<table>
<thead>
<tr>
<th>Title</th>
<th>Fast Algorithms for Computing Jones Polynomials of Certain Links (Evolutionary Advancement in Fundamental Theories of Computer Science)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Murakami, Masahiko; Hara, Masao; Yamamoto, Makoto; Tani, Seiichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1375: 174-180</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25593</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Fast Algorithms for Computing Jones Polynomials of Certain Links

Masahiko Murakami†
Masao Hara†
Makoto Yamamoto§
Seiichi Tani¶

Abstract

We give fast algorithms for computing Jones polynomials of 2-bridge links, closed 3-braid links and Montesinos links from a progressive expression. The algorithms run with \(\mathcal{O}(n) \) operations of polynomials of degree \(\mathcal{O}(n) \), where \(n \) is the number of the crossings of the link diagram. We also give linear time algorithms for computing a progressive expression from the Tait graph of a link diagram of 2-bridge links and closed 3-braid links.

1 Introduction

In knot theory, various invariants are defined and studied for classifying and characterizing links. The Jones polynomial [4] is one of the well-studied invariants. It is powerful for distinguishing link types. The simplest way to define it is by using a slightly different polynomial: the bracket polynomial discovered by L.H. Kauffman [5], but, it takes \(\mathcal{O}(2^{\mathcal{O}(\sqrt{c(L)})}) \) operations of polynomials of degree \(\mathcal{O}(c(L)) \) to compute a Jones polynomial in the way shown by Kauffman. Actually, computing the Jones polynomial is generally \#P-hard [3, 12] and is expected to require exponential time in the worst case. K. Sekine, H. Imai and K. Imai [10] showed an algorithm that computes Jones polynomials in \(\mathcal{O}(2^{\mathcal{O}(\sqrt{c(L)})}) \) time.

Recently, it has been recognized that it is important to compute Jones polynomials for links with reasonable restrictions. For any link diagram \(L \), we denote the number of the crossings of \(L \) by \(c(L) \). J. A. Makowsky [6] showed that Jones polynomials are computed from the Tait graph \(G \) of \(L \) in polynomial time if the treewidth of \(G \) is a constant. J. Mihligon [7] showed that Jones polynomials are computed from the Tait graph \(G \) of \(L \) with \(\mathcal{O}(c(L)^4) \) operations of polynomials of degree \(\mathcal{O}(c(L)) \) if the treewidth of \(G \) is at most 2. M. Hara, S. Tani and M. Yamamoto [2] showed that Jones polynomials of 2-bridge links are computed from the Tait graph of \(L \) with \(\mathcal{O}(c(L)^2) \) operations of polynomials of degree \(\mathcal{O}(c(L)) \), and Jones polynomials of closed 3-braid links and arborescent links are computed from the Tait graph of \(L \) with \(\mathcal{O}(c(L)^3) \) operations of polynomials of degree \(\mathcal{O}(c(L)) \). T. Utsumi and K. Imai [11] showed that Jones polynomials of pretzel links are computed from the Tait graph of \(L \) with \(\mathcal{O}(c(L)^3) \) time.

In this paper, we give algorithms that compute Jones polynomials of 2-bridge links and closed 3-braid links from the Tait graph of \(L \) with \(\mathcal{O}(c(L)) \) operations of polynomials of degree \(\mathcal{O}(c(L)) \). We also show that Jones polynomials of Montesinos links are computed from a progressive expression of \(L \) with \(\mathcal{O}(c(L)) \) operations of polynomials of degree \(\mathcal{O}(c(L)) \).

2 Preliminaries

A link of \(n \) components is a subset of \(\mathbb{R}^3 \) that consists of \(n \) disjoint, simple closed curves. A link of one component is a knot. An image of a link by a natural projection from \(\mathbb{R}^3 \) to a plane is regular if it contains only finitely many multiple points, all multiple points are double points and these are traverse points. A regular image of a link is called a link diagram if the overcrossing line is marked at every double point in the image. Furthermore, the double points are called crossings. For any link diagram \(L \), we denote the number of the crossings of \(L \) by \(c(L) \). A link is oriented if each of its components is given an orientation.

