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Abstract This paper proposes a necessary optimality condition derived by a limit operation in projective
space for optimization problems of polynomial functions with constraints given as polynomial equations.
The proposed condition is more general than the Karush-Kuhn-Tucker (KKT) conditions in the sense that
no constraint qualification is required, which means the condition can be viewed as a necessary optimality
condition for every minimizer. First, a sequential optimality condition for every minimizer is introduced
on the basis of the quadratic penalty function method. To perform a limit operation in the sequential
optimality condition, we next introduce the concept of projective space, which can be regarded as a union
of Euclidian space and its points at infinity. Through the projective space, the limit operation can be reduced
to computing a point of the tangent cone at the origin. Mathematical tools from algebraic geometry were
used to compute the set of equations satisfied by all points in the tangent cone, and thus by all minimizers.
Examples are provided to clarify the methodology and to demonstrate cases where some local minimizers
do not satisfy the KKT conditions.

Keywords: Nonlinear programming, optimality condition, Karush-Kuhn-Tucker condi-
tions

1. Introduction

Optimality conditions are fundamental to nonlinear programming (NLP). They theoreti-
cally play an essential role in the analysis of optimization problems and practically pro-
vide important tools to solve optimization problems. A variety of optimality conditions
have been investigated for optimization problems with both equality and inequality con-
straints [3, 5, 12, 17]. Among these, the Karush-Kuhn-Tucker (KKT) conditions are most
popular and have become the basis of many numerical algorithms for solving NLP prob-
lems, such as Newton’s method, the interior point method, and the augmented Lagrangian
method [6, 19].

The KKT conditions cannot function as necessary optimality conditions on their own;
they need an additional condition on minimizers called a constraint qualification (CQ). For
example, the first-order necessary condition for optimality consists of the KKT conditions
and the linear independence CQ (LICQ), where it is assumed that the gradients of all
equality constraints and active inequality constraints are linearly independent at minimiz-
ers. There are various CQs, including the Slater CQ (SCQ), Mangasarian-Fromovitz CQ
(MFCQ), Abadie’s CQ (ACQ), and Guignard’s CQ (GCQ) [12, 20]. GCQ is in a sense the
weakest CQ that ensures the KKT conditions are necessary optimality conditions [13]. In
other words, a local minimizer that violates the GCQ cannot be obtained by solving the
KKT conditions.

Let us give a simple example in which the KKT conditions are no longer necessary

114



Symbolic Method for Optimality Condition 115

conditions for optimality. Consider an NLP problem that minimizes a cost function x1 + x2
under equality constraints (x1−1)2+x22−1 = 0 and (10x1−8)2+(5x2)

2−64 = 0. The feasible
set of this problem consists of three points, which are shown along with the contours of the
cost function located at them in Figure 1. Obviously, this problem has a global minimizer
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Figure 1: Feasible set (intersections of solid curves) and contours of cost function (dashed
lines)

at (x1, x2) = (0, 0). However, at this minimizer, the constraints violate the GCQ, and
hence the minimizer does not satisfy the KKT conditions. For the following discussion, we
say that a minimizer is non-KKT type if it does not satisfy the KKT conditions. Note that
there are many optimization methods based on the KKT conditions (such as the augmented
Lagrangian method) and that none of them can find non-KKT type minimizers.

As necessary optimality conditions for all local minimizers, including non-KKT type
ones, Andreani et al. [2] proposed the approximate-KKT (AKKT) conditions. Roughly
speaking, these conditions claim that each local minimizer is the convergence point of a
sequence consisting of points that approximately satisfy the KKT conditions. Such opti-
mality conditions described by the existence of a convergent sequence are called sequential
optimality conditions [2] and are the subject of intensive investigation these days [1–3, 17].
Although AKKT conditions are especially useful for giving a termination criterion in numer-
ical optimization algorithms [2, 14], they are difficult to verify for a given candidate. Indeed,
to determine whether the given candidate can be a minimizer or not, we have to show the
existence of a sequence, which is more difficult than, for example, showing whether or not
the KKT conditions are satisfied at the candidate. From this viewpoint, it is important to
develop a necessary condition described by equations like the KKT conditions but satisfied
even by non-KKT type minimizers.

To find such a new necessary optimality condition, we first consider the quadratic penalty
function method, which is a conventional method to relax a constrained NLP into an un-
constrained one. With this method, if global minimizers of the penalty function converge to
a point as a penalty parameter goes to infinity, the convergence point is a global minimizer
of the original NLP. This convergence property does not assume any CQ, so the property is
valid even for non-KKT type global minimizers. This is why we select the quadratic penalty
function method as the starting point for finding a new necessary optimality condition. In-
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deed, it has previously been proven by using a certain penalty function method that the
AKKT conditions are valid for all minimizers [2]. More precisely, that proof guarantees the
existence of a sequence for each local minimizer that converges to the minimizer and that
consists of stationary points of a certain penalty function. This is the basis of our proposed
condition.

The stationary points of a penalty function can be viewed as functions of the penalty
parameter defined by an implicit function representation consisting of the stationary condi-
tions. This leads us to consider the limit operation of the penalty parameter to infinity in
the stationary conditions. Note that just substituting infinity for the penalty parameter is
meaningless because this ends up neglecting the terms from the cost function in the station-
ary conditions. Therefore, we utilize symbolic computation to perform the limit operation
of the penalty parameter precisely. First, we extend the equations obtained from the sta-
tionary conditions defined on a Euclidian space to those defined on a projective space, which
can be regarded as a union of a Euclidian space and its points at infinity. Next, we make
some changes of variables through the projective space and transform the limit operation to
infinity into the limit operation to zero. Finally, we use a tangent cone to precisely perform
the limit operation to zero and to obtain the new necessary condition by using symbolic
computation techniques from algebraic geometry.

Note that the Fritz-John (FJ) conditions [12] are also satisfied by all local minimizers
and described by equations. However, the points that satisfy the FJ conditions often include
an infinite number of points that are neither locally optimal nor even KKT. In fact, we can
make all feasible points satisfy the FJ conditions by replacing an equality constraint with
two inequality constraints or by adding a redundant inequality constraint [4]. In Section 6,
we show a case where the new condition has finite solutions even though the FJ conditions
have infinite ones.

