

sequentially estimate the time series of the distribution.  
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Figure 1. The particle filter method used to integrate the high-speed atomic force microscopy (HS-

AFM) data with molecular simulations. a) Sequential updating via the two-step procedure, 

involving prediction (horizontal arrows) and filtering (vertical arrows) steps in a sequential 

Bayesian filtering framework. b) Procedure for one round of the particle filter simulation. 
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Under the particle filter method, 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡)  is approximated by a set of 𝑁𝑁  independent 

structure samples �𝒙𝒙𝑡𝑡|𝑡𝑡
(𝑖𝑖)� drawn from the distribution 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡), where 𝑖𝑖 is used to index the 

structure samples (𝑖𝑖 = 1,⋯ ,𝑁𝑁). The approximation is expressed as follows: 

 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) ≈
1
𝑁𝑁
�𝛿𝛿�𝒙𝒙𝑡𝑡 − 𝒙𝒙𝑡𝑡|𝑡𝑡

(𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

. (5) 

In the field of data assimilation, structure samples are conventionally called "particles;" this is the 

origin of the particle filter method’s name. In accordance with this convention, the term "particle" 

is used in this study. In the prediction step, the simulation for each of the 𝑁𝑁 particles (i.e., structure 

samples) is performed independently for certain steps; the set of final structures obtained by the 

simulation are denoted as �𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) � and approximate the following distribution: 

 𝑝𝑝(𝒙𝒙𝑡𝑡+1|𝒚𝒚1:𝑡𝑡) ≈
1
𝑁𝑁
�𝛿𝛿�𝒙𝒙𝑡𝑡+1 − 𝒙𝒙𝑡𝑡+1|𝑡𝑡

(𝑖𝑖) �
𝑁𝑁

𝑖𝑖=1

. (6) 

The subsequent filtering step is realized by estimating the likelihood of each particle 𝑖𝑖 as 𝜆𝜆𝑡𝑡+1
(𝑖𝑖) ≡

𝑝𝑝�𝒚𝒚𝑡𝑡+1�𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) � and drawing 𝑁𝑁 particles from the approximate predictive distribution �𝒙𝒙𝑡𝑡+1|𝑡𝑡

(𝑖𝑖) � 

according to the corresponding likelihood; this results in a new set of 𝑁𝑁 particles �𝒙𝒙𝑡𝑡+1|𝑡𝑡+1
(𝑖𝑖) �, 

which estimate the filtering distribution 𝑝𝑝(𝒙𝒙𝑡𝑡+1|𝒚𝒚1:𝑡𝑡+1) . This process is referred to as 

"resampling." Using Eq. (3), 𝑝𝑝(𝒙𝒙𝑡𝑡+1|𝒚𝒚1:𝑡𝑡+1) can be approximated as follows: 
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𝑝𝑝(𝒙𝒙𝑡𝑡+1|𝒚𝒚1:𝑡𝑡+1) =
𝑝𝑝(𝒚𝒚𝑡𝑡+1|𝒙𝒙𝑡𝑡+1)𝑝𝑝(𝒙𝒙𝑡𝑡+1|𝒚𝒚1:𝑡𝑡)

∫ 𝑝𝑝(𝒚𝒚𝑡𝑡+1|𝒙𝒙𝑡𝑡+1)𝑝𝑝(𝒙𝒙𝑡𝑡+1|𝒚𝒚1:𝑡𝑡)𝑑𝑑𝒙𝒙𝑡𝑡+1
 

≈
𝑝𝑝(𝒚𝒚𝑡𝑡+1|𝒙𝒙𝑡𝑡+1) 1

𝑁𝑁∑ 𝛿𝛿�𝒙𝒙𝑡𝑡+1 − 𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) �𝑁𝑁

𝑖𝑖=1

∫ 𝑝𝑝(𝒚𝒚𝑡𝑡+1|𝒙𝒙𝑡𝑡+1) 1
𝑁𝑁∑ 𝛿𝛿 �𝒙𝒙𝑡𝑡+1 − 𝒙𝒙𝑡𝑡+1|𝑡𝑡

(𝑖𝑖) �𝑁𝑁
𝑖𝑖=1 𝑑𝑑𝒙𝒙𝑡𝑡+1

 

=
1

∑ 𝑝𝑝�𝒚𝒚𝑡𝑡+1�𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) �𝑁𝑁

𝑖𝑖=1

�𝑝𝑝�𝒚𝒚𝑡𝑡+1�𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) �𝛿𝛿�𝒙𝒙𝑡𝑡+1 − 𝒙𝒙𝑡𝑡+1|𝑡𝑡

(𝑖𝑖) �
𝑁𝑁

𝑖𝑖=1

 

=
1

∑ 𝜆𝜆𝑡𝑡+1
(𝑖𝑖)𝑁𝑁

𝑖𝑖=1
�𝜆𝜆𝑡𝑡+1

(𝑖𝑖) 𝛿𝛿�𝒙𝒙𝑡𝑡+1 − 𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) �

𝑁𝑁

𝑖𝑖=1

 