Definition 2.1 The Kauffman bracket polynomial is a function from link diagrams to the Laurent polynomial ring \(\mathbb{Z}[A^{\pm 1}] \) with integer coefficients in an indeterminate \(A \). It maps a link diagram \(L \) to \(\langle L \rangle \in \mathbb{Z}[A^{\pm 1}] \) and is characterized by

†Department of Mathematical Sciences, Tokyo University, Chuo University, and Chuo University.
§Department of Mathematics, Chuo University, Chuo University, and Chuo University.
¶Department of Computer Science and System Analysis, Chuo University, Chuo University.

Partially supported by Grant-in-Aid for Science Research No. 14540136(C)(2), Japan Society for Promotion of Science and Research Projects for Promotion of Advanced Research at Graduate School, Chuo University.
(i) \(\langle \bigcirc \rangle = 1 \), \quad (ii) \(\langle \widetilde{L} \cup \bigcirc \rangle = (-A^{-2} - A^{2})(\widetilde{L}) \), \quad (iii) \(\langle \bigotimes \rangle = A(\bigotimes) + A^{-1}(\bigotimes) \).

Here, \(\bigcirc \) is the link diagram of the unknot without a crossing and \(\widetilde{L} \cup \bigcirc \) is a link diagram consisting of the link diagram \(\widetilde{L} \) together with an extra closed curve \(\bigcirc \) that contains no crossing at all, neither with itself nor \(\widetilde{L} \). In (iii) the formula refers to three link diagrams that are exactly the same except near a point where they differ in the way indicated.

The writhe \(w(\widetilde{L}) \) of an oriented link diagram \(\widetilde{L} \) is the sum of the signs of the crossings of \(\widetilde{L} \), where each crossing has sign +1 or −1 as defined (by convention) in Figure 1.

Definition 2.2 The Jones polynomial \(V(L) \) of an oriented link \(L \) is the Laurent polynomial in \(t^{1/2} \) with integer coefficients, defined by

\[
V(L) = (-A)^{-3w(\widetilde{L})} \mid_{t^{1/3} = A^{-2/3}}
\]

where \(\widetilde{L} \) is any oriented link diagram for \(L \).

Given any link diagram \(\widetilde{L} \), we can color the faces black and white in such a way that no two faces with a common edge are the same color. We color the unique unbounded face white. We call this the Tait coloring of \(\widetilde{L} \). As in Figure 2, we can get a signed planar graph \(G \) of \(\widetilde{L} \); its vertices are the black faces of the Tait coloring and two vertices are joined by a signed edge if they share a crossing. The sign of the edge is +1 or −1 according to the (conventional) rule shown in Figure 3. \(G \) is the Tait graph of \(L \).

A tangle is a portion of a link diagram from which there emerge just 4 arcs. The tangle consisting of two vertical strings without a crossing is called 0-tangle. The tangle twisted 0-tangle \(k \) times is called \(k \)-tangle and is denoted by \(I_k \). They are called integer tangles (Figure 4). The tangle consisting of two horizontal strings without a crossing is called \(\infty \)-tangle. For a set \(S \), we denote the number of the elements of \(S \) by \(|S|\). For an integer \(z \), \(\text{sign}(z) \) is defined by the following:

\[
\text{sign}(z) = \begin{cases}
 1 & \text{if } z \geq 0, \\
 -1 & \text{if } z < 0.
\end{cases}
\]

Let \(G = (V,E) \) be a graph, where \(V \) is the vertex set of \(G \) and \(E \) is the edge set of \(G \). For any vertex \(v \in V \), \(\deg_G(v) \) denotes the degree of \(v \) in \(G \) and \(N_G(v) \) denotes the set of the neighbors of \(v \) in \(G \). For any subset \(V' \) of \(V \), \(G[V'] \) denotes the induced subgraph of \(G \) by \(V' \). For any vertices \(u, v \in V \), \(\text{edge.sign}_G(u,v) \) is a function from \(V \times V \) to \(\mathbb{Z} \) and \(\text{edge.sign}_G(u,v) \) is the sum of the signs of the edges of \(G \) that join \(u \) and \(v \).

3 Algorithms for 2-bridge links

Schubert [9] defined a numerical link invariant called bridge number and many knot theorists have been studying it (see [8, 1]). In particular, the 2-bridge link is one of the most important link types. It is well known that any 2-bridge link has a diagram consisting of integer tangles \(I_{a_k} \) as in Figure 5 where \(a_k \) is an integer for \(k = 1, \ldots, m \).