In this paper, we consider nonlinear constrained optimization problems (COPs) defined
as

min
x
f(x)

s. t. g(x) = 0,
(1.1)

where x ∈ Rn is a vector of indeterminates, f : Rn → R is a cost function, and g : Rn → Rm

is a vector-valued function describing the constraints. We assume that functions f and g
consist of polynomials to utilize symbolic computation techniques from algebraic geometry.
We also assume that the feasible set

X := {x ∈ Rn | g(x) = 0}

is nonempty throughout this paper. Note that although formulation (1.1) includes only
equality constraints, it can also handle inequality constraints by introducing slack variables.
Specifically, by introducing a slack variable s ∈ R, an inequality constraint g̃(x) ≤ 0 is
converted into an equality constraint g(x, s) := g̃(x) + s2 = 0. Therefore, we can solve a
COP with the equality constraint g(x, s) = 0 and indeterminates [xT s]T ∈ Rn+1 instead
of the original COP with inequality. It is well-known that the converted COP is equivalent
to the original one in terms of minimizers, and this conversion technique has been used by
many researchers from the 1960s [18] onward [5, 11]. For COPs (1.1), we provide a new
necessary optimality condition with no CQs that is satisfied by all local minimizers.

This paper is organized as follows. In Section 2 of this paper, we introduce the various
notations and concepts of the mathematical tools utilized in this work. Section 3 introduces
the quadratic penalty function method and demonstrates the existence of a stationary point
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sequence that converges to each minimizer of the original COP. In Section 4, we show how
the limit of a penalty parameter to infinity can be reduced to the limit of an additional
parameter to the origin by utilizing a projective space. This transformation of a problem
enables us to precisely compute the limit points of the trajectories that the stationary
points of a penalty function move along. After that, in Section 5, we propose an algorithm
to symbolically obtain the equations holding at the limit points by means of a tangent cone.
In Section 6, examples are provided to illustrate the methodology. We conclude in Section 7
with a brief summary and mention of future work.

Notations

For the field of real numbers R and a vector x = [x1 · · ·xn]T, R[x] denotes the ring of
polynomials in the components of x over R. An ideal generated by polynomials f1, . . . , fs ∈
R[x] is defined as I = 〈f1, . . . , fs〉 := {a1f1 + · · · + asfs | a1, . . . , as ∈ R[x]}, and the
polynomials f1, . . . , fs are called generators of the ideal I. For an ideal I ⊂ R[x], V(I) ⊂ Rn

is the set of elements in Rn where all polynomials in I vanish; it is called the algebraic set
defined by I. Conversely, for an algebraic set V ⊂ Rn, I(V ) ⊂ R[x] is a set of all the
polynomials that vanish everywhere in V ; it is called the ideal of V . If an ideal I is
generated by {f1, . . . , fs}, V(I) equals the set of elements where all the generators f1, . . . , fs
vanish [7]. In this case, V(I) is also denoted by V(f1, . . . , fs). For a mapping g(x) =
[g1(x) · · · gm(x)]T : Rn → Rm, gx(x) denotes an n × m matrix whose (i, j) component
consists of ∂gj(x)/∂xi. In particular, when m = 1 holds, or equivalently when g(x) is
a function, gx(x) denotes a column vector [∂g(x)/∂x1 · · · ∂g(x)/∂xn]T. diag[d1, . . . , dn]
denotes the diagonal matrix whose diagonal components are d1, . . . , dn. Function f(x, a) is
also denoted by f(x; a) when we emphasize that a is regarded as a parameter rather than a
part of the variables of f .

2. Mathematical Preliminaries

This section introduces the mathematical concepts utilized in this paper. We refer to [7, 8]
for most of the definitions and lemmas here.

2.1. Projective space

In this subsection, we introduce a few fundamental notations and concepts of projective
geometry, which are useful for dealing with infinities. In projective geometry, we define the
equivalence class

[L] := {all lines parallel to a given line L ⊂ Rn}
as a point at infinity of Rn. Note that this definition of points at infinity is a straightforward
extension of the characterization of points in Rn; namely, a point in Rn can be characterized
by a set of all lines, any two of which cross each other at that point. This definition of points
at infinity enables us to integrate Rn and points at infinity into a projective space Pn, where
it is no longer necessary to distinguish points of Rn from those at infinity.

Definition 2.1 (Projective Space). An n-dimensional projective space over R denoted by
Pn is the set of equivalence classes of the equivalence relation ∼ on Rn+1 \ {0}, where ∼ is
defined for x,y ∈ Rn+1 \ {0} as

x ∼ y def⇐⇒ ∃λ ∈ R \ {0} s.t. x = λy. (2.1)

An equivalence class p ∈ Pn is also denoted by [X0 : · · · : Xn] with any point [X0 · · · Xn]T ∈
p, and this representation is called a homogeneous coordinate of p.
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In this paper, we use uppercase characters to describe homogeneous coordinates. Note
that a projective space is a topological space with the quotient topology induced from the
natural topology of Rn+1 \ {0} by the quotient mapping Rn+1 \ {0} 3 [X0 · · · Xn]T 7→ p =
[X0 : · · · : Xn] ∈ Pn.

To show that a projective space Pn is the union of a Euclidian space Rn and a set of all
points at infinity of Rn, let us consider an open subset U0 defined as

U0 := {[X0 : · · · : Xn] ∈ Pn | X0 6= 0} ⊂ Pn. (2.2)

This open subset can be identified with Rn because there is a homeomorphism φ0 : Rn → U0

that maps [x1 · · ·xn]T ∈ Rn to [1 : x1 : · · · : xn] ∈ U0; the inverse mapping φ−10 can be defined
as

φ−10 : U0 3 [X0 : · · · : Xn] = [1 : X1/X0 : · · · : Xn/X0] 7→ [X1/X0 · · · Xn/X0]
T ∈ Rn.

For the complement H0 := Pn\U0, each point [0 : X1 : · · · : Xn] ∈ H0 uniquely determines a
line L through the origin by L = {x = [x1 · · · xn]T ∈ Rn | i ∈ {1, . . . , n}, t ∈ R, xi = tXi}.
We can consider the equivalence class consisting of all lines parallel to L, which defines a
point at infinity, and thus there is a bijective correspondence between all points of H0 and
those at infinity of Rn ∼= U0. From this viewpoint, H0 is called the hyperplane at infinity of
U0.

Note that there are many other pairs of subsets that have the same property as (U0, H0).
Indeed, for each i = 1, . . . , n, we can define subsets Ui and Hi as

Ui := {[X0 : · · · : Xn] ∈ Pn | Xi 6= 0}, (2.3)

Hi := Pn \ Ui. (2.4)

For each pair, we can identify Ui with Rn by a homeomorphism φi : Rn → Ui defined in
the same way as U0, and under this identification, Hi can be identified with the set of all
points at infinity of Ui. The set of n pairs {(Ui, φi)}ni=1 can be regarded as an atlas of the
projective space Pn when we treat the space as a manifold, and each pair (Ui, φi) is called
a chart of Pn.

