Studies on the Phylogenetic Differentiation in

Taro, Colocasia esculenta Schott

by Hiromichi Yoshino

Contents

1.	Introduction	1
2.	General Materials	3
3.	Analysis of Inflorescence	
	3-1. Composition of inflorescence	16
	3-2. Genetic stability of the parts of inflorescence	19
	3-3. Results of principal component analysis and cluster analysis	21
	3-4. Discussion	27
4.	Analysis of the Length and Angle of Leafvein	
	4-1. Leaf shape of taro	28
	4-2. Materials and methods	29
	4-3. Results	31
	4-4. Discussion	33
5.	Restriction Endonuclease Analysis	
	5-1. Plant materials	34
	5-2. Methods	
	5-2-1. Total DNA preparation	34
	5-2-2. DNA fingerprinting	34
	5-2-3. Southern hybridization	35
	5-3. Results	
	5-3-1. DNA fingerprinting	36
	5-3-2. Southern hybridization with ctDNA probes	38
	5-4. Discussion	43
6.	Crossing Experiments	
	6-1. Flowering pattern of taro	44
	6-2. Crossing technique	44
	6-3. Results	45
	6-4. Discussion	51
7.	General Discussion	52
8.	Summary	56
9.	Acknowledgment	57
10	. References	58

1. Introduction

Taro (Sato-imo in Japanese), *Colocasia esculenta* Schott, is a species in the family Araceae, which grows wild or is cultivated widely in the tropical, subtropical and temperate area. The family is a very large group and its classification systems are various to be confused.Engler (1889) set up 8 subfamilies, and Hooker (1894) did 6 tribes under 3 subfamilies, who wrote there were about 100 genera and about 1000 species. Engler and Krause (1920) reduced them to 3 tribes. Ohwi (1953) described the family as having more than 1500 species, while Kitamura et al. (1979) treated it as a group of 1800 species under 110 genera.

Limited only in taro, the species name is *C. antiquorum* Schott by Hooker and this has been used most frequently. However, Young (1924) proposed to divide it into 2 species: *C. antiquorum* and *C. esculenta*. He distinguished 1 variety of the former and 3 varieties of the latter. He mentioned the ratios of portions of the inflorescence but not as a key character to species or variety. According to him, the ratio of the staminate portion to the sterile appendage of the spadix appeared to be nearly constant in all the varieties of the true *C. antiquorum*.

Though other authors also noticed the presence of the sterile appendage and the ratio of portions of the inflorescence as Hooker (1894) had done, the significance of this character has been vague. Yet, it appears to have become an important key character in the classification of taro or other species without being examined.

Recently Hotta (1970) proposed an arranged classification system of this family in Japan and the adjacent areas. He set up 6 subfamilies and put the tribe Colocasieae under the subfamily Philodendroideae. Genera *Colocasia* and *Alocasia* were in this tribe together with other 4 genera:

4. Secondary veins started from primary lateral veins more or less parallely ascend and then
are collected between the primaries forming reticulate venation; male flowers usually
forming a typical synandrium Tribe Colocasieae
11. Spadix without appendix; tuberous herbs12
12. Parietal placentation Remusatia
12. Basal Placentation Gonatanthus
11. Spadix usually with appendix or sterile apical part of male inflorescence13
13. Ovary with an ovuleHapaline
13. Overy with several ovules14
14. Parietal placentation; ovule anatropous or hemianatropous; seed many
and small Colocasia
14. Basal placentation; seed few (1-6), usually larger15
15. Ovule orthotropous or hemianatropous; leaf simple rarely pinnatifid
Alocasia
15. Ovule anatropous; leaf pinnatilobed or pinnatifid Shizocasia

C. Koch. Besides, *C. esculenta* was divided into 2 varieties: var. *aquatilis* and var. *esculenta*, and the latter contained 5 cultivar groups.

1. Plants with long stolons; appendage of the spadix long; diploids; mostly wild or natural-
ized, a few cultivated in tropics Var. aquatilis
1. Plants without stolons; appendages various; diploids or triploids; mostly cultivated
Var. esculenta
2. Chromosome number 2n=28 (diploid); lateral tuber with normal leaves; appendages
short (?)3

2. Chromosome number 2n=42 (triploid) or unknown; lateral tubers often without normal leaves or with a few ones; appendages short or long ------ 4

He commented that Bailey (1924) recognized two species of cultivated taro namely *C. esculenta* with short appendages and *C. antiquorum* with long appendages, but that many intermediate types exsisted.

Thus, the classification of this plant group including taro is very complicated and not established. The present author started this work at first on the point of view to study right- and left- handedness in taro. And after collecting taro in the Nepal Himalayas in 1974, he began to gather data of the inflorescence and to make crossing experiments with taro for the purpose of knowing the phylogenetic significance of the ratios of different portions of the inflorescence in this species.

However, these experiments could not bring a clear answer. The next step was necessary, so molecular-biological techniques were taken and the purpose of experiments naturally changed to investigate the phylogenetic differentiation in *C. esculenta* Schott and the relationships with other species.

2. General Materials

Almost all materials used in the present works were collected by the present author himself. His main travels for collection and field works were as follows;

1. 1973.2 –1973.6	Eastern Nepal, India, Sri-Lanka
2. 1981.8 –1981.9	Central Nepal
3. 1982.8	Ishigaki Island, Iriomote Island
4. 1983.6 –1983.7	Tokunoshima Island, Amami Island, Kikai Island
5. 1983.7 –1983.8	North-western Thailand
6. 1986.8	North-eastern Thailand
7. 1987.5 –1987.6	Amami-ohshima Island, Kakeroma Island
8. 1988.10	Okinawa Island

More than 400 strains were collected, but many of them were dead because of the difficulties to keep them during the winter season or because of diseases and insect damages. Of these collections, those from Nepal, Thailand, Ryukyu and other parts of Japan were used in the present experiments. Fig.1 shows some places they were collected.