= �𝛽𝛽𝑡𝑡+1
(𝑖𝑖) 𝛿𝛿�𝒙𝒙𝑡𝑡+1 − 𝒙𝒙𝑡𝑡+1|𝑡𝑡

(𝑖𝑖) �
𝑁𝑁

𝑖𝑖=1

, 
(7) 

where 𝛽𝛽𝑡𝑡+1
(𝑖𝑖) ≡ 𝜆𝜆𝑡𝑡+1

(𝑖𝑖) ∑ 𝜆𝜆𝑡𝑡+1
(𝑖𝑖)𝑁𝑁

𝑖𝑖=1�  represents the weight of the 𝑖𝑖-th particle. By approximating 𝛽𝛽𝑡𝑡+1
(𝑖𝑖)  

with non-negative integers 𝑚𝑚𝑡𝑡+1
(𝑖𝑖)  that satisfy  

 𝛽𝛽𝑡𝑡+1
(𝑖𝑖) ≈

𝑚𝑚𝑡𝑡+1
(𝑖𝑖)

𝑁𝑁
       ��𝑚𝑚𝑡𝑡+1

(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

= 𝑁𝑁�, (8) 

𝑝𝑝(𝒙𝒙𝑡𝑡+1|𝒚𝒚1:𝑡𝑡+1) can be approximated by a set of 𝑁𝑁 particles, as follows: 

 

𝑝𝑝(𝒙𝒙𝑡𝑡+1|𝒚𝒚1:𝑡𝑡+1) ≈
1
𝑁𝑁
�𝑚𝑚𝑡𝑡+1

(𝑖𝑖) 𝛿𝛿�𝒙𝒙𝑡𝑡+1 − 𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) �

𝑁𝑁

𝑖𝑖=1

 

=
1
𝑁𝑁
�𝛿𝛿�𝒙𝒙𝑡𝑡+1 − 𝒙𝒙𝑡𝑡+1|𝑡𝑡+1

(𝑖𝑖) �,
𝑁𝑁

𝑖𝑖=1

 
(9) 

where �𝒙𝒙𝑡𝑡+1|𝑡𝑡+1
(𝑖𝑖) � is a set of 𝑚𝑚𝑡𝑡+1

(𝑖𝑖) -replicated 𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) , such that 
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 �𝒙𝒙𝑡𝑡+1|𝑡𝑡+1
(𝑖𝑖) � ≡ �𝒙𝒙𝑡𝑡+1|𝑡𝑡

(𝑖𝑖) ,  ⋯ ,𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖)

�����������
𝑚𝑚𝑡𝑡+1

(𝑖𝑖)

�. (10) 

As a result, the estimated filtering distribution is likely to include many copies of particles with 

large weights, excluding particles with small weights from the estimate.  

 

Particle Filter: Application to AFM Movie with CG-MD Simulation 

Here, we apply the general theory to the AFM measurement data, which describe the time 

propagation of the surface shapes of biomolecular structures bound on the stage plane. The state 

vector 𝒙𝒙𝑡𝑡  represents the three-dimensional Cartesian coordinates of all atoms involved in the 

biomolecular structure. Note: here, an "atom" refers to a "CG particle," which represents a group 

of atoms; because the term "particle" is used to represent a structure sample in the particle filter 

method, we avoid using the term "CG particle." With the CG-MD method described below, we can 

simulate the time propagation of 𝒙𝒙𝑡𝑡. The measurement vector 𝒚𝒚𝑡𝑡 represents a two-dimensional 

(𝑥𝑥𝑥𝑥-plane) AFM image, which corresponds to the surface envelope height (the 𝑧𝑧-coordinate) of 

the biomolecule, stacked in a one-dimensional vector. The dimensions of the vector correspond to 

the image pixel size 𝑁𝑁𝑝𝑝. 
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To simplify calculations for the HS-AFM data, we here assume a linear additive noise 𝒘𝒘𝑡𝑡 in the 

measurement model, as follows:  

 𝒚𝒚𝑡𝑡 = 𝒉𝒉(𝒙𝒙𝑡𝑡) + 𝒘𝒘𝑡𝑡. (11) 

We further assume that 𝒘𝒘𝑡𝑡  is white, spatially uncorrelated Gaussian noise with a standard 

deviation 𝜎𝜎. Thus, the likelihood function for filtering, 𝜆𝜆𝑡𝑡 ≡ 𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡), can be written as 

 

𝜆𝜆𝑡𝑡 = �
1
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1
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2
𝑗𝑗 ∈ pixels

2𝜎𝜎2
�. (12) 

In the particle filter method, the procedure for one round is applied, as shown in Figure 1b. A set 

of 𝑁𝑁  particles �𝒙𝒙𝑡𝑡|𝑡𝑡
(𝑖𝑖)�   (𝑖𝑖 = 1,⋯ ,𝑁𝑁)  is used to approximate the distribution of molecular 

structures of the target. Using each molecular model as an initial structure, we perform CG-MD 

simulations for certain MD steps, corresponding to the time interval between two consecutive HS-

AFM image acquisitions. The set of 𝑁𝑁  final structures of the CG-MD simulation �𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) � 

provides an approximated predictive distribution. For the subsequent filtering step, an AFM image 

of each final structure 𝒉𝒉�𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) � is generated as described below. Then, the likelihood of each 

particle 𝑖𝑖, expressed as 
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 𝜆𝜆𝑡𝑡+1
(𝑖𝑖) =