It can be easily shown that the intersection

Ui ∩Hj = {[X0 : · · · : Xn] ∈ Pn | Xi 6= 0, Xj = 0}
is dense in Hj if and only if i 6= j holds, which indicates each subset Ui contains almost all
points at infinity of the other subsets Uj. This means that, by changing the chart from Uj to
Ui (j 6= i), we can reduce any computations in the hyperplane at infinity Hj to computations
of finite values in Ui ∼= Rn.

2.2. Homogenization and dehomogenization

In this paper, we convert a COP into a set of equations and find its solutions where a penalty
parameter goes to infinity. The projective space (mentioned in the previous subsection)
enables us to treat such solutions as points in Rn rather than those at infinity. To do this, we
extend a polynomial equation over Rn to that over Pn, which leads to the homogenizations
of polynomials.
Definition 2.2 (Homogenization of Polynomial). For a real coefficient polynomial f ∈
R[x1, . . . , xn], the homogenization of f is the homogeneous polynomial fhom ∈ R[X0, . . . , Xn]
defined as

fhom(X0, . . . , Xn) := Xd
0 · f

(
X1

X0

, . . . ,
Xn

X0

)
, (2.5)

where d is the total degree of f .



Symbolic Method for Optimality Condition 119

Note that a homogenization fhom of degree d is a homogeneous function of degree d
because

fhom(εX0, . . . , εXn) = εdfhom(X0, . . . , Xn)

holds. Therefore, if a homogeneous coordinate of p ∈ Pn satisfies fhom = 0, all homogeneous
coordinates of p also satisfy the same equation, and thus it makes sense to consider the subset
of Pn where fhom vanishes. We also call this subset an algebraic set defined by fhom and
denote it by V(fhom). The relationship between the algebraic set of the homogenization
fhom and that of the original polynomial f is

V(f) = V(fhom) ∩ U0,

which indicates V(fhom) ⊂ Pn is an extension of V(f) ⊂ Rn ∼= U0.

Conversely, we can define a polynomial defined on U0 corresponding to any homogeneous
polynomial defined on Pn, which is called dehomogenization.

Definition 2.3 (Dehomogenization of Homogeneous Polynomial). For a homogeneous poly-
nomial g(X0, . . . , Xn) ∈ R[X0, . . . , Xn], the dehomogenization of g is a polynomial gdeh ∈
R[x1, . . . , xn] defined as

gdeh(x1, . . . , xn) := g(1, x1, . . . , xn). (2.6)

Note that we can consider the dehomogenization of g for any index i = 0, . . . , n in the same
way, although for simplicity we do not indicate i explicitly, and i is specified in accordance
with the context.

It is readily known that there is also the relationship

V(gdeh) = V(g) ∩ U0.

Note that, in general, a homogeneous polynomial f and the homogenization of its deho-
mogenization (fdeh)hom may be different from each other. For example, a homogeneous
polynomial

g(X0, X1, X2) = X3
0X

2
1 +X2

0X
3
2

is different from

(gdeh)hom(X0, X1, X2) = X0X
2
1 +X3

2 .

Remark 2.1. Although X0 = 1 is substituted into g in the definition (2.6), it is consistent
with the definition of a point in Pn; for any homogeneous coordinate [X0 : · · · : Xn] of a
point p ∈ Pn (where X0 is not necessarily equal to one), we can obtain the other homo-
geneous coordinate [1 : X1/X0 : · · · : Xn/X0], which represents the same point p. From
this viewpoint, dehomogenization corresponds to the changes of variables xi = Xi/X0 for
i = 1, . . . , n. Indeed, applying changes of variables Xi = xiX0 to g(X0, . . . , Xn) of degree d,
we obtain

g(X0, . . . , Xn) = Xd
0g

deh(x1, . . . , xn),

which indicates that g = 0 is equivalent to gdeh = 0 unless X0 is equal to zero. This equation
is the same as the definition of homogenization (2.5) except that d is the total degree of g
but not of gdeh.
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2.3. Tangent cone

In the penalty function method, we compute the limit solutions of infinite sequences of
unconstrained optimization problems as the penalty parameter goes to infinity. In projective
space, this divergence to infinity can be interpreted as a convergence to a point by changing
the chart we focus on. Therefore, only the local information at the convergence point is
needed to find the solutions, which means we can take advantage of a tangent cone at the
convergence point. Throughout this subsection, an algebraic set V is assumed to include
the origin 0.

The definition of a tangent cone is as follows [7].
Definition 2.4. For an algebraic set V = V(f1, . . . , fs) ⊂ Rn, its tangent cone at 0 ∈ V ⊂
Rn is an algebraic set C0(V ) ⊂ Rn defined as

C0(V ) := V({fmin | f ∈ I(V )}), (2.7)

where fmin denotes the homogeneous component of the lowest degree in f , i.e., the sum of
all the terms of f whose degrees are equal to the lowest degree of f .

Note that this definition indicates the set of polynomials defining a tangent cone consists
of homogeneous polynomials. As can be seen in the above definition, a tangent cone is an
algebraic set, which means there exists an ideal J = 〈g1, . . . , gt〉 ⊂ R[x1, . . . , xn] that defines
the tangent cone. There are various algorithms to compute generators of J [8, 9, 15, 16], and
most of them use a Gröbner basis, which is a set of generators that has good properties for
symbolic computations (see [7] for details). The following lemma gives us one of the methods
to compute generators of J by using a Gröbner basis with respect to an elimination order [7]
for X0.
Lemma 2.1 (The Tangent Cone Algorithm [9, 15]). Consider an ideal I ⊂ R[x1, . . . , xn]
generated by polynomials f1, . . . , fs and assume the algebraic set V(I) ⊂ Rn includes the
origin 0. Let {G1, . . . , Gt} be a Gröbner basis of an ideal generated by the homogenizations
fhom
1 , . . . , fhom

s with respect to an elimination order for X0. Then, for the dehomogenizations
Gdeh

1 , . . . , Gdeh
t ∈ R[x1, . . . , xn], the following equation holds:

C0(V(I)) = V
(
(Gdeh

1 )min, . . . , (Gdeh
t )min

)
, (2.8)

where (Gdeh
i )min denotes the homogeneous component of the lowest degree in Gdeh

i .
Although Definition 2.4 consists of only algebraic statements, it is also useful to clarify

the characterization of a tangent cone from the geometric viewpoint. Before that, let us
introduce the following definition.
Definition 2.5. We say that a sequence of lines {Lk}∞k=1 ⊂ Rn through 0 converges to a
line L also through 0 if, for a given parametrization L = {tv ∈ Rn | v ∈ Rn, t ∈ R}, there
exist parametrizations of Lk = {tvk ∈ Rn | vk ∈ Rn, t ∈ R} such that limk→∞ vk = v holds.