Fig.2 and Table 1 and Table 2 are the travel route and the list of collections in 1973 (Yoshino, 1976). Most of the collections were transfered to the Plant Germ-plasm Institute of Kyoto University and to Tokyo Agricultural University. Only KUYE373, KUYE442 and KUYE474 have been left in Okayama. Fig.3 is a map of Central Nepal in 1981. Some strains collected through these two times travels were to be very important samples in the present work. Fig.4 shows travels in Thailand in 1983 and 1986. Two strains, TC8614 and TC83021.2, should have been noticed.

The present work consists of four parts, through which some strains were used almost in common, so they are listed in Table 3. Species names are generally after the systems by Hotta (1970) and partly after Engler and Krause (1920). As it is rather difficult to decide 'wild', 'natural', 'escape' or 'cultivated', the presence of long stolon is taken as a standard of wild types in the table. However, it was naturally considered to get informations from the native people as much as possible and to observe ecological conditions. Fig.5 and Fig.6 show an example of the habitats of wild types in Nepal and long stolons, respectively.

In these general materials, accession No.2 was a sterile wild diploid and accession No.17 was a wild triploid. Fig.7 shows that accession No.2 was completely male sterile while other two triploid (accessions No.22 and No.17) had partially fertile pollen grains with three nuclei, and that some pollen tubes were observed to be germinating. Besides, accession No.2 was female sterile, too. As shown in Fig.8, univalents were observed in MI stage of accession No.2. The sterility of this strain will have a special meaning later.