Definition 3.1 A link diagram as in Figure 5 is called a normal diagram of a 2-bridge link and is denoted by \(\widehat{R}(a_1, \ldots, a_m) \). The progression \((a_1, \ldots, a_m) \) is called a progressive expression of the normal diagram.

Lemma 3.2 For any Tait graph \(G = (V,E) \) of a normal diagram of a 2-bridge link, there exists a vertex \(v \in V \) such that \(G[V - \{v\}] \) is a path.
Lemma 3.3 For any Tait graph \(G = (V, E) \) of a normal diagram of a 2-bridge link, for a vertex \(v \in V \), if \(\deg_G(v) \) is the maximum degree of \(G \), then \(G[V - \{v\}] \) is a path.

Given the Tait graph of a normal diagram \(\tilde{L} \) of a 2-bridge link, Procedure \texttt{progression}_2-bridge computes a progressive expression of \(\tilde{L} \).

Procedure \texttt{progression}_2-bridge

INPUT: The Tait graph \(G = (V, E) \) of a normal diagram \(\tilde{L} \) of a 2-bridge link.

OUTPUT: A progressive expression \((a_1, \ldots, a_m) \) of \(\tilde{L} \).

1. Label a vertex \(v \in V \) as \("v" \) such that \(\deg_G(v) \) is the maximum degree of \(G \).
2. Label all vertices \(v \in V - \{v_p\} \) as \("v_0" \), \(\ldots \), \("v_{p-1}" \) such that \(v_i \) and \(v_{i+1} \) are adjacent for \(i = 0, \ldots, p-2 \).
3. Compute edge.sign\(_G(v_i, v_{i+1}) \) for \(i = 0, \ldots, p-1 \) and edge.sign\(_G(v_j, v_{j+1}) \) for \(j = 0, \ldots, p-2 \).
4. Initialize \(i \) as "0" and \(k \) as "1".
5. while \(i < p - 1 \) do
 - \(k \) is an odd number
 - \(a_k \leftarrow \text{edge.sign}_G(v_i, v_p) \).
 - Increment \(k \).
 - \(k \) is an even number
 - \(a_k \leftarrow 0 \).
 - Repeat
 - \(a_k \leftarrow a_k + \text{edge.sign}_G(v_i, v_{i+1}) \).
 - Increment \(i \).
 - until \(\deg_G(v_i) \neq 2 \) or \(i = p - 1 \)
 - Increment \(k \).
 - od
 - \(a_k \leftarrow \text{edge.sign}_G(v_{p-1}, v_p) \).

Lemma 3.4 Given the Tait graph of a normal diagram \(\tilde{L} \) of a 2-bridge link, Procedure \texttt{progression}_2-bridge computes a progressive expression of \(\tilde{L} \) in \(O(c(\tilde{L})) \) time.

Lemma 3.5 For any normal diagram \(\tilde{R}(a_1, \ldots, a_m) \) of a 2-bridge link, the following recurrence formula holds.

\[
 \langle \tilde{R}(a_1, \ldots, a_m) \rangle = \begin{cases}
 A^{a_1}(\alpha_{-2} - \alpha_2) + (\alpha_{-3} - 4 \alpha_2 \text{sign}(a_1)) \sum_{k=1}^{a_1} (-\alpha^{4 \text{sign}(a_1)})^k & \text{if } m = 1, \\
 A^{a_2}(\alpha_{-3} - 4 \alpha_2 \text{sign}(a_2)) \langle \tilde{R}(a_1) \rangle \sum_{k=1}^{a_2} (-\alpha^{4 \text{sign}(a_2)})^k & \text{if } m = 2, \\
 A^{a_m}(\alpha_{-3} - 4 \alpha_2 \text{sign}(a_m)) \langle \tilde{R}(a_1, \ldots, a_{m-1}) \rangle \sum_{k=1}^{a_m} (-\alpha^{4 \text{sign}(a_m)})^k & \text{if } m \geq 3.
\end{cases}
\]
Given a progressive expression of a normal diagram \(\tilde{L} \) of a 2–bridge link, Procedure bracket.2–bridge computes the Kauffman bracket polynomial of \(\tilde{L} \) by using the recurrence formula in Lemma 3.5. While the algorithm is running, every Kauffman bracket polynomial is computed once at most.