By using this definition, we can show the characterization of a tangent cone as Lemma 2.2.
Lemma 2.2. A line L ⊂ Rn is called a secant line of an algebraic set V ⊂ Rn if the
intersection of L and V consists of more than two points. Let L∞ ⊂ Rn be a line through
0 ∈ V . L∞ is then a subset of the tangent cone C0(V ) if and only if there exists a sequence
{qk}∞k=1 ⊂ V \ {0} such that limk→∞ qk = 0 holds and the sequence of secant lines {Lk ⊂
Rn | 0, qk ∈ Lk ∩ V }∞k=1 converges to the line L∞ as k →∞.

3. Penalty Function Method and its Convergence Property

The quadratic penalty function P (x; r) for COP (1.1) is defined as

P (x; r) := f(x) + rgT(x)g(x), (3.1)
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where r ∈ R is a penalty parameter. It is well-known that the convergence points of the
global minimizers of P (x; r), if any, are also the global minimizers of the original COP [5, 19].
As a more practical property of the quadratic penalty function method, such convergence
property for local minimizers has been also established. Let X∗ be an isolated compact set
of local minimizers of COP (1.1) that corresponds to a certain local minimum value. It is
proven that there exists a sequence of local minimizers of P (x; r) that converges to a certain
point of X∗ [10]. As a straightforward consequence of this convergence property, if X∗

consists of only one minimizer, the existence of the sequence converging to the minimizer is
guaranteed. However, if this is not the case, that is, if X∗ consists of non-isolated minimizers,
the existence of such a sequence is not guaranteed for each minimizer of X∗.

As necessary optimality conditions for all minimizers, the AKKT conditions were pro-
posed in [2]. Roughly speaking, AKKT conditions state that, for any local minimizer, there
exists a sequence of points converging to the local minimizer, where all points in the se-
quence approximately satisfy the KKT conditions. In other words, the existence of such a
sequence is a necessary condition for all minimizers including even non-isolated ones. This
is proved by using the convergence property of the Internal-External Penalty method in [10],
and the proof gives a viewpoint on such a sequence not from the KKT conditions but from
the penalty function method, which is the basis of our result.

Let us define a localized penalty function, which is localized to a specific local minimizer
x̂:

P loc(x; r, x̂) := f(x) + ‖x− x̂‖2 + rgT(x)g(x). (3.2)

The reason we call it localized is as follows. For any local minimizer x̂, there exists a real
number ε > 0 such that a minimization problem restricted on a ball Bε(x̂) := {x ∈ Rn |
‖x− x̂‖ ≤ ε} ⊂ Rn, as

min
x∈Bε(x̂)

f(x) + ‖x− x̂‖2

s. t. g(x) = 0,
(3.3)

has a unique local minimizer x = x̂, and P loc(x; r, x̂) is the penalty function for this
minimization problem localized to x̂. By using this localized penalty function, a necessary
optimality condition described by the existence of a stationary point sequence can be derived
as follows.

Theorem 3.1. Let {rk}∞k=1 be a sequence monotonically going to infinity as k does, x̂ be a
minimizer of the original COP (1.1), and P loc(x; r, x̂) be a function defined as (3.2) with
domain of definition Rn. Then, there exists an integer k∗ > 0 such that there exists a
sequence of stationary points {xk}∞k=k∗ satisfying

P loc
x (xk; rk, x̂) = 0 (3.4)

and converging to x̂ as k goes to infinity. In other words, the existence of such a sequence
{xk}∞k=k∗ is a necessary condition for x̂ to be a local minimizer.

Proof. This proof is a part of the proof of Theorem 2.1 in [2] and is included here for the
completeness of the paper. Let ε be such that the localized minimization problem (3.3) has
a unique local minimizer and {rk}∞k=1 be a sequence of positive real numbers monotonically
going to infinity as k does. Since x̂ is an interior point of Bε, there exists an open subset
U ⊂ Bε including x̂. According to the generally accepted result for the quadratic penalty
function method [5], there exists a global minimizer sequence {xk}∞k=1 ⊂ Bε of the penalty
function (3.2) that converges to the global minimizer x̂ ∈ Bε of the localized COP (3.3). In
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particular, there exists a sufficiently large k∗ such that {xk}∞k=k∗ ⊂ U holds. In the problem
settings of this paper, the penalty function (3.2) is continuous, and thus every xk for all
k ≥ k∗ satisfies the stationary condition (3.4).

Remark 3.1. Since the sequence {xk}∞k=k∗ in Theorem 3.1 is also an infinite sequence, if
we replace its subscripts appropriately, we can assume k∗ = 1 without loss of generality.

Remark 3.2. Note that although constraint x ∈ Bε(x̂) is imposed in the localized mini-
mization problem (3.3), this is no longer assumed in Theorem 3.1. Due to the lacking this
constraint, equation (3.4) can have a solution x̃k that does not belong to Bε(x̂) and hence
does not converge to x̂. However, this fact has nothing to do with the existence of the se-
quence {xk}∞k=k∗ introduced in the proof, and Theorem 3.1 still gives a necessary optimality
condition to be satisfied by every local minimizer x̂.

The stationary condition P loc
x (x; r, x̂) = 0 is written as

P loc
x (x; r, x̂) = fx(x) + 2(x− x̂) + rgx(x)g(x) = 0. (3.5)

When we try to use Theorem 3.1 to find a minimizer of COP (1.1), we have to solve
equation (3.5) to find the sequence of stationary points {xk}. However, equation (3.5) is
defined using the minimizer x̂, which we are seeking now. This deadlock can be avoided by
regarding the minimizer x̂ as an additional variable y ∈ Rn, that is, regarding equation (3.5)
as an equation defined on R2n+1:

P loc
x (x; r,y) = fx(x) + 2(x− y) + rgx(x)g(x) = 0, (3.6)

where x = [x1 · · · xn]T and y = [y1 · · · yn]T. By computing the convergence points of
sequences {xk} for all y ∈ Rn and selecting pairs (x∞,y) such that x∞ = y holds, we
can find candidates of minimizers that satisfy the necessary optimality condition stated as
Theorem 3.1. For all y ∈ Rn admitting the sequences {rk}∞k=1 and {xk}∞k=1 that satisfy
equation (3.6) for every k, symbolic computation enables us to compute a set of equations
satisfied by every limit x∞. The derived equations can be solved without iteratively in-
creasing the penalty parameter, unlike other numerical algorithms for the penalty function
method.