Table 1. Wild or escaped species of tribe Colocasieae on the caravan route

	Collection	1	Point		Wild or	Domestic (Chromosome	, Pla	ant		С	olor		Le	af	Lateral	Axial			
No.	No.	Name	Environment	Altitude	escaped	name	No. (RTC)	Form	Height	Petiole	Leaf	Vagina	Leaf center	Shape	Angle	rhizome	tuber	Species	Classification	Remarks
(D	pistrict I)																			
1	473	1	C, s	72m	W (?)	Kiechú or	42	S	Т	р	G	р	(—)	P, u	<r< td=""><td>G-LL, t</td><td>G</td><td>C. esculenta Schott</td><td>a-2'</td><td>leaf edible</td></r<>	G-LL, t	G	C. esculenta Schott	a-2'	leaf edible
2	474	(1)	Y, h	72	W	Pindalú	28	Е	Т	pm-P	G	p-P	р	Р	R	E-LL, t, b	Ob	C. esculenta Schott	a = a-2	leaf edible, flowered in Japan (June)
- 3	477	(1)	C, s	72	W	Kiechú or		S	TT	G (pm)	G	G	P	P, u, l	R	LL	ht	C. esculenta Schott	a 2 9-1	leaf edible
4	478	$\underbrace{\widetilde{\mathbb{I}}}$	R, h	72	W (?)	Kiechú		Е	Т	pm-G	G	p-G	(—)	p. u. r	<r< td=""><td></td><td>Ob</td><td>C. esculenta Schott</td><td>a-1</td><td>leaf edible</td></r<>		Ob	C. esculenta Schott	a-1	leaf edible
5	480		Rs	72	W	Darsãni	_	S	TT	pm-G	G. 1	g (n)	()	S La	R<		Oh t	A macromhiza Schott	a-5	not for use
5			C s	72	W (2)			Ē	т	P C	G, 1	P	n	P 1	R	II	bt	C. anoulanta Schott	u - 1	leafedible rather thin
	istrict II)							<u> </u>	•	-		-	P	1,1				C. esculenta Schott	<u>a-1</u>	
	465h	2	Ks	350	W (2)			\$	M	G (nm)	G	G	()	P	<r< td=""><td>E-II</td><td></td><td>C analysis Salart</td><td>- 2</td><td>not for use only one individual among maize</td></r<>	E-II		C analysis Salart	- 2	not for use only one individual among maize
, 0	4640	9	R, 3 D c	700	•• (.)		28	S	M	a w	a w	a w	(_)	D D	R/			C. esculenta Scholl	a-2	hor lobe and its since round
0	404a 1616	୍ତ ଭ	D, S D o	700	— E (?)	Dirolú	20	5	M	g, w	g, w	д, ч С	()	I Do	D	_	 	C. gigantea Hook	D	leaf thick
9	4040	୍ତ ଭ	D, S	700		rnaiu	20	Б	M	G (piii)	C	Ŭ	()	г, с р	л D	 	00	C. esculenta Schott	a-4	lear mick
10	4660	3	B, S	/00	W	— D: 1/		E	M	g (pm)	G	g	()	ĸ	ĸ	LL, t, g	ht	C. esculenta Schott	a-l	
11		(3)	S, s	660	E (?)	Piralu	_	S	11	—	_		_	P			Ob	C. esculenta Schott	a-4	
12		(3)	Fd, s	400				S	M		_			P	<r< td=""><td></td><td></td><td>C. esculenta Schott</td><td>_</td><td></td></r<>			C. esculenta Schott	_	
13	61	(5)	Fp, s	360	W	Piralú		_	SS	g	pg	g	(—)	Р	R	LL	lt	C. esculenta Schott (?)	a-1'	(small spediy observed in the vestine shooth
14	64	(5)	P, d	340	W	Manié		Ε	TT	Р	G	Р	()	Р	R	LL	ht	Colocasia sp.	a-1	(end of February)
15	65	5	Ps, d	340	W	Manié	28	S	М	g	g	g	(—)	P, r	R	LL, t, g	lt	C. fallax Schott	a-1	petiole fibrous, flowered in Japan (June-October)
16	410	11	B, s	650	W	—	—	S	T ·	pm-g	G	p-g	(—)	Р	<r< td=""><td>LL, t, g</td><td>ht</td><td>Colocasia sp.</td><td>с</td><td>lateral nerves of upside of leaf</td></r<>	LL, t, g	ht	Colocasia sp.	с	lateral nerves of upside of leaf
17		11	B, h	650	W		_	Ε	Т	pm-g	G	p-g	(—)	Р	R	LL, t, g	O-Ob	C. esculenta Schott	a-l	
18		(19)	F, h	700	E (?)	—	_	S	Т	G (pm)	G	p-g	(—)	P, u	<r< td=""><td></td><td>Ob</td><td>C. esculenta Schott</td><td>a-4</td><td></td></r<>		Ob	C. esculenta Schott	a-4	
19	_	20	R-Fm ; s	850	W			S	Т		—	_		Р	<r< td=""><td>LL</td><td>_</td><td>C. esculenta Schott</td><td>a-l</td><td>some grew mixed with No. 41 in Table 2</td></r<>	LL	_	C. esculenta Schott	a-l	some grew mixed with No. 41 in Table 2
(Ľ	District IIIa	a)																· · · · · ·		
20	373	16	F, h	1550	W	_	42	S	М	pm-G, tp	G	р	(—)	P, ss	<r< td=""><td>E-LL, t</td><td>Ob</td><td>C. esculenta Schott</td><td>a-2</td><td>(eruciform lateral tuber branched, flowered</td></r<>	E-LL, t	Ob	C. esculenta Schott	a-2	(eruciform lateral tuber branched, flowered
21	376	(17)	R, s	1300	E (?)	—	—	S	Т	G	G	G	(—)	S, Lr	R<	_	O-Ob, t	A. cucullata Schott (?)	d	(III Japan (August)