Procedure bracket.2–bridge
INPUT: A progressive expression \((a_1, \ldots, a_m)\) of a normal diagram \(\tilde{L} \) of a 2–bridge link.
OUTPUT: The Kauffman bracket polynomial \(\langle \tilde{R}(a_1, \ldots, a_m) \rangle \) of \(\tilde{L} \).

Initialize \(i \) as “3”.

while \(i \leq m \) do

\[
T \leftarrow \sum_{k=1}^{[a_i]} (-A^{|\text{sign}(a_i)|})^k.
\]

Compute \(\langle \tilde{R}(a_1, \ldots, a_i) \rangle \) from \(\langle \tilde{R}(a_1, \ldots, a_{i-2}) \rangle, \langle \tilde{R}(a_1, \ldots, a_{i-1}) \rangle \) and \(T \).

Increment \(i \).

end while

Lemma 3.6 Given a progressive expression of a normal diagram \(\tilde{L} \) of a 2–bridge link, Procedure bracket.2–bridge computes the Kauffman bracket polynomial of \(\tilde{L} \) with \(\mathcal{O}(c(\tilde{L})) \) operations of polynomials of degree \(\mathcal{O}(c(\tilde{L})) \).

Theorem 3.7 The Jones polynomial of a 2–bridge link is computed from the Tait graph of a normal diagram \(\tilde{L} \) of the 2–bridge link with \(\mathcal{O}(c(\tilde{L})) \) operations of polynomials of degree \(\mathcal{O}(c(\tilde{L})) \).

4 Algorithms for closed 3–braid links

A 3–braid is a set of 3 strings, all of which are attached to a horizontal bar at the top and at the bottom and each string intersects any horizontal plane between the two bars exactly once (see Figure 6 (a)). Given any 3–braid, its ends on the bottom edge may be joined to those on the top edge to produce the closed 3–braid link (see Figure 6 (b)). It is clear that any closed 3–braid link has a diagram consisting of integer tangles \(I_{a_k} \) as in Figure 7 where \(a_k \) is an integer for \(k = 1, \ldots, m \).

Definition 4.1 A link diagram as in Figure 7 is called a normal diagram of a closed 3–braid link and is denoted by \(\tilde{B}(a_1, \ldots, a_m) \). The progression \((a_1, \ldots, a_m)\) is called a progressive expression of the normal diagram.

\[\begin{align*}
\text{(a)} & \quad \text{A 3–braid, (b) A closed 3–braid link} \\
\text{Figure 6: (a) A 3–braid, (b) A closed 3–braid link}\end{align*}\]

\[\begin{align*}
\text{m is an odd number} & \quad \text{m is an even number} \\
\text{Figure 7: Normal diagrams of closed 3–braid links}\end{align*}\]

Lemma 4.2 For any Tait graph \(G = (V, E) \) of a normal diagram of a closed 3–braid link, there exists a vertex \(v \in V \) such that \(G[V - \{v\}] \) is a cycle.
Given the Tait graph of a normal diagram \(\tilde{L} \) of a closed 3-braid link, **Procedure progression_3-braid** computes a progressive expression of \(\tilde{L} \).

Procedure progression_3-braid

- **INPUT:** The Tait graph \(G = (V, E) \) of a normal diagram \(\tilde{L} \) of a closed 3-braid link.
- **OUTPUT:** A progressive expression \((a_1, \ldots, a_m) \) of \(\tilde{L} \).

\[p \leftarrow |V| - 1. \]

- if there exists a vertex \(v \in V \) such that \(|N_G(v)| \geq 4 \)
 - Label \(v \) as \("v_p" \),
- else if there exists a vertex \(v \in V \) such that \(|N_G(v)| = 0 \)
 - Label \(v \) as \("v_p" \),
- else if there exists a vertex \(v \in V \) such that \(|N_G(v)| = 1 \)
 - Label \(v \) as \("v_p" \),
- else if there exists no vertex \(v \in V \) such that \(|N_G(v)| \neq 2 \) \{ for any vertex \(v \in V \), \(|N_G(v)| = 2 \} \)
 - Label a vertex \(v \in V \) as \("v_p" \) such that \(G[V - \{v_p\}] \) is a cycle,
- else

\[V' \leftarrow \{v \mid v \in V, |N_G(v)| = 3\}, \]

- Label a vertex \(v \in V \) as \("v_p" \) such that \(\bigcap_{v' \in V' \setminus \{v_p\}} N_G(v') = \{v_p\} \).