4. Limit Points in Projective Space

In this section, we utilize the concepts of projective space, homogenization, and dehomoge-
nization to deal with the limit operation of the penalty parameter symbolically. When we
regard equation (3.6) as an equation defined on R2n+1, the convergence points of its solutions
as r goes to infinity lie in the hyperplane at infinity of R2n+1. In this section, we fix certain
sequences ({rk}∞k=1 and {xk}∞k=1) such that rk monotonically goes to infinity as k does, xk
converges to a point x∞ ∈ Rn, and all points

[
xT
k rk

]T ∈ Rn+1 satisfy equation (3.6) for a
fixed y ∈ Rn. Moreover, for the following discussion, we denote the set consisting of all the
components of P loc

x (x; r,y) by F , that is,

F :=
{[
P loc
x (x; r,y)

]
1
, . . . ,

[
P loc
x (x; r,y)

]
n

}
⊂ R[x,y, r], (4.1)

where
[
P loc
x (x; r,y)

]
i

is the i-th component of P loc
x (x; r,y).

Let us consider a projective space P2n+1 and identify R2n+1 with an open subset,

U0 := {[X0 : · · · : X2n+1] ∈ P2n+1 | X0 6= 0}, (4.2)
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by a homeomorphism φ0 : R2n+1 → U0 that sends [x1 · · · xn y1 · · · yn r]T to [1 : x1 : · · · :
xn : y1 : · · · : yn : r]. As mentioned in subsection 2.1, the other open subset,

U2n+1 := {[X0 : · · · : X2n+1] ∈ P2n+1 | X2n+1 6= 0}, (4.3)

includes almost all points of the hyperplane at infinity H0 of U0; indeed, all the limit points
we need. This is because the set difference

H0 \ U2n+1 = {[X0 : · · · : X2n+1] ∈ P2n+1 | X0 = X2n+1 = 0}

only includes the points at infinity of U0 where the (2n+ 1)-coordinate, which corresponds
to the penalty parameter r, is exactly zero.

There is also a homeomorphism φ2n+1 : R2n+1 → U2n+1 that sends a point [ρ ξ1 · · · ξn
η1 · · · ηn]T to the equivalent class [ρ : ξ1 : · · · : ξn : η1 : · · · : ηn : 1]. To construct a mapping
from x-y-r space to ξ-η-ρ space, consider two open subsets:

Dr :=
{[
xT yT r

]T ∈ R2n+1 | r 6= 0
}
⊂ R2n+1,

Dρ :=
{[
ρ ξT ηT

]T ∈ R2n+1 | ρ 6= 0
}
⊂ R2n+1,

and the restrictions of φ0 and φ−12n+1:

φ0|Dr : Dr 3
[
xT yT r

]T 7→ [1 : x1 : · · · : xn : y1 : · · · : yn : r] ∈ U0 ∩ U2n+1,

φ−12n+1|U0∩U2n+1 : U0 ∩ U2n+1 3 [X0 : · · · : X2n+1] 7→
[

X0

X2n+1

· · · X2n

X2n+1

]T
∈ Dρ.

Then, a composite mapping Φ :=
(
φ−12n+1|U0∩U2n+1

)
◦ (φ0|Dr) is a homeomorphism between

Dr and Dρ defined by[
xT yT r

]T 7→ [
ρ ξT ηT

]T
= Φ

([
xT yT r

]T)
=

1

r

[
1 xT yT

]T
. (4.4)

Note that both closures Dr and Dρ are equal to R2n+1. Through the homeomorphism Φ,
we obtain the triplet of sequences {ρk}∞k=1, {ξk}∞k=1, and {ηk}∞k=1 as the image of sequences
{rk}∞k=1 and {xk}∞k=1 under Φ with a fixed y.

The sequences {rk}∞k=1 and {xk}∞k=1 satisfy equation (3.6) for a parameter y, or in other
words, every point [xT

k y
T rk]

T ∈ R2n+1 belongs to V(F ). This indicates there exists an
equation satisfied by {ρk}∞k=1, {ξk}∞k=1, and {ηk}∞k=1 for all k = 1, . . . ,∞, and such equation
can be obtained by homogenization and dehomogenization defined in subsection 2.2, as
explained below. Let us define a set of homogeneous polynomials F hom ⊂ R[X0, . . . , X2n+1]
as

F hom :=
{
fhom ∈ R[X0, . . . , X2n+1] | f ∈ F

}
, (4.5)

where fhom(X0, . . . , X2n+1) is the homogenization of f(x1, . . . , xn, y1, . . . , yn, r) ∈ F of total
degree d, that is,

fhom(X0, . . . , X2n+1) := Xd
0f

(
X1

X0

, . . . ,
X2n+1

X0

)
. (4.6)

Its dehomogenizations for index 2n+ 1 yield the other polynomial set F ⊂ R[ρ, ξ,η]:

F := F hom|X0=ρ,X1=ξ1,...,Xn=ξn,Xn+1=η1,...,X2n=ηn,X2n+1=1. (4.7)
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The sequences {ρk}∞k=1, {ξk}∞k=1, and {ηk}∞k=1 satisfy the algebraic equations

(fhom)deh(ρ, ξ1, . . . , ξn, η1, . . . , ηn) = 0
(
∀(fhom)deh ∈ F

)
because, for all [xT yT r]T ∈ V(F ) ∩Dr, we have

(fhom)deh ◦ Φ
([
xT yT r

]T)
= (fhom)deh(r−1, r−1x1, . . . , r

−1xn, r
−1y1, . . . , r

−1yn)

= fhom(r−1, r−1x1, . . . , r
−1xn, r

−1y1, . . . , r
−1yn, 1)

= r−df(x1, . . . , xn, y1, . . . , yn, r)

= 0. (4.8)

Now, since the homeomorphism Φ and its inverse Φ−1 are both continuous, the following
proposition is trivially obtained.