22	382	17	F, d	1250	W (?)	_		Ε	Т	g	G	g	(p)	Р	R		O-Ov	C. esculenta Schott	—	
23	381	(18)	F, d	1100	W	_		S	М	g (pm)	G	p-g	(—)	P, r	R	LL	Ob	C. esculenta Schott	a-1	
24	378	(18)	F. d	1200	W			Е	М	G	G	G	()	P. r	R	Е	Ob	Colocasia sp. (?)	a-2 (?)	leaf thin and soft
25	399	(18)	F. h	1100	W (?)	·		Е	М	p-g, tp	G	D	P	P. r	R	LL	O-Ob	Colocasia sp.	a-1	petiole rather slender
26	400	(18)	Fn. s	1050	w	_	_	S	т	p-g. tp	G	n	Р	P	R	LL	Ob	C. esculenta Schott	a-1	root and bud reddish brown
27		(18)	Fs	1200	w	Manié	_		S	г 8, 4 G	G	г G	- ()	P.c	R		G		f	fleaf thick, flowered (June), spadix with
(Ľ	District III))		1200					5											(very long appendage
	460	<u>(4)</u>	F. h	1150	W (?)			S	M	G	G	G	()	P. r	R	LL (?)	Ob	C. esculenta Schott	a-1 (?)	
29	461	<u>(4)</u>	E h	1200	w			Е	М	G	G.1	G	()	P.r	R	LL.t	Ob	Remusatia sp.	e	terrestreal branch erect with many bulbils
30	462 x	(4)	-, F h	1200	w	_		Ē	M	_		_		-,. P		LL		C. esculenta Schott	a-1	
31		ۍ د	Mw h	1100	w			2	22	a	a	a	()	P			_	<i>C</i> esculenta Schott (?)	a-1'	probably same species as No. 13
32			En s	1600	w	Manui	_	<u> </u>	22	5 G	g	Б a	()	л р	_	 T T		<i>C</i> esculenta Schott (?)	a-1'	do
Network		9	11, 5	1000		Ivialiui		3		g	g	g	()							
Notes to	o Table 1 Dint. Name	· See Fig	ure 1		5) I	Plant, Height TT · verv tall					pm:	petiole tra	nsversely lig	ht-purple- ple	marbled	8)	Leaf, Ang R<: obtu	le : to petiole use angle		11) Classification : a : C. esculenta Schott
2) Po	oint, Enviro	nment				T : tall					nV:	nerves of l	backside of l	eaf bluish	violet		R : righ	t angle		-1: having slender and long lateral rhizome
	R : roadsid V : house i	e vard	s : sunny			M : middle					nP:	nerves of l	backside of l	eaf reddis	n purple	• 0)	<r :="" acut<="" td=""><td>e angle izome</td><td></td><td>-1': same as a-1, but plant very small (10-15cm high)</td></r>	e angle izome		-1': same as a-1, but plant very small (10-15cm high)
	C : creek	aiu	h : half-shady			S : small SS : very smal	11				mP:	margin of	leaf reddish	purple	eu vioiei	ι <i>)</i>	E : eruc	biform		-2 : having slender and long lateral rhizome
	B : river be	ed	u. snauy		6) H	Plant, Color				-	():	without co	olored spot				LL : very	long and slender		and lateral rhizome thickened eruciform
F	d : field					Vagina : marg	gin of vagina s	neath of costa a	and latera	/) I) Leaf, S P:	snape peltate					t : som	etimes terrestreal		globular lateral tuber too
F	m : farm					ne	erves on the up	oside of le	eaf		S :	sagittate					b : brov	wn-colored when terrestreal		-3: not having slender and long lateral rhizome
F	F: forest	h in the n	uddu field			G: dark gree	n				u:	margin of	leaf undulate	6		10	g : ligh	t-green when terrestreal		-4: probaby cultivated species escaped
	P: pond	n in the pt	iddy lield			V : bluish vio	olet				r:	nearly rou	nd			10	G : glot	pular		c : Colocasia sp. except a. and b.
J	Ps : pondside					P: reddish p	ourple				c :	typically c	ordate	ht			Ob : obovoid			d : Alocasia sp.
3) W	ild or esca	garden ped				p : light purp	pie role				ss: La:	sinus of ba	asal lobe slig asal lobe rela	nt tivelv acu	te	(Ov : ovo O-Ob : oblo	ong-obovoid		e : <i>Remusana</i> sp. f : Genus not identified
, I	W : wild					GP : dark gree	n wearing blac	ckish purp	ple		Lr:	point of b	asal lobe rela	tively rou	nd	ĺ	O-Ov : oblo	ong-ovoid		12) —: not collected or not confined.
4) PI	E : escaped ant. Form	1				W : glaucous	etiale light pur	mle			Lw :	nerve of b	asal lobe exp le insertion	osed with	out lamir	na	It : thic ht : hare	kened a mule Ily thickened		13) (): having slightly the tendency of
., .	S : spread					uP: upper par	rt of petiole rec	dish pur	ple		Le :	lamina of	basal lobe ex	cisting to p	etiole		t : terre	estreal		
	E : erect					-						insertion								