Label the all vertices \(v \in V - \{v_p\} \) as \("v_0, \ldots, v_{p-1}" \) such that \(v_i \) and \(v_{i+1 \mod p} \) are adjacent for \(i = 0, \ldots, p - 1 \).

Compute \(\text{edge} _\text{sign}_G(v_i, v_p) \) and \(\text{edge} _\text{sign}_G(v_i, v_{i+1 \mod p}) \) for \(i = 0, \ldots, p - 1 \).

Initialize \(i \) as \("0" \) and \(k \) as \("1" \).

repeat

- \(\{k \text{ is an odd number}\} \)
 - \(a_k \leftarrow -\text{edge}_\text{sign}_G(v_i, v_p) \).
 - Increment \(k \).
- \(\{k \text{ is an even number}\} \)
 - Initialize \(a_k \) as \("0" \).

repeat

- \(a_k \leftarrow a_k + \text{edge}_\text{sign}_G(v_i, v_{i+1 \mod p}) \).
 - Increment \(i \).
 - until \(\deg_G(v_i) \neq 2 \) or \(i = p \)
 - Increment \(k \).
- until \(i = p \)

Lemma 4.3 Given the Tait graph of a normal diagram \(\tilde{L} \) of a closed 3-braid link, **Procedure progression_3-braid** computes a progressive expression of \(\tilde{L} \) in \(\mathcal{O}(c(|\tilde{L}|)) \) time.

Lemma 4.4 For any normal diagram \(\tilde{B}(a_1, \ldots, a_m) \) of a closed 3-braid link, the following recurrence formula holds.

\[
\langle \tilde{B}(a_1, \ldots, a_m) \rangle = \begin{cases}
(-A^2 - A^2)(\tilde{R}(a_1)) \quad & \text{if } m = 1, \\
A^{a_m}(\tilde{B}(a_1, \ldots, a_{m-1}) + (-A)^{-3a_m - 2\text{sign}(a_m)}) \quad & \text{if } m \geq 2 \text{ and } m \text{ is an even number}, \\
\times(\tilde{R}(a_1, \ldots, a_{m-1})) \sum_{k=1}^{[a_m]} (-A^{4\text{sign}(a_m)})^k \quad & \text{if } m \geq 3 \text{ and } m \text{ is an odd number}.
\end{cases}
\]

Given a progressive expression of a normal diagram \(\tilde{L} \) of a closed 3-braid link, **Procedure bracket_3-braid** computes the Kauffman bracket polynomial of \(\tilde{L} \) by using the recurrence formulas in **Lemma 3.5** and **Lemma 4.4**. While the algorithm is running, every Kauffman bracket polynomial is computed once at
most.

Procedure bracket\textsubscript{3-braid}

INPUT: A progressive expression \((a_1, \ldots, a_m)\) of a normal diagram \(\tilde{L}\) of a closed 3-braid link.

OUTPUT: The Kauffman bracket polynomial \(\langle \tilde{B}(a_1, \ldots, a_m) \rangle\) of \(\tilde{L}\).

Compute \(\langle \tilde{R}(a_1) \rangle, \langle \tilde{B}(a_1) \rangle, \langle \tilde{R}(a_1, a_2) \rangle, \langle \tilde{R}(a_2) \rangle, \langle \tilde{B}(a_1, a_2, a_3) \rangle, \langle \tilde{R}(a_1, a_2, a_3) \rangle\) and \(\langle \tilde{R}(a_2, a_3) \rangle\).

Initialize \(i\) as "4".

while \(i \leq m\) do

\[T \leftarrow \sum_{k=1}^{[a_i]} (-A^{4\text{sign}(a_i)})^k \]

if \(i\) is an even number

Compute \(\langle \tilde{B}(a_1, \ldots, a_i) \rangle\) from \(\langle \tilde{B}(a_1, \ldots, a_{i-1}) \rangle\), \(\langle \tilde{R}(a_1, \ldots, a_{i-1}) \rangle\) and \(T\),

else

Compute \(\langle \tilde{B}(a_1, \ldots, a_i) \rangle\) from \(\langle \tilde{B}(a_1, \ldots, a_{i-1}) \rangle\), \(\langle \tilde{R}(a_2, \ldots, a_{i-1}) \rangle\) and \(T\).