Proposition 4.1. Let the pair of sequences {ρk}∞k=1 and {ξk}∞k=1 be a part of the image of
sequences {rk}∞k=1 and {xk}∞k=1 under the homeomorphism Φ with a fixed y. Then,

ηk
ρk

= y (4.9)

holds for all k. Moreover, for the limit x∞, sequences {rk}∞k=1 and {xk}∞k=1 satisfy

lim
k→∞

rk =∞, (4.10)

lim
k→∞

xk = x∞ (4.11)

if and only if {ρk}∞k=1 and {ξk}∞k=1 satisfy

lim
k→∞

ρk = 0, (4.12)

lim
k→∞

ξk
ρk

= x∞. (4.13)

Proposition 4.1 shows that we can obtain the limit of the sequence limk→∞ xk as the
limit of fractions limk→∞ ξk/ρk. Moreover, from

lim
k→∞

ξk =
(

lim
k→∞

ρk

)(
lim
k→∞

ξk
ρk

)
= 0, lim

k→∞
ηk =

(
lim
k→∞

ρk

)(
lim
k→∞

ηk
ρk

)
= 0,

the points [ρk ξ
T
k η

T
k ]T ∈ R2n+1 converge to the origin as k →∞, which implies that V(F)

contains the origin as a closed subset of the closure Dρ = R2n+1. This indicates that, to
compute the limit points in ξ-η-ρ space, we need only the local information about this
algebraic set at the origin.

Remark 4.1. Note that Proposition 4.1 and the following discussion also indicate that
V(F) includes the origin if and only if the convergence point x∞ (‖x∞‖ < ∞) exists.
Moreover, Theorem 3.1 guarantees the existence of such a convergence point if at least one
local minimizer exists. Therefore, V(F) includes the origin and thus all the mathematical
tools introduced in subsection 2.3 can be applied whenever COP (1.1) has at least one local
minimizer.
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5. Computation of Limit Points and New Necessary Condition for Optimality

To focus on the origin in the algebraic set V(F) ⊂ Dρ = R2n+1, it is useful to consider
a tangent cone C0 (V(F)) ⊂ R2n+1 at the origin. From Lemma 2.2, the tangent cone can
be seen as the set of lines that approximates V(F) in a neighborhood of the origin. Note
that the limit of fractions [xT

∞ yT]T = limk→∞[ξTk η
T
k ]T/ρk can be seen as the gradient of

such a line with respect to ρ at the origin. This consideration leads us to relate the limit
limk→∞[ξTk η

T
k ]T/ρk with the gradient of each line in C0(V(F)) at the origin, as stated in

the following lemma.
Lemma 5.1. Let {rk}∞k=1 be a sequence monotonically tending to infinity and {xk}∞k=1 be
a sequence such that each pair (xk, rk) satisfies equation (3.6) with a fixed y. Suppose that
{xk}∞k=1 has a convergence point x∞. Then, [1 xT

∞ y
T]T ∈ C0(V(F)) holds.

Proof. Let us define sequences {ρk}∞k=1, {ξk}∞k=1, and {ηk}k=1∞ as in Proposition 4.1. From
the preceding discussion of the proposition, all polynomials in F vanish at each triplet
(ρk, ξk,ηk) because its preimage (xk,y, rk) under Φ satisfies equation (3.6). Moreover, as
mentioned in the proposition and the discussion following it,

lim
k→∞

[
ρk ξ

T
k η

T
k

]T
= 0 ∈ R2n+1

holds if limk→∞ rk = ∞ and limk→∞ xk = x∞ hold. Since algebraic sets are closed, this
convergence implies 0 is an element of V(F) ⊂ R2n+1, and thus we can define the sequence
of secant lines {Lk}∞k=1 as those through 0 and the points qk := [ρk ξ

T
k η

T
k ]T. Let us

parametrize each line Lk by {tvk | vk = qk/ρk, t ∈ R}; then, Proposition 4.1 readily shows
that {Lk}∞k=1 converges to the line:

L :=
{
tv | v =

[
1 xT

∞ y
T
]T
, t ∈ R

}
as k →∞. Therefore, from Lemma 2.2, [1 xT

∞ y
T]T ∈ L ⊂ C0(V(F)) holds.

This lemma shows that the intersection of the tangent cone and a hyperplane

C0(V(F)) ∩
{[
ρ ξT ηT

]T ∈ R2n+1
∣∣∣ ρ = 1

}
includes all the points of the form [1 xT

∞ yT]T where x∞ is a limit point, as r goes to
infinity, of the sequences {xk}∞k=1 whose elements satisfy equation (3.6) with a fixed y. In
other words, if we have a set of l polynomials G = {G1, . . . , Gl} ⊂ R[ρ, ξ,η] defining the
tangent cone C0(V(F)), Gi(1,x∞,y) = 0 (i = 1, . . . , l) holds for every pair of x∞ and
y satisfying the assumptions of Lemma 5.1. Moreover, if y = x̂ attains a minimum of
COP (1.1), Theorem 3.1 guarantees the existence of a sequence {xk}∞k=1 that converges to
x∞ = x̂. This implies that every minimizer x̂ satisfies equationGi(1, x̂, x̂) = 0 (i = 1, . . . , l).
Finally, the whole process to obtain the polynomial set

G := {Gi(1,x,x) ∈ R[x] | Gi ∈ G}

from COP (1.1) can be summarized as Algorithm 1, and by using G, the new necessary
condition for optimality can be stated as Theorem 5.1.
Theorem 5.1. Let G = {G1, . . . ,Gl} ⊂ R[x] be the set of equations obtained by Algorithm 1.
Suppose that x̂ is a minimizer of COP (1.1). Then, x̂ satisfies the equations

Gi(x̂) = 0 ∀i = 1, . . . , l. (5.1)
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Proof. Let x̂ be a minimizer of COP (1.1). For a sequence {rk}∞k=1 monotonically tending
to infinity as k does, Theorem 3.1 guarantees that the existence of a sequence {xk}∞k=1

converging to x̂ whose elements satisfy equation P loc
x (xk; rk, x̂) = 0 for every k. Then,

Lemma 5.1 indicates that [1 x̂T x̂T]T is a point of C0(V(F)). Now, Let G = {G1, . . . , Gl} ⊂
R[ρ, ξ,η] be a set of generators of an ideal defining C0(V(F)), that is, C0(V(F)) = V(G)
holds. Since [1 x̂T x̂T]T ∈ C0(V(F)),

Gi(x̂) = Gi(1, x̂, x̂) = 0

holds for all i = 1, . . . , l, which completes the proof.

6. Numerical Examples

This section is devoted to two numerical examples. The first one demonstrates the proposed
methodology and clarifies the relationships among the penalty function method, homoge-
nization, and the tangent cone. The second one demonstrates how the proposed method
can find non-KKT type global minimizers.