1
(2𝜋𝜋𝜎𝜎2)𝑁𝑁𝑝𝑝/2 exp�−

∑ �(𝒚𝒚𝑡𝑡+1)𝑗𝑗 − ℎ𝑗𝑗�𝒙𝒙𝑡𝑡+1|𝑡𝑡
(𝑖𝑖) ��

2

𝑗𝑗 ∈ pixels

2𝜎𝜎2
�, (13) 

is estimated. Finally, we resample the particles by drawing 𝑁𝑁  particles with probabilities 

proportional to their likelihoods, as 𝛽𝛽𝑡𝑡+1
(𝑖𝑖) ≡ 𝜆𝜆𝑡𝑡+1

(𝑖𝑖) ∑ 𝜆𝜆𝑡𝑡+1
(𝑖𝑖)𝑁𝑁

𝑖𝑖=1� ; this results in the next filtering 

distribution �𝒙𝒙𝑡𝑡+1|𝑡𝑡+1
(𝑖𝑖) � . By repeating the rounds, we can estimate the time series of the 

approximated distribution of biomolecular structure dynamics, in a way that integrates the AFM 

measurement data.  

 

Coarse-Grained Molecular Dynamics Simulation 

One prerequisite to using the particle filter method is an accurate simulation model for the system 

of interest. For HS-AFM data, we require a simulation model for biomolecular structural dynamics; 

in this study, we employ a CG-MD simulation. To test this method, we chose a nucleosome as the 

test molecule; it is a protein-DNA complex that serves as a fundamental unit of chromatin folding 

in eukaryotic cells. The nucleosome contains a histone octamer and a duplex DNA of 223 base 

pairs (bps); the 601 strong positioning sequence of 145 bps is flanked by 39-bp linker DNA of the 

poly CG sequence, as described in our previous work.29 The nucleosome was placed on a plane 

that represents the AFM stage (Figure S1).  
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We used the CG-MD method, which we had already extensively applied to nucleosomes.29–31 

Because it was described at length in our previous work, we only summarize it here. Each amino 

acid in histones is represented by a CG atom located at its Cα position, whereas each nucleotide in 

DNA is represented by three CG atoms, representing sugar, phosphate, and base. The histone 

octamer was modeled using the structure-based AICG2+ potential32 and residue-type-specific 

excluded volume repulsion. The missing histone tails of histone octamer in the nucleosome were 

modeled using a statistical potential.33 The DNA was modeled with the 3SPN.2C model, developed 

by the de Pablo Group.34 The protein-DNA interactions include electrostatic (in the form of the 

Debye–Hückel potential), generic excluded volume, and sequence-nonspecific hydrogen bond 

interactions.29 Charges in the protein-DNA interaction are defined as follows: -1.0e for phosphate 

and acidic residues (Asp, Glu) in the flexible tails and +1.0e for basic residues (Lys, Arg) in the 

flexible tails; Partial charges in the histone octamer core are estimated using the RESPAC 

method.35 The all-atom reference structure of the system is prepared using the crystal structure of 

the nucleosome (PDB ID: 3LZ0) and an ideal 39-bp segment of DNA.  

All CG-MD simulations were performed in CafeMol version 3.236, using Langevin dynamics at 

a temperature of 300 K with default parameters (except those of the excluded volume repulsion). 

Residue-type-specific radius parameters were uniformly rescaled by a factor of 1.1, to prevent the 
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histone tails from becoming inserted between two DNA strands.29 A stage potential of the Lennard–

Jones type (with an energy coefficient 𝜖𝜖 = 1.0 and length scale equal to the radius of the CG 

particles) was applied to model the AFM stage and to prevent unrealistic diffusion.  

We used an MD step of 0.3 in CafeMol time units, which corresponded to ~15 fs. However, it 

should be noted that to speed up conformational dynamics, we utilized a small friction coefficient 

in the Langevin equation (the default value in CafeMol is two orders of magnitude smaller than the 

friction coefficient estimated from water viscosity). Moreover, we ignored the hydrodynamic effect 

in Langevin dynamics. As a result, the apparent MD timescale mapping of ~15 fs per MD step was 

inappropriate; we had previously found that a single MD step can instead be approximately mapped 

to ~1 ps.26 

The system was first equilibrated for 106 MD steps, to stabilize it on the AFM stage. Then, we 

performed a CG-MD simulation for 107 MD steps with position restraints applied at the centers of 

mass of the three histone multimers (two H2A/H2B dimers and one H3/H4 tetramer), to prevent 

diffusion on the AFM stage.  

To construct AFM images from simulated nucleosome structures, we used the collision detection 

algorithm implemented in the afmize37,38 software, for which the probe tip radius is 5 Å and the 

half apex angle is 5°. We monitored structural changes of the nucleosome using the first principal 
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component (PC1, 45% contribution) obtained from principal component analysis (PCA), 39,40 using 

an in-house program. In the PCA, we used the DNA phosphate’s Cartesian coordinates for the 

trajectory snapshots. Notably, the coordinates of histones were excluded because the histone core 

structure is always intact, whereas the structure of histone tails is nearly random. 