C : caulescent F : fasciculate Table 2. Cultivated species of tribe Colocasieae on the caravan route

	Collection		Point		Domestic	Chromosome	Pla	ant		Co	olor		L	eaf	Tu	ber		
No.	No.	Name	Environment	Altitude	name	No. (RTC)	Form	Height	Petiole	Leaf	Vagina	Leaf center	Shape	Angle	Lateral	Axial	Species	Remarks
(I	District I)																	
	479	1	K, s	72m	Dudh-ya-	_	S	Т	g, w, bp	g	g	(—)	S, Le, Lr, w	R<	_		X. sagittifolium Schott	bud pinky purple, vagina sheath large and spread out
34		1	K, s	72	Kachú		С	ΤT	G	G	G	()	P, l, u, s	R	_	t, e	Colocasia sp.	(leaf robust and thick, edible, lateral nerves of leaf
35		(1)	K, h	72	Karukálo or Karukául		F	Т	g	g	g	(—)	S	R<	_	_	Alocasia sp.	(many, wild species (?) tuber edible.
(I	District II)																· · · · · · · · · · · · · · · · · · ·	
36	462	2	K, h	350	_	. —	S	Т	V, w	G, nV, bv	V	(—)	S, Le	R<	L, t		X. violaceum Schott	
37	463a	2	K, h	350	_		S	М	g	G	g	(—)	P, r	R	—		C. esculenta Schott	vagina sheath large and spread out
38	463b	2	K, h	350	Dudh Manié	—	S	М	g, w	g	g	()	S	R<	L-G	—	Xanthosoma.sp.	petiole not fibrous
39	136	10	K, h	900	Dudh Mané	26	S	Т	V, w	G, nV, bv	V	(—)	S, Le, La, n	R<	L, t	_	X. violaceum Schott	
40	411	11)	K, h	650	Piralú	_	S	TT	g, uP	G	—	р	Р	<r< td=""><td></td><td>Ob</td><td>C. esculenta Schott</td><td>leaf thick</td></r<>		Ob	C. esculenta Schott	leaf thick
41	_	20	Fm, s	850	_		S	TT	g, uP	G	_	Р	Р	<r< td=""><td></td><td></td><td>C. esculenta Schott</td><td>probably same cultivar as No. 40</td></r<>			C. esculenta Schott	probably same cultivar as No. 40
(]	District III)					·												
42	458	4	Fm, h	ca. 1000		_	S	Т	V, w	G, nV, bv	V	()	S, Le, La	R<	—	-	X. violaceum Schott	
43	78	6	Fm, s	1200	—	42	F	TT	G-pm, tp	G, bv	р	(—)	P , c	R	L	O-Ob	C. esculenta Schott	leaf thick
44	370	17	Fm, s	1300	—	_	S	Т	V, w	G, nV, bv	v	()	S, Le, La	R<	t	_	X. violaceum Schott	
45	371	17	Fm, s	1300	—	39	S	M-T	g, w	G	рр	()	S, Le, Lr, w	R<	L, t	Ob, Ov	Xanthosoma.sp.	bud pinky purple, vagina sheath large and spread out
46	380	17	Fm, h	1300	Pindalú	—	Ε	Μ	g, tp	G	g	()	P, (u)	<r< td=""><td>G</td><td>Ov</td><td>C. esculenta Schott</td><td>lateral nerves of leaf many</td></r<>	G	Ov	C. esculenta Schott	lateral nerves of leaf many
47	382	17	K, h	1300	· —	—	S	Т	p, tp	G	Р	(—)	P, r, s	<r< td=""><td>—</td><td>0-0v</td><td>C. esculenta Schott</td><td>vagina sheath large and spread out</td></r<>	—	0-0v	C. esculenta Schott	vagina sheath large and spread out
48	401	18	K, s	1050	—	—	S (F)	Т	G	G	G	(—)	Р	R	L	O-Ob	C. esculenta Schott	having a tendency to be fasciculate.
49		12		ca. 1000	Pindalú	—	—	_	—			—		_	L-G	Ob	C. esculenta Schott	tuber like insect abdomen.
(l	District IV)																	
50	442	7	Fm, s	2200	Piralú	42	S	TT	P, bp, tP	G, mP, nP	P	р	P, u, c, s	<r< td=""><td>L, t</td><td>O-Ob</td><td>C. esculenta Schott</td><td>leaf robust</td></r<>	L, t	O-Ob	C. esculenta Schott	leaf robust
51	443	(8)	Fm	ca. 2350	Piralú	_		_	—		<u> </u>		_	_		Ov	C. esculenta Schott	(bud ninky numle yaging cheath large and spread
52	169	(13)	K, s	1940	Piralú	26	S	Т	g, w	g	рр	()	S, Lw, Lr, w	R<	L, t	Ob	Xanthosoma.sp.	(out, resemble to No. 45
53	333	(14)	Fm, h	2050	Pindalú	_	S	S-M	g	G	tp	р	P, r, s	<r< td=""><td>G</td><td>Ob</td><td>C. esculenta Schott</td><td>vagina sheath large and spread out</td></r<>	G	Ob	C. esculenta Schott	vagina sheath large and spread out
54	336	(15)	Fm, s	1800	Pindalú	—	S	S-M	g	G	tp	р	P, s	<r< td=""><td>G</td><td>Ob</td><td>C. esculenta Schott</td><td>same cultivar as No. 53</td></r<>	G	Ob	C. esculenta Schott	same cultivar as No. 53
Notes to Table 2 1) Point, Name : See Figure 1. 2) Point, Environment R : roadside S : sunny Y : house yard h : half-shady C : creek d : shady B : river bed S : stream Fd : field Fm : farm F : forest Fp : footpath in the puddy field P : pond Ps : pondside K : kitchen garden 3) Wild or escaped W : wild E : escaped 4) Plant, Form S : spread E : erect C : caulescent					5) Pla T S 6) Pla 5 1 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ant, Height T: very tall T: tall A: middle S: small S: very small ant, Color /agina: margin of .eaf center : junc nerve G: dark green g: light green V: bluish violet P: reddish purple p: light purple p: light green w V: glaucous p: base of petio P: upper part of	of vagina ction poin es on the u le vearing bla le light pu f petiole re	sheath at of costa apside of ackish pu arple eddish pu	a and lateral leaf Irple	7)	pm : peti- tp : top nV : nerv nP : nerv bv : bacl mP : mar, () : with Leaf, Shap P : pelt S : sagi u : mar, 1 : rela r : near c : typi ss : sinu La : poir Lw : nerv near Le : lam inse	ole transvers of petiole lig ves of backsi ves of backsi kside of leaf gin of leaf re nout colored e ate ttate gin of leaf ut tively long rly round cally cordate is of basal lo t of basal lo t of basal lo r petiole inse ina of basal 1 rtion	ely light-purple ht purple de of leaf bluish de of leaf reddis more or less tin sddish purple spot ndulate be slight be relatively act be relatively rou be exposed with rtion lobe existing to	-marbled i violet sh purple ged viole ged viole inte ind nout lami petiole	na	8) Le R I 9) La 9) La 10) A (0 0 0-0 0-0 1	af, Angle : to petiole <: obtuse angle R: right angle R: acute angle E: eruciform L: very long and slender L: very long and slender L: sometimes terrestreal b: brown-colored when terr g: light-green when terrestr xial tuber G: globular b: obovoid v: ovoid b: oblong-obovoid v: oblong-ovoid lt: thickened a little nt: hardly thickened t: terrestreal	 11) Classification : a : C. esculenta Schott -1: having slender and long lateral rhizome -1': same as a-1, but plant very small (10-15cm high) -2: having slender and long lateral rhizome and lateral rhizome thickened eruciform -2: same as a-2, but having small and rather globular lateral tuber too -3: not having slender and long lateral rhizome estreal -3: not having slender and long lateral rhizome -4: probaby cultivated species escaped b: C. gigantea Hook. c: Colocasia sp. except a. and b. d: Alocasia sp. f: Genus not identified (): having slightly the tendency of

F : fasciculate

Fig. 1. Some of the sites where the wild types of *C. esculenta* were collected.

G	eneral No.	Strain	Species	Source	Habitat	Туре	Remarks
*	1	C81019.2	Cea	N	h•r	2 • w	
*	2	KUYE474	Cei	Ν	l•m	2 • w• s	without long stolon
*	3	C81045.3	Cea	Ν	h•r	2 • w	-
*	4	C8030	Cea	Ν	h•c	2 • w	donor:Higuchi
*	5	C81113	Cee	Ν	b	3 • c	stalk edible, round tuber
	6	TC8611b-2	Cee	Т	l•k	3 • c	
	7	TC83001-3	Cea	Т	l•m	2 • w	
*	8	C84001-3	Cea	В	?	2 • w	donor:Takamura
	9	CL8203.1	Cea	R	l • c	2 • w	Iriomote Island
*	10	C7409-3CT	Cee	R	l•p	?•c	Okinawa Island,''Taumu''
*	11	Egu-imo	Cee	J		3	cultivar.
	12	Takenoko-imo	Cee	J		2	cultivar.
	13	Akame-imo	Cee	J		3	cultivar.
*	14	C86001	Cei	J		?•c	ornamental, donor:Ishida
	15	Cg	Cg	Т	l•k	?•c	
	16	TC8614	Amv	Т		2	ornamental
*	17	KUYE373	Ce	Ν	h•f	3	without long stolon
*	18	C81027.111	Cea	Ν	h•m	2 • w	
*	19	C81079.3	Cea	Ν	h•r	2 • w	
*	20	C81125.2-1	Cee	Ν	l•k	2 • c	
*	21	C81101	Cee	Ν	h•b	3 • c	
*	22	KUYE442	Cee	Ν	h • k	3 • c	in Kathmandu
	23	C81114	Cee	Ν	h • b	?•w	in Kathmandu, stalk edible
	24	C81123	Cea	Ν	h•m	2 • w	
*	25	CL83022	Cea	R	l•m	2 • w	Kikai Island
	26	TC83021.2	S	Т	h•f	?•w	
*	27	C81073	Ce	Ν	h•f	?•w	small plant, without long stolon
*	28	C81081	Cea	Ν	l•r	2 • w	