Example 1 (Illustrative example)

Let us consider the following COP:

min
x

1

2
(x21 + x22)

s. t. (x1 − 5)2 − (x2 − 4)3 = 0,
(6.1)

where x = [x1 x2]
T ∈ R2 are indeterminates. Figure 2 shows the feasible set and contours

of the cost function. For this problem, the penalty function of the localized COP (3.3) is
obtained as

P loc(x; r,y) =
1

2
(x21 + x22) + (x1 − y1)2 + (x2 − y2)2 + r

{
(x1 − 5)2 − (x2 − 4)3

}2
, (6.2)

where r ∈ R is a penalty parameter and y = [y1 y2]
T are additional variables representing

the coordinates of a minimizer. The stationary conditions P loc
x (x; r,y) = 0 are the following

polynomial equations:

x1 + 2(x1 − y1) + 4r
(
(x1 − 5)2 − (x2 − 4)3

)
(x1 − 5) = 0,

x2 + 2(x2 − y2)− 6r
(
(x1 − 5)2 − (x2 − 4)3

)
(x2 − 4)2 = 0.

(6.3)

Hence, the polynomial set F ⊂ R[x1, x2, y1, y2, r] in Section 4 consists of the left-hand sides
of equations (6.3).

Algorithm 1 Symbolic Computation of G
Input: COP (1.1)
Output: Set of polynomial G ⊂ R[x]

1: Compute polynomial set F ⊂ R[x,y, r] in (4.1) by differentiating localized penalty
function P loc(x; r,y) = f(x) + ‖x− y‖2 + rgT(x)g(x)

2: Compute F ⊂ R[ρ, ξ,η] by computing homogenization as in equation (4.5) and deho-
mogenization as in equation (4.7)

3: Compute set of generators G ⊂ R[ρ, ξ,η] of ideal defining tangent cone C0(V(F)) from
polynomial set F , for example, by using Gröbner basis described in Lemma 2.1

4: Define G as G|ρ=1,ξ=x,η=x
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By replacing x1, x2, y1, y2, and r with X1/X0, X2/X0, X3/X0, X4/X0, and X5/X0,
respectively, the homogenizations of F are obtained as

X4
0X1 + 2X4

0 (X1 −X3) + 4X5

(
X0(X1 − 5X0)

2 − (X2 − 4X0)
3
)

(X1 − 5X0), (6.4)

X5
0X2 + 2X5

0 (X2 −X4)− 6X5

(
X0(X1 − 5X0)

2 − (X2 − 4X0)
3
)

(X2 − 4X0)
2, (6.5)

where [X0 : X1 : X2 : X3 : X4 : X5] ∈ P5 is a homogeneous coordinate. The dehomogeniza-
tions of polynomials (6.4) and (6.5), denoted as F in Section 5, are as follows:

ρ4ξ1 + 2ρ4(ξ1 − η1) + 4 (ρ(ξ1 − 5ρ)2 − (ξ2 − 4ρ)3) (ξ1 − 5ρ),
ρ5ξ2 + 2ρ5(ξ2 − η2)− 6 (ρ(ξ1 − 5ρ)2 − (ξ2 − 4ρ)3) (ξ2 − 4ρ)2,

(6.6)

where ρ = X0/X5, ξ1 = X1/X5, ξ2 = X2/X5, η1 = X3/X5, and η2 = X4/X5.
From polynomials (6.6), we obtain G ⊂ R[ρ, ξ1, ξ2, η1, η2], which define the tangent cone

C0(V(F)), as a set of five polynomials with total degrees 5, 6, 7, 9, and 10. By substituting
ρ = 1, ξ = η = x to the polynomial set G, we have the polynomial set G consisting of five
polynomials:

3x1x2
2 − 22x1x2 + 48x1 − 10x2, (6.7)

4x1x2
3 − 4x1

3 − 48x1x2
2 − 20x2

3 + 60x1
2

+ 192x1x2 + 240x2
2 − 556x1 − 960x2 + 1780, (6.8)

6x2
5 − 6x1

2x2
2 − 120x2

4 + 48x1
2x2 + 60x1x2

2 + 960x2
3

− 96x1
2 − 480x1x2 − 3990x2

2 + 960x1 + 8880x2 − 8544, (6.9)

72x1x2
3 − 108x1

3 − 864x1x2
2 − 540x2

3

+ 1620x1
2 + 3376x1x2 + 6600x2

2 − 12324x1 − 26480x2 + 48060, (6.10)

3 4 5
x1

3.5

4.0

4.5

5.0

5.5

6.0

x
2

Figure 2: Feasible set (solid lines) and contours of cost function (dashed lines)
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Table 1: Candidates derived from proposed necessary condition and corresponding values
of cost function

p1 p2 p3

x1 2.95 4.77 5.00
x2 5.62 4.37 4.00

f(pi) 20.1 20.9 20.5

2.5 3.0
x1

5.5

6.0

x
2

p1

(a) Candidate p1

4.5 5.0
x1

4.0

4.5
x
2

p2

(b) Candidate p2

4.5 5.0 5.5
x1

3.5

4.0

4.5

x
2

p3

(c) Candidate p3

Figure 3: Candidates (circles) in feasible set (solid lines) and corresponding contours of cost
function (dashed lines). Labels beside each point correspond to labels in Table 1

and

108x1
4 − 48x1

2x2
2 − 1620x1

3 + 592x1
2x2

+ 6180x1
2 − 2000x1x2 + 1800x2

2 − 1980x1 − 9600x2. (6.11)

We can obtain three candidates of minimizers (listed in Table 1) by solving equa-
tions (6.7)–(6.11). Theorem 5.1 guarantees that these candidates include all minimizers
and, consequently, global minimizers. Figure 3 shows the obtained candidates and contours
of the cost function corresponding to those candidates. In Figure 3, the contours of the
cost function are tangent to the feasible set at the candidate points p1 and p2, which are
typical situations on the KKT points. In fact, p1 is a global minimizer, and p2 is a local
maximizer. On the other hand, at p3, the contour of the cost function does not seem to be
tangent to the feasible set; indeed, p3 has no Lagrange multipliers, so the KKT conditions
do not hold. However, as shown in Figure 3(c), p3 is obviously a local minimizer because
any feasible point in its neighborhood lies in the area where the value of the cost function
is larger than f(p3).