 

 Computer Experiment Protocol 

We tested the described method—combining HS-AFM data with CG-MD simulations via the 

particle filter method—using a twin experiment.  

First, we performed a CG-MD simulation for a test system (a nucleosome) at a 0.2 M monovalent 

ion concentration for 107 MD steps; this served as the ground truth. In the simulation, the 

nucleosome was flat on the stage; furthermore, its core was sufficiently stable and did not 

disassemble under the simulation conditions. On the other hand, the histone tails and linker DNAs 

were highly flexible and adopted a wide variety of conformations (Figure S2). The histone tails 

changed their conformations very rapidly; however, the linker DNA movements were so large and 

slow that we expected to be able to observe them using HS-AFM. We took snapshots for every 106 

MD steps in the simulation; using these, we constructed synthetic HS-AFM "measurement" data. 

The resulting 11 time-point AFM images (including the initial one) constituted the reference AFM 
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movie. To test the effect of the AFM measurement’s lateral resolution, we prepared two sets of 

reference AFM movies: one with a resolution of 2 nm × 2 nm and a pixel size of 15 × 15, and 

one with a resolution of 1 nm × 1 nm and a pixel size of 30 × 30.  

Then, using an in-house script, we performed ten rounds of particle filter simulations with the 

reference AFM measurement data; we selected several different particle population sizes (8, 32, 

128, 512, 2048, and 8192), ionic concentrations (0.1, 0.2, and 0.4 M), simulation timescale 

mappings (106 and 105 MD steps per round), and AFM image pixel resolutions (2 nm × 2 nm and 

1 nm × 1 nm). The standard deviation of the measurement noise—denoted as 𝜎𝜎—was set as 3.0 

Å. 

 

RESULTS 

Particle Filter Simulation to Infer Structural Dynamics of a Biomolecule 

To examine the particle filter method for HS-AFM, we performed a twin experiment. We first 

created an MD trajectory of nucleosomes with a 0.2 M ionic concentration, to serve as the ground 

truth; from this, we created a synthetic AFM movie that served as the putative measurement data. 

With this reference AFM movie, we performed a particle filter simulation with 512 particles, i.e., 

512 structure samples drawn from a given probability distribution. The reference AFM movie 
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contained ten frames in addition to the initial one; thus, we alternatively repeated the prediction 

and filtering [Eqs. (6) and (7), respectively] ten times. Each prediction corresponded to 512 

independent CG-MD simulations of 106 MD steps. Figure 2a shows the trajectories of the 512 

particles along the first principal component (PC1) of the ground truth trajectory (blue). PC1 

describes the large-amplitude motions of the target molecules, for which the dominant contribution 

is due to the linker DNA fluctuations lateral to the AFM stage. During each prediction period, the 

stochastic nature of the MD simulations resulted in a rapid increase in structural diversity. In the 

final structure ensemble of each prediction process, the linker DNAs were oriented in various 

directions owing to their flexibility, whereas the histone core remained intact. Notably, even though 

the final structure ensemble was rather broad, it was still far from the equilibrium ensemble; the 

initial and final structures in each round were significantly correlated (the correlation coefficient 

of PC1 was 0.439).  

The filtering process began by calculating the likelihood of the reference AFM image for each 

of the structures. The resulting likelihood distribution was extremely broad owing to the 

conformational diversity in the linker DNAs (Figure 2b; the constant pre-factors in the log-

likelihood were neglected throughout). With these 512 likelihoods expressed as relative 

probabilities, we drew a new set of 512 particles (i.e., we resampled). We found that the likelihood 
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of a certain particle was—in nearly all cases (eight out of ten rounds)—overwhelmingly larger than 

those of the other particles; as such, this single particle was resampled 512 times as the initial 

structures for the next round, as shown in Figure 2a. This is often termed degeneracy; we discuss 

the issue in more detail later.  
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Figure 2. Results of particle filter simulations for a nucleosome with 512 particles. a) Trajectories 

of the first principal component (PC1) for all particles (brown), the particle that resulted in the 

largest likelihood (red), and the ground truth (blue). b) (left) Likelihood distribution of particles for 

each round; the largest log likelihood for each round is indicated by a red arrow and its value is 
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denoted on the right-hand side. (right) The AFM images with the largest likelihood for each round 

(Largest) and their corresponding synthetic experimental measurements (Exp.). Scale bar: 5 nm. 

 

The widths of the likelihood distributions differ over the ten rounds (Figure 2b). The distributions 

of the first and the tenth rounds are much wider than those of the others. This difference seems to 

depend on the target conformations; the higher the position of the end of the linker DNA, the wider 

the likelihood distribution. This is most likely attributable to the fact that the linker DNA rarely 

moves away from the stage; thus, this conformation is difficult to sample. We confirmed the 

robustness of this likelihood distribution tendency by repeating the same particle filter simulations 

three times (Figure S3). From a diverse conformational distribution, it is possible to appropriately 

extract conformations that reproduce the pseudo-experimental results, by resampling of the 

particles based on the estimated likelihoods. In fact, we see that the computed AFM image of the 

particle with the largest likelihood for each round strongly resembles the corresponding pseudo-

experimental one (Figure 2b, right-hand images). Thus, it was confirmed that the developed method 

works well, as expected. The values of largest likelihood for each round indicate a clear difference; 

the wider the likelihood distribution, the smaller the value of the largest likelihood. This tendency 

can be understood as follows: when the ground-truth molecule changes to a rare conformation, the 
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majority of the sample structures are far from the ground-truth, this results in a diverse range of 

likelihood values, and the largest likelihood tends to be smaller.  