Compute \(\langle \tilde{R}(a_1, \ldots, a_i) \rangle\) from \(\langle \tilde{R}(a_1, \ldots, a_{i-2}) \rangle\), \(\langle \tilde{R}(a_1, \ldots, a_{i-1}) \rangle\) and \(T\).

Compute \(\langle \tilde{R}(a_2, \ldots, a_i) \rangle\) from \(\langle \tilde{R}(a_2, \ldots, a_{i-2}) \rangle\), \(\langle \tilde{R}(a_2, \ldots, a_{i-1}) \rangle\) and \(T\).

Increment \(i\).

od

Lemma 4.5 Given a progressive expression of a normal diagram \(\tilde{L}\) of a closed 3-braid link, **Procedure bracket\textsubscript{3-braid}** computes the Kauffman bracket polynomial of \(\tilde{L}\) with \(\mathcal{O}(c(\tilde{L}))\) operations of polynomials of degree \(\mathcal{O}(c(\tilde{L}))\).

Theorem 4.6 The Jones polynomial of a closed 3-braid link is computed from the Tutte graph of a normal diagram \(\tilde{L}\) of the closed 3-braid link with \(\mathcal{O}(c(\tilde{L}))\) operations of polynomials of degree \(\mathcal{O}(c(\tilde{L}))\).

5 Algorithms for Montesinos links

Definition 5.1 A link that has a link diagram as in Figure 8 is a Montesinos link. The link diagram is called a normal diagram of the Montesinos link and is denoted by \(\overline{M}(a_{11}, \ldots, a_{1m_1}| \cdots| a_{11}, \ldots, a_{lm_1})\). The progression \((a_{11}, \ldots, a_{1m_1}| \cdots| a_{11}, \ldots, a_{lm_1})\) is called a progressive expression of the normal diagram. A link diagram as in Figure 9 is denoted by \(\overline{N}(a_{11}, \ldots, a_{1m_1}| \cdots| a_{11}, \ldots, a_{lm_1})\).

![Figure 8: A normal diagram of a Montesinos link](image)

![Figure 9: \(\overline{N}(a_{11}, \ldots, a_{1m_1}| \cdots| a_{11}, \ldots, a_{lm_1})\)](image)

Lemma 5.2 For any normal diagram \(\overline{M}(a_{11}, \ldots, a_{1m_1}| \cdots| a_{11}, \ldots, a_{lm_1})\) of a Montesinos link, the following recurrence formula holds.
\[
\begin{align*}
\langle \tilde{M}(a_{11}, \ldots, a_{1m_1}, \ldots | a_{11}, \ldots, a_{l1}, \ldots, a_{l1}) \rangle \\
\langle \tilde{M}(a_{11}, \ldots, a_{1m_1}, \ldots | a_{11}, \ldots, a_{l1}, \ldots, a_{l1}) \rangle \\
\langle -A^{-3} \rangle_{a_{11}} & \quad \text{if } l = 1 \text{ and } m_1 = 1, \\
\langle -A^{-3} \rangle_{a_{11}} & \quad \text{if } l = 1 \text{ and } m_1 \geq 2, \\
\langle -A^{-3} \rangle_{a_{11}} & \quad \text{if } l \geq 2 \text{ and } m_1 = 1, \\
\langle -A^{-3} \rangle_{a_{11}} & \quad \text{if } l \geq 2 \text{ and } m_1 \geq 3, \\
\end{align*}
\]

For any \(\tilde{N}(a_{11}, \ldots, a_{1m_1}, \ldots | a_{11}, \ldots, a_{l1}, \ldots, a_{l1}) \), we also get a recurrence formula.

Theorem 5.3 The Jones polynomial of a Montesinos link is computed from a progressive expression of a normal diagram \(\tilde{L} \) of the Montesinos link with \(O(c(\tilde{L})) \) operations of polynomials of degree \(O(c(\tilde{L})) \).

References