To illustrate Theorem 3.1 and Proposition 4.1, let us fix y to [5 4]T, a minimizer of
COP (6.1). If we substitute y = [5 4]T into equations (6.3), Theorem 3.1 guarantees
the existence of a stationary point sequence (or trajectory for continuously varying r) that
converges to the minimizer, that is, x∞ = y = [5 4]T. Figure 4 shows the solution trajectory
of equations (6.3) with y = [5 4]T projected onto the x1-r and x2-r planes. We can see that
the trajectory approaches the minimizer [x1 x2]

T = [5 4]T. However, x2 still has a non-
negligible error for r = 1000, which means the common solution method (where r is fixed
to a number assumed to be sufficiently large) ends up with the wrong solution.
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(a) Trajectory of x1 with respect to r
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→

∞

(b) Trajectory of x2 with respect to r

Figure 4: Trajectory of x with respect to r satisfying equation (6.3) for y = [5 4]T, which
is projected onto x1-r and x2-r planes
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0.0

0.2

0.4

0.6

0.8

1.0

ρ

×10−1

ρ
→
0

(a) Trajectory of ξ1 with respect to ρ
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(b) Trajectory of ξ2 with respect to ρ

Figure 5: Trajectory satisfying equation (6.6) = 0 (solid lines) and its tangent cone at origin
(dashed lines) for y = [5 4]T, which is projected onto ξ1-ρ and ξ2-ρ planes

For Proposition 4.1, equation (4.9) shows that

[
η1
η2

]
= ρ

[
5
4

]
(6.12)

holds for y = [5 4]T. Substituting equation (6.12) into polynomials (6.6), the algebraic set
V(F) is obtained as the solid curves shown in Figure 5. We can regard the algebraic set V(F)
as a trajectory of ξ with respect to ρ, and it is readily observed that the trajectory converges
to the origin as ρ→ 0, as mentioned in the discussion following Proposition 4.1. Moreover,
the tangent of the trajectory at the origin (dashed lines in Figure 5) has the gradient [5 4]T at
the origin, which is the consequence of Proposition 4.1 stated as equations (4.12) and (4.13).
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Example 2 (Case with global minimizers violating KKT conditions)

Let us consider the following COP with three indeterminates and a constraint:

min
x

1

2
‖x‖2

s. t. (x2 − x21 + 2)2 − (x3 − 1)3 = 0,

(6.13)

where x = [x1 x2 x3]
T ∈ R3. The penalty function of the COP is obtained as

1

2
x21 +

1

2
x22 +

1

2
x23 + r

{
(x2 − x21 + 2)2 − (x3 − 1)3

}2
.

Figure 6 shows the feasible set X of the COP, where all points in the intersection X ∩{x |
x3 = 1} are singular and form a parabola on a plane of x3 = 1. As shown, the curve of
singularities X ∩ {x | x3 = 1} is like “the bottom of a ravine” and is defined by equations
x3 = 1 and x2 = x21 − 1. The bottom of the ravine lies above the origin, and thus the
feasible point that is closest to the origin would lie on the bottom. In other words, the
global minimizer would be included in the curve of singularities. If this is the case, these
points cannot be KKT points because, for all points in the curve, the derivatives of the
constraint function vanish, whereas those of the cost function do not vanish, which indicates
the nonexistence of Lagrange multipliers. Therefore, the Lagrange multiplier method or
other methods based on KKT conditions or assuming the existence of Lagrange multipliers
cannot find the global minimizers.

For this problem, the proposed method yields a set of 14 polynomials of the highest degree
seven as G. These equations have five solutions p1, · · · ,p5, which are listed in Table 2. As
shown in Figure 7, the proposed algorithm yields a set of candidates that includes all KKT
points (p1 and p2) and some other non-KKT points on the singular curve (p3, p4, and p5).
In Table 2, points p4 and p5 attain the minimum among the candidates, and thus they are
the non-KKT type global minimizers.

Note again that there are no Lagrange multipliers corresponding to these global mini-
mizers. Indeed, the derivative of the corresponding Lagrangian with respect to x3 is

x3 − 3λ(x3 − 1)2,

−2 −1
0

1
2

−2
−1

0
1

2

−1

0

1

2

3

4
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x2

x3

−2 −1
0

1
2

−2
−1

0
1

2

−1

0

1

2

3

4

x1

x2

x3

Figure 6: Feasible set of COP (6.13). Heat map on x1-x2 plane shows projection of feasible
set, whose color corresponds to x3-coordinate of projected points
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Table 2: Candidates derived by proposed algorithm and corresponding values of cost func-
tion

p1 p2 p3 p4 p5

x1 0.00 0.00 0.00 1.22 −1.22
x2 −1.35 −1.94 −2.00 −0.50 −0.50
x3 1.75 1.16 1.00 1.00 1.00

f(pi) 2.44 2.55 2.50 1.38 1.38

−101

−2
−1

0

1

2

x1
x2

x3

p1
p2

p3p4
p5

p1
p2

p3p4
p5

p1
p2

p3p4
p5

Figure 7: Candidates of minimizer obtained by proposed method (cross), KKT points (open
square), and global minimizers (open circle). Labels beside each point correspond to labels
in Table 2

where λ ∈ R is the Lagrange multiplier corresponding to the constraint of COP (6.13). It
is obvious that this derivative cannot be zero if x3 = 1 holds; in other words, when a point
is included in the singular curve X ∩ {x | x3 = 1}.
Remark 6.1. For the first example, the FJ conditions yield the same three points as in
Table 1. However, for the second example, the FJ conditions are satisfied by all the points
of X ∩ {x | x3 = 1}, which includes an infinite number of points neither locally optimal
nor KKT. This indicates that the proposed condition is less conservative and can yield a
significantly smaller number of candidates than the FJ conditions do.

7. Conclusion and Future Work

We have proposed a new necessary optimality condition for polynomial optimization prob-
lems with polynomial constraints. The proposed necessary condition is satisfied by all mini-
mizers and thus does not require any constraint qualifications. First, a sequential optimality
condition based on the quadratic penalty function, which is described by the existence of
a certain sequence converging to a minimizer as the penalty parameter tends to infinity, is
introduced. By considering a projective space, the limit operation of the penalty parame-
ter is symbolically performed as a computation of the tangent cone at the origin. The set
of polynomials, which vanish at all the points satisfying the sequential optimality condi-
tion, is obtained. Two numerical examples are provided to illustrate the methodology and
demonstrate that the proposed necessary condition can be satisfied even by non-KKT type
minimizers.

One direction of further study is to generalize the problem settings. For instance, the
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algorithm should be readily applicable to parametric optimization problems. We will also
extend the functions appearing in the problem to include more general functions than poly-
nomials, as long as they can be homogenized in some sense.

It is worth mentioning that, in the proposed algorithm, the iterative computations for
solving stationary conditions and updating the penalty parameter are reduced to solving
the equations defining the tangent cone only once. This reduction can be applied to any
equation with parameters if some convergence property of their solutions is guaranteed, for
instance, as mentioned in Theorem 3.1. Therefore, the proposed method can be applied to
a broader class of problems beyond optimization problems.
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