The total likelihood over ten rounds is simply a product of the likelihood in each round, and the 

most plausible movement of the target system can be estimated from the series of trajectories 

exhibiting the largest total likelihood (Movie S1). However, in general particle filter approaches, 

the entire trajectory exhibiting the largest total likelihood is not necessarily composed of the 

trajectories with the largest likelihood for each round; all three trials in the current work resulted 

in such a case. The results are reasonable, because only one or two particles with large likelihoods 

were resampled from the wide likelihood distributions. Generally, in the particle filter approach, it 

is preferable for a certain number of particles to be resampled, because this avoids particle 

degeneracy problems and can approximate well the conformational distribution. However, in our 

three trials with 512 particles, only one particle was resampled in almost all thirty rounds (except 

for two); this particle degeneracy might cause issues. Various methods have been proposed to solve 

the problem, although the simplest method is to increase the number of particles.  

 

 Dependency on Particle Numbers 
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The accuracy of the particle filter method depends on the number of particles; hence, we now 

investigate this dependency. In particular, the degeneracy problem can be resolved by increasing 

the particle number. We repeated the same particle filter simulations using 8, 32, 128, 2048, and 

8192 particles, in addition to the 512-particle case described above.  
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Figure 3. Results of the particle filter method with different numbers of particles: 8, 32, 128, 512, 

2048, and 8192. a) The largest logarithm of the likelihood of the entire atomic force microscopy 

(AFM) movie. b) The corresponding likelihood for each round. c) The corresponding AFM image 
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for each round. For the case of 512 particles, the likelihoods obtained in the three trials are indicated 

separately in a) and b); in c), the reference AFM images (Exp.) are also shown. Scale bar: 5 nm. 

 

In Figure 3, we summarize the results of the most probable trajectory exhibiting the largest total 

likelihood, obtained via particle filter simulations with different numbers of particles. Comparing 

the AFM images obtained from the particle filter method (as the most probable trajectory) with 

those of the reference movie (Figure 3c), we initially observe that these conformations resemble 

each other in many filtering steps, regardless of the number of particles. Thus, the particle filter 

method works reasonably well in all cases. However, by performing a more quantitative 

comparison, we see that the maximum total likelihood has a clear dependence on the particle 

number: it increases steadily as the particle number increases (Figure 3a). As expected, these results 

suggest that a more accurate result can be obtained by simply increasing the number of particles. 

Considering the likelihoods of each round for different numbers of particles, we identified subtler 

cases (Figure 3b). In some cases, a smaller particle number led to a larger likelihood, which 

opposed the overall trend. This reversal of the order was observed more frequently for smaller 

particle numbers, suggesting that the conformational distribution was too wide to be properly 

approximated by such small numbers of particles. The most prominent example is the comparison 
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between the 8- and 32-particle cases. Prior to the fourth round, the likelihoods for the 32-particle 

case exceeded those for the 8-particle one, as expected; however, in the four subsequent rounds, a 

reversal was observed. In the seventh round, the two linker DNAs in the reference AFM image did 

not cross each other, which is a relatively rare conformation. For 8 particles, a parallel type of 

structure was observed by chance, and it was chosen as the largest likelihood particle. However, 

the structure selected in the 32-particle case exhibited a crossing of linker DNAs (Figure 3c). As 

the number of particles increased, such a reversal was less likely to occur. However, reversal did 

occur, albeit only rarely. Therefore, to assess the number of particles required in the particle filter 

method, we needed to compare results from multiple rounds rather than those of just one. 

Regarding the degeneracy issue: even for 2048 or 8192 particles, the resampling resulted in only 

a single particle occupying all the samples for the next round (18 out of 20 rounds). Thus, increasing 

the number of particles up to 8192 does not resolve the particle degeneracy problem. 

 

Bayesian Inference of Physical Parameters: Ionic Concentration 

One important purpose of data assimilation techniques (including the particle filter method) is to 

infer the unobserved (hidden) properties/parameters. In the case of HS-AFM measurements, the 

behaviors of biomolecules can be affected by environmental physical parameters that are difficult 
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to observe; these include the local ionic strength and interactions with the surface and probe tip. 

Given measurement data, we can infer the physical parameters within the framework of the 

Bayesian approach. Here, we examine whether a physical parameter (i.e., the ionic concentration 

of the solution) can be inferred using the particle filter method for the HS-AFM data. To this end, 

we performed particle filter simulations of the nucleosome at 0.1, 0.2, and 0.4 M monovalent ion 

concentrations. We note that the ground-truth MD trajectory and subsequent reference AFM movie 

were obtained for the 0.2 M ionic concentration; furthermore, we considered the ion concentration 

by simply using the Debye screening length in the Debye–Hückel interaction model, although the 

counter-ion condensation around DNA is much more complex than a simple screening and calls 

for more refined treatment.41–43 For each of the ionic concentrations, a ten-round particle filter 

simulation with 512 particles was repeated three times. 