Table 3. Materials used mainly in the restriction endonuclease analysis

Abbreviation:

Species	Ce: C. esculenta, Cee: C. esculenta var. esculenta,
	Cea: C. esculenta var. aquatilis, Cei: C. esculenta var. illustris,
	Cg: C. gigantea, Amv: A. macrorrhiza var. variegata,
	S: Schismatoglottis sp.
Source	N: Nepal, T: Thailand, B: Bali Island, R: Ryukyu Island, J:other of parts Japa
Habitat	h: hillside, l: lowland, m: marshland, r: riverside, c: creek,
	p: puddy field, f: forest, k: kitchen garden, b: bazar.
Туре	Arabic numerical: ploidy, c: cultivated type, w: wild type, s: sterile.

*****: strain of which inflorescences were measured for analysis of inflorescence.

Fig. 2. Caravan route and the points where tribe Colocasieae grew spontaneously or were cultivated.

- 1)----- : caravan route
- 2) \bigcirc : wild or escaped species were observed
- 3) \bigcirc : only cultivated species were observed
- 4) names of the points and their altitude
 - 1 Biratnagar (72m)
 - 2 Dharan (350m)
 - 3 North of Dharan (500~700m)
 - 4 North slope of Shangri La (ca. 1150~1200m)
 - 5 Leuti Khola (340~360m)
 - 6 Dhankuta Bazaar (1200m)
 - 7 North of Hille (2200m)
 - 8 Near Chitre (2350m)

- 9 North-east of Morang (1600m)
- 10 Tchanke (770m)
- 11 Doban (650m)
- 12 Near Taplejung (1000m)
- 13 Kesheba (1940m)
- 14 Gaiyabari (1900m)
- 15 Shadup (1800m)
- 16 Near Tapletok (ca. 1550m)
- 17 Near Tiwa, Dawa (ca. 1300m)
- 18 Near Siwa, Miterung (1050~1150m)
- 19 Handlung (ca. 700m)
- 20 East slope up from Doban (ca. 850m)

Fig. 3. Travel route in the central Nepal in 1981.

• : main collection site, \times : site where wild triploid was collected, • : species not decided (*C. fallax* ?)

Fig. 4. Sites of collecting taro in Thailand.

-----: route in 1983, -----: route in 1986, igodot: Colocasia esculenta, \blacksquare : Alocasia macrorrhiza, \times : A. macrorrhiza var. variegata, \triangle : Cyrtosperma edule, \blacktriangle : Schismatoglottis sp.

Fig. 5. Wild type of taros grown in the marshland in Nepal.

Fig. 6. Exposed long stolons of wild type, a 40cm scale center right.

a

С

d

Fig. 7. Pollen grains of 3 strains.

b

a : accession No.2 (diploid), b : accession No.22 (triploid), c and d : accession No.17 (triploid), 🖌 shows germinating pollen tubes.

a

d

Fig. 8. Chromosomes of 3 strains.

a : RTC of accession No.2 (2n=28), b : PMC of accession No.2, c : RTC of accession No.17 (2n=42), d : PMC of accession No.22. Univalents are seen in b and d.

3. Analysis of Inflorescence

3-1. Composition of inflorescence

C. esculenta has a spadix wrapped with a spathe, which is divided into two parts by the constriction, and upper half is yellow while lower one is green. Fig.9 shows a flowering inflorenscence (a) and various types of spadicis (b). Fig.10 shows female, sterile and male flowers. Sterile white blocks among female flowers are said to be characteristic of *C. esculenta*. As shown in Fig.11, spadix has four parts; sterile appendage (χ_1), staminate part (χ_2), sterile part (or staminode, χ_3), and pistillate part (χ_4) from the top to the bottom. It has been noticed and described in the systems of classification of family Araceae as so and so species had a long one or a certain species a short one while others lacked it. The ratio of a sterile appendage to the total length or to that of staminate part and so on have been described and quoted many times without any criticizing manner. Considering that this plant group has such a unique inflorescence part as a spadix, it would be acceptable to describe and use these characters as key characters to classify the group. Certainly they seem to be determined genetically. But sometimes observed are deformed inflorescences as those of accession No.2. (KUYE 474) in Fig.12. Enviromental and/or physiological conditions may cause such deformities. So, measuring of inflorescence was made carefully considering the conditions of the plant.

Fig. 9. Flowering (a) and various types of inflorescence (b) of *C. esculenta*. Two small spadicis upper right are probably of *C. fallax*.

a

С

Fig. 10. Some parts of inflorescence of *C. esculenta*.

a : female flowers and sterile ones (white blocks among female flowers),

- b : male flowers (upper) and staminode (lower),
- \boldsymbol{c} : male flowers ; pollen grains are being pushed out.

Fig. 11. Inflorescence of C. esculenta.

 χ_1 , χ_2 , χ_3 , χ_4 and χ_5 : sterile appendage, staminate part, sterile part, pistillate part and total length, respectively. a: abdominal side, b: dorsal side towards the center of shoot.

Fig. 12. Deformities of inflorescence.

3-2. Genetic stability of the parts of inflorescence

Only sound and fully grown inflorescences were measured in summer season (from July to september) for 6 years from 1976 to 1981. Four strains were selected because of having many inflorescences:

accession No.2	wild diploid from Nepal, sterile,
accession No.11	cultivated triploid from Japan,
accession No.17	wild triploid from Nepal,
accession No.22	cultivated triploid from Nepal.

The number of measured inflorescences were 292, 89, 140 and 97, respectively. As shown in Fig.11, length of each part was different when measured either at the abdominal side or at the dorsal side towards the center of shoot. In the present experiment, sum of the both sides of each part was used as measurements. Average lengths and ratios of the 4 strains are shown in Fig.13. Accessions No.2 and No.17 were closely resembled each other in the ratio. The coefficient of variation of the measurements was rather large as shown in Table 4 (CV.1). And the partial correlation coefficient was rather large as shown in Table 5. So the arcsin-converted value of the ratio (CV.2) was decided to be used for the calculation of principal component score. Real length may be said not to be so stable in the strain. Considering the long period during which the data had been collected, such rather large value might be expected. It may be said that these characters are relatively stable using arcsine conversion.

Fig. 13. Length (a : mm) and ratio (b : %) of the inflorescences of 4 strains.

A		CV	.1		CV.2						
Accession	X 1	χ2	X 3	χ4	X 1	X 2	X 3	χ4			
No.2	.113	.145	.124	.154	.023	.056	.054	.053			
No.11	.115	.166	.137	.201	.056	.040	.068	.051			
No.17	.142	.096	.101	.135	.032	.054	.037	.043			
No.22	.153	.166	.149	.173	.030	.049	.070	.038			

Table 4. Coefficient of variation calculated from the length of each part of inflorescence (CV.1) and that from the arcsine-converted value of its ratio to the total length (CV.2)

 Table 5. Partial correlation coefficient of the length of each part

inflorescence	Accession																
part		No.	2			No	.11		No.17					No.22			
X 1									_				_				
χ ₂	.37	_			.05	_			.04				.28				
X 3	.57	32			03	.06			.41	.16			.45	22			
X 4	.39	.39	.01		.21	.82	.19		.49	.15	.23	_	.61	.38	02	_	

3-3. Results of principal component analysis and cluster analysis

The result of principal component analysis is shown in Fig.14. It was enough satisfactory. Cumulative ratio from Z₁ component to Z₂ component was more than 85%. These 4 strains could be well separated on the scatter diagram. Z₁ component was a shape factor which has close correlation with the ratio of fertile parts (χ_2 and χ_4) to sterile parts (χ_1 and χ_3), and Z₂ component was a size factor. However, strictly speaking, this was not a 'size' factor because variances included the shape coefficients, from χ_1 to χ_4 .

Next, 87 strains including F1s, F2s between accession No.19 (wild diploid) and, accession No.28 (wild diploid) and S1s of accession No.28 were analysed. Newly added 70 strains are shown in Table 6 and Table 7, and the total inflorescence numbers were 391. When these sample data were added to those of the former experiments, the unbalance of sample numbers among strains might cause some difficulty to understand the results. So in every strain, the relative length, namely the ratio of the average part length to the total one was used as χ_1 , χ_2 , χ_3 and χ_4 , and the variances of χ_1 , χ_2 , χ_3 , χ_4 , χ_5 were added as χ_6 , χ_7 , χ_8 , χ_9 , χ_{10} , respectively.

The result of principal component analysis is shown in Table 8. Cumulative ratio from Z1 component to Z3 component was more than 78%. Unlike the result of the former experiment, both components Z1 and Z2 were shape factors though Z1 component has close negative correlation with the ratios of appendage (χ_1) and with the length and variance of total length (χ_5). Z3 had closer correlation with the ratio and variance of staminode (χ_3). Principal component scores were calculated using these principal components and cluster analysis were made with Ward's method (Ward, 1963). Rotation of factor axis with Varimax method (Kaisar, 1958) did not bring much difference among cluster members, though the distances among the clusters were enlarged. Therefore, a dendrogram obtained without the rotation is shown in Fig.15. The dendrogram consisted of 7 main branches. Strains and hybrids included in each branch are in the columns from the top to the bottom.

Fig. 14. Factor loading matrix, contribution ratio (CR) and a scatter diagram of 4 strains of *Colocasia*: α of ellipse is 0.05.