The MD simulation results showed that the structural dynamics of the nucleosome (particularly 

the linker DNAs) varied according to the ionic concentration. Compared to the case at a 0.2 M 

ionic concentration, DNAs in the terminal parts of the nucleosome at 0.4 M are more unwrapped, 

leading to larger fluctuations. On the other hand, at 0.1 M, the partial unwrapping of the DNAs is 

reduced, compared to the 0.2 M case.  
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Figure 4. Inferences of ionic concentrations from particle filter simulations, for three trials at 0.1, 

0.2, and 0.4 M ionic strengths. a) The largest logarithm of the likelihood of the entire atomic force 

microscopy (AFM) movie. b) The corresponding likelihood for each round. c-f) AFM images for 

the fifth round of c) the reference and the largest likelihood particle obtained for the first trial at d) 

0.1 M, e) 0.2 M, and f) 0.4 M. Scale bar: 5 nm. 
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The largest total likelihoods obtained over ten rounds can be seen to depend on the ionic strength, 

as shown in Figure 4a. The largest total likelihood in the 0.2 M case was consistently the largest of 

the three ionic concentration cases. From these results, 0.2 M can be selected as the most probable 

value for the ionic strength.  

Regarding the likelihood for each round: in some rounds (e.g., the fifth round), the difference in 

likelihood was seen to depend on the ionic concentrations (Figure 4b). All corresponding AFM 

images (Figure 4d-f) shared overall shapes with the reference image (Figure 4c) but showed 

significant differences in the details. Notably, the largest likelihood estimated for the 0.2 M ionic 

concentration in each round did not always exceed that at other ionic concentrations (Figure 4b). 

Thus, the ionic concentration must be inferred by combining the results of multiple rounds. 

 

Bayesian Inference of Physical Parameters: Timescale Mapping 

Although time is a physical parameter in which there is no apparent room for inference, we needed 

to infer the appropriate simulation timescale in the HS-AFM data-driven particle filter approach. 

First, we noted that an order-of-magnitude difference exists between the time intervals of one MD 

simulation step and two consecutive HS-AFM data acquisitions. Modern HS-AFM equipment can 

measure at a rate of 30–60 ms per frame,44 whereas a recent all-atom MD simulation used ~1–5 fs 
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per MD step.45 To speed up sampling, we employed the CG-MD simulation with a small friction 

coefficient and without hydrodynamic interactions. More generally, it has been argued that CG-

MD simulations cannot accurately reproduce real molecular dynamics.46–48 Thus, an apparent CG-

MD time is not appropriate to use, but an effective timescale of one CG-MD step needs to be 

inferred posteriorly. On the other hand, AFM measurements assume interactions of modest strength 

between the molecule of interest and stage surface; otherwise, the molecules would move away 

from the surface (owing to the interactions with the probe tip) or would diffuse too rapidly on the 

stage to be observable. These surface interactions would slow down intrinsic molecular motions to 

some extent. However, in the CG-MD simulations, we did not explicitly include molecular 

structures of the AFM stage, which affect the motion of the specimen molecule (i.e., the 

nucleosome) in the lateral direction. In short, when we perform particle filter simulations for HS-

AFM data, the effective simulation timescale (relative to the measurement) is not a straightforward 

parameter, and we may be required to infer an optimal timescale mapping between the MD step 

and HS-AFM measurement.  

Motivated by these arguments, and using our twin-experiment framework, we examined whether 

a timescale mapping for pseudo-experimental data could be appropriately inferred. To this end, we 

performed a particle filter simulation for two different timescale mappings: 106 and 105 MD steps 
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per round (i.e., per the time interval between two consecutive HS-AFM data acquisitions). We 

noted that the ground-truth MD trajectory consisted of 106 MD steps per round. Thus, the latter 

case used an order-of-magnitude-faster timescale mapping than the ground-truth data. For each of 

the timescale mappings, a ten-round particle filter simulation (with 512 particles) was repeated 

three times. 

 

 

 

Figure 5. Timescale inferences obtained via particle filter simulations, using three trials for each 

timescale mapping [i.e., 106 and 105 molecular dynamics (MD) simulation steps per one atomic 

force microscopy (AFM) image]. a) The largest logarithm of the likelihood of the entire AFM 

movie. b) The corresponding likelihood for each round.  
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The largest total likelihoods obtained over the ten rounds showed a clear difference depending 

on the timescale mappings (Figure 5a). When the timescale mapping matched (i.e., 106 MD steps 

per round), all three of the largest total likelihoods obtained by the particle filter simulation were 

significantly larger than those estimated for the timescale of 105 MD steps per round, as expected. 

These results suggest that using 106 MD steps per round as the timescale mapping is more suitable 

than using 105 MD steps per round.  

On the other hand, the maximum likelihood for each round did not always distinguish the two 

timescale mappings; thus, the rounds could be classified into two types: “distinguishable” and 

“indistinguishable” (Figure 5b). The second, sixth, seventh, and tenth rounds were of type 

“distinguishable,” in which there was a significant difference in likelihood between the two 

timescale mappings (except for the seventh and tenth rounds in the second trial for the faster 

timescale mapping). This suggests that it is difficult to obtain the structural changes observed in 

these rounds of pseudo-experimental measurements when using 105 MD steps. For example, the 

ground-truth trajectory exhibited marked structural DNA changes between the first and second 

rounds (Figure 3c, top line). Such large changes are not easily realized using 105 MD steps. Thus, 

the maximum likelihood in the second round was notably small for the case of 105 MD steps per 
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round. In the other rounds, the likelihood values for the two timescale mappings were similar and 

difficult to distinguish from each other (type “indistinguishable”). These results suggest that the 

target structures can be realized with a smaller number of MD steps than the actual value. Thus, 

the timescale mapping between the observation and simulation should not be estimated using a 

single round but several. To summarize, by using approximately ten rounds of measurement 

(though not within a single measurement), we can robustly infer the correct timescale mapping.  

 

Effect of Pixel Resolution of AFM Images 

The higher pixel resolutions of the AFM images could provide more detailed information regarding 

the structures of the observed biomolecules. Thus, the particle filter simulation using higher-

resolution AFM images was expected to reproduce biomolecular motions more accurately. We 

performed two different types of particle filter simulation, using AFM images with low and high 

pixel resolutions (2 nm × 2 nm and 1 nm × 1 nm, respectively) to investigate the effects of 

differences in pixel resolution. For each resolution, a ten-round particle filter simulation with 512 

particles was repeated three times.  
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Figure 6. Dependencies of inferences on the pixel resolutions of atomic force microscopy (AFM) 

images, for three trials at each pixel resolution (2 nm × 2 nm and 1 nm × 1 nm). a) The largest 

logarithm of the likelihood of the entire AFM movie. b) The corresponding likelihood for each 

round.  

 

Contrary to expectations, the largest total likelihoods “per pixel” obtained showed no significant 

difference between the two pixel resolutions (Figure 6a). We noted that the likelihood “per pixel” 

was used to compare results with different numbers of pixels, because the value of likelihood of an 

AFM image is defined as the product of the likelihood values for each pixel (as expressed in Eq. 

(12)); thus, it depends upon the number of pixels. Moreover, the likelihood per pixel for each round 

did not distinguish the two pixel resolutions (Figure 6b). These results suggest that using AFM 

images with higher pixel resolutions does not lead to the reproduction of more likely motions by 
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the current particle filter simulation. Thus, the original pixel resolution was sufficient to distinguish 

biomolecular structures and resulted in the successful estimation of their plausible movements. 

Because this resolution was readily attainable in the current HS-AFM experiment, we expect the 

current particle filter method to be effective for actual HS-AFM data.  

 

  



37 

 

DISCUSSION 

In the current particle filter method for HS-AFM movies, we found that during the filtering 

process, the likelihood of one particle overwhelmed those of all the other; thus, this particle 

dominated the resampling and—in nearly all cases—caused the ensemble to be occupied by copies 

of the single structure; this is termed degeneracy and is generally regarded as undesirable in the 

particle filter method. The severe degeneracy observed in the current study can be attributed to a 

combination of factors. First, it was partly due to the unusually many degrees of freedom in the 

measurement vector (i.e., the so-called "curse of dimensionality").27 Second, it was partly due to 

the large disparity between the time interval of two consecutive HS-AFM image acquisitions and 

that of one MD step. Third, the intrinsic dynamics of biomolecules are an example of stochastic 

Brownian motion; that is, trajectories deviate over time. The second and third points combined 

cause the particles (i.e., structure samples) to deviate considerably from each other. Then, the many 

degrees of freedom and large deviations among particles together result in degeneracy. Although 

a straightforward method of avoiding degeneracy may be to increase the number of particles, we 

found that using large numbers of particles (as many as 8192) does not resolve the issue. In practical 

use, we cannot increase the number of particles beyond this.  
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We noted that, although undesirable, the degeneracy does not directly indicate the failure of the 

particle filter method. In fact, with the given number of particles, we successfully found the high-

resolution spatiotemporal trajectory of the nucleosome, which was compatible with the reference 

HS-AFM movie to within a certain accuracy. More importantly, our examination of the parameter 

inference, ionic concentration, and timescale mapping suggested that we could infer the "true" 

physical parameter from the likelihood of the entire AFM movie. Thus, we conclude that, even 

with the severe degeneracy, the particle filter method for HS-AFM works well to a certain extent.  

However, because of the degeneracy, we must proceed with caution when applying the particle 

filter method to HS-AFM. For instance, when inferring the ionic concentration, we found that 

within a single filtering step, the likelihood of the step derived from the "true" parameter simulation 

was smaller than that derived from the wrong one (see, e.g., the ninth round in Figure 4b). Thus, 

the parameter inference from a single-step likelihood may be erroneous. In other particle filter 

approaches, researchers often include particles featuring different sets of physical parameters and 

then infer these parameter values through repetitive filtering processes.49 When sufficiently diverse 

(i.e., free from degeneracy) particles are picked up in each resampling process, this method of 

parameter inference works well, as demonstrated in previous studies. However, with the 

degeneracy observed in the current work, this protocol results in an erroneous inference. We must 
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apply multiple rounds of filtering to compare the likelihoods from different parameters. 

Resampling across different parameters must be performed after many rounds of filtering.   

A popular alternative to the particle filter method is the ensemble Kalman filter method50; this 

retains the particle representation in the prediction step but uses Kalman gain in the filtering process. 

In general, the ensemble Kalman filter is a powerful method that can avoid degeneracy issues. 

However, in the assimilation to the HS-AFM data, we require a reverse mapping from the filtered 

image to the molecular structure. This in turn requires a flexible fitting method of the molecular 

structure to the given AFM image. Though possible38, this flexible fitting demands a non-negligible 

computer time, which precludes the ensemble Kalman filter method’s practical application to the 

current problem. 

In this paper, we examined the particle filter method for a synthetic HS-AFM movie achieving 

promising results; thus, the next step is to apply it to real experimental HS-AFM data. Several 

additional factors should be considered. First, real HS-AFM data contain considerable 

measurement noise, the statistical nature of which is currently unclear. This noise should be 

spatially correlated and non-isotropic; that is, its correlation should be stronger in the x-direction 

(the direction of the probe scanning) than in the y-direction. This analysis is currently underway. 

Second, HS-AFM measurement is a complex process consisting of various unknown elements. 
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One such element is the unknown size and shape of the AFM probe tip. When analyzing 

experimentally obtained data, we need to estimate the size and shape of the probe tip. This 

estimation is possible using the particle filter simulation in the same way as the reported Bayesian 

inference approach. As a preliminary twin experiment, we used the AFM images generated by 

three different AFM probe tip radii (0.5, 5, and 50 Å) and performed resampling for the first round 

of the first trial of the particle filter simulation (with 512 particles). In all three cases, only a single 

particle was resampled; however, the three resampled particles differed from each other (Figure 

S4). Among the three resampled particles, we found the largest likelihood values we obtained for 

the 5 Å tip, which corresponded to the tip radius for the reference image. Thus, the radius of a 

probe tip can be inferred by comparing likelihoods. Another element is the conformational 

deformation of the sample molecule induced by tip-sample interaction, which results in HS-AFM 

image distortion or disappearance. It is possible to perform explicit MD simulations that include 

the tip-sample interaction. Third, the interactions between the biomolecules of interest and the stage 

surface atoms are not homogeneous. Generally, accurate bottom-up modeling of these interactions 

may be difficult owing to the lack of knowledge of the surface. We may need to infer effective 

interactions via the Bayesian approach, as was performed for the ionic concentrations in this study. 

Finally, related to the third point, mapping the timescales between the experiment and CG-MD 
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simulations is another factor to be considered (see the first paragraph in the subsection "Bayesian 

Inference of Physical Parameters: Timescale Mapping"). Using the method described above, we 

can apply Bayesian inference to calibrate the timescale mapping.  
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CONCLUSION 

We developed a particle filter method to combine HS-AFM measurement data with CG-MD 

simulations. The particle filter method alternately propagates the structure ensemble using MD 

simulations over a short time period and then resamples the updated ensemble based on the 

likelihood of the HS-AFM image for that time. Through a twin experiment conducted upon a test 

molecule (i.e., a nucleosome), we confirmed that the developed method works well with ~512 

particles. The particle filter simulations can infer the "true" ionic concentration and "true" timescale 

mapping, using the likelihood of the entire AFM movie.  
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Figure S1. CG model of nucleosome (with linker DNAs) on the AFM stage. (PDF) 
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Figure S2. Conformations of nucleosomes generated via CG-MD simulations. a–j) Molecular 

model (upper) and corresponding synthetic AFM images (lower) for every 106 MD steps. Scale 

bar: 5 nm. (PDF) 

Figure S3. Likelihood distribution of particles for each round, obtained using the particle filter 

simulation with 512 particles. a) First trial (same as Figure 2). b) Second trial. c) Third trial. The 

position of each bin containing a largest likelihood is indicated by a red arrow. (PDF) 

Figure S4. AFM images for different AFM probe tip radii. a) The ground-truth AFM-like image 

produced with a 5 Å tip radius. b-d) AFM-like images for the largest likelihood particle obtained 

with an AFM probe tip radius of b) 0.5 Å (log-likelihood: -1386.40), c) 5 Å (log-likelihood: -849.8), 

and d) 50 Å (log-likelihood: -5504.6) for the first round of the particle filter simulation with 512 

particles. Scale bar: 5 nm. (PDF)  

Movie S1. A series of trajectories with the largest total likelihood obtained from the first trial of 

the particle filter simulation (512 particles). The reference AFM images are shown in the 

background. The number of MD steps (in units of 103) is displayed in the upper-left-hand corner. 

Scale bar: 5 nm. (AVI) 

This information is available free of charge via the Internet at http://pubs.acs.org 
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