** and * : significant at the 1% and the 5% level, respectively.

No.	Strain	Species in	No. florescen	Source	Habitat	Туре	Remarks
29	C81002	Cee	3	Ν	h	3.c	
30	C81023	Cea	2	Ν	с	2·w	
31	C81034	Ce	3	Ν	h∙f	?∙w∙s	small plant, massive short stolon
32	C81037	Ce	4	Ν	h∙f	?∙w∙s	ditto
33	C81038	Cea	13	Ν	h∙r	2·w	
34	C81042	Cee	5	Ν	h∙k	3.c	
35	C81043	Cea	11	Ν	h∙r	2∙w	
36	C81049	Cea	3	Ν	h∙c	2∙w	
37	C81059	Cee	2	Ν	h∙k	·с	
38	C81063	Cee	7	Ν	h∙k	·с	long tuber
39	C81080	Cea	11	Ν	h∙c	2∙w	
40	C81082	Cea	4	Ν	h∙c	2∙w	
41	C81085	Cee	3	Ν	h∙k	3.c	stalk edible
42	C81089	Cea	8	Ν	h∙c	2∙w	
43	C81092	Cea	3	Ν	l·c	2∙w	ants gathered inside spathe
44	C81096	Cee	2	Ν	h∙k	3.c	stalk edible
45	C81106	Cee	2	Ν	h∙b	3.c	
46	C81124	Cee	6	Ν	l·c	٠w	short stolon (?) or long tuber
47	C81126	Cea	9	Ν	l∙m	2∙w	
48	C81135	Cea	3	Ν	ŀr	2∙w	stalk edible
49	C81140	Cee	14	Ν	ŀk	·с	long tuber, stalk edible
50	C81143	Cea	4	Т	ŀc		
51	C81145	Cea	12	Т	ŀc		
52	C81146	Cea	3	Т	ŀc	2∙w	
53	TC83006	Ce	2	Т	l∙m	٠w	
54	TC83013	Cea	4	Т	·с	·w	
55	TC83014b-1	Ce	6	Т	·с	2∙w	ants building a nest inside spathe
56	CL83019	Cea	4	J	۰m	2∙w	Amami Ohshima
57	CL83020	Cea	4	J	·m	2∙w	ditto
58	CX001	Cee	7		•	۰C	donor : Takayanagi, from Solomon, staminate colored pink

 Table 6.
 Other materials of which inflorescences were measured

No.	Generation (Parents)	Cross No.	Individual No.	No. inflorescences
59	F1 (No.4 x No.51)	CR82023b	-2	3
60			— 4	3
61			— 5	3
62			101	9
63			301	4
64			05	6
65	F1 (No.51 x No.4)	CR82024	— 2	2
66			6	4
67			— 10	8
68			— 14	7
69			20	2
70	F1 (No.33 x No.51)	CR82051	<u> </u>	3
71			02	3
72	F1 (No.51 x No.19)	CR82052	- 001	2
73			01	13
74			02	2
75			— 111	6
76			— 112	5
77			301	2
78			— b.1	2
79	F1 (No.19 x No.28)	CR83084	CT.1 —1	16
80			— 2	10
81			CT.3 — 1	9
82			— 2	12
83			— 3	11
84			— 6	8
85			10	5
86			.3 — 201	5
87			2 R .31	2
88		CR83092	.1 — 3	12
89			.2 — 1	9
90			— 2	3
91			.3 — 6	11
92	F1 (No.28 x No.19)	CR83089	CT.3 — 51	7
93	_		3. — 100	2
94 05	F2 (No.81)	CR86168	. 03	2
93 07	(No.91)	CR86163	. 40	3
90 07	S1 (No.28)	CR83091	. 22	3
9/ 00			. 23	3
98			. 42	5

Table 7. Progenies of which inflorescences were measured

Table 8. Factor loading matrix and contribution ratio from the inflorescences of 87 strains

PC	X 1	χ2	χ3	χ4	χ5	χ6	χ7	χ8	χ9	X 10	CR
\mathbf{Z}_{1}	84**	.77**	19	.76*	74*	88**	22	60	23	76*	.427
\mathbb{Z}_2	32	.50	56	.45	.21	.10	.75*	.17	.79**	.55	.244
Z 3	37	18	.74*	.25	20	03	06	.46	.29	.09	.112

 χ_1 - χ_5 : average value of each strain, χ_6 - χ_{10} : variance of each strain,

PC : principal component, CR: contribution ratio,

** and * : significant at the 1% and the 5% level, respectively

Fig. 15. A dendrogram from the inflorescence of 47 strains (Column S), 37 F1 hybrids (Column F1) and F2 hybrids (Column F2), and 3 S1 progenies (Column S1) based on their inflorescence parameters, $\chi_1 - \chi_{10}$. Arabic numerical in each column is the accession Nos. in Tables 3, 4 and 5.

In the first experiment using 4 strains, Z₁ component was found to be a shape factor and Z₂ component was a size factor. So accessions No.2 and No.17 which had long sterile appendages were well separated in the scatter diagram. The difference between accession No.11 and accession No.22 was also clear. This result was expected to some extent from their appearance of inflorescence. In the second experiment using the average value and the variance of 87 strains, though the treatment of sample data was naturally different from that of the former, the clusters were clearly divided into two groups. One of them, i. e., branch 7 in Fig.15, included accessions No.2, No.17, No.31, No.32 and No.47 having long sterile appendages. This cluster is characterized by large variances of sterile appendage (χ_6), staminate (χ_7) and pistillate part (χ_9) affecting the Z₁ and Z₂ components. The result of the second experiment also suggested that the ratio of the sterile parts (χ_1 and χ_3) to the fertile parts (χ_2 and χ_4) is a main factor to determine the shape of taro's spadix.

Engler (1920) described the ratio of χ_1 to χ_2 and others followed or quoted (Kitamura 1949, Hidaka 1977) his description. Seeing from the present results, lengths of the parts and shapes of inflorescences in family Aracea vary among and within species and certainly seem to be determined genetically. However, it seems unreasonable to use these characters as key characters to species at least in the case of the species which have such an inflorescence as that of *C. esculenta*, having a sterile appendage, a staminate part, a sterile part and a pistillate part in sequence from the top to the bottom of the inflorescence. In such species, only when supplemented with the data of other characters such as the presence of long stolon or tuber, ploidy or ecological adaptation, those characters can be used to classify varieties or subspecies.

4. Analysis of the Length and Angle of Leafvein

4-1. Leaf shape of taro

Leaf shape of *C. esculenta* is peltate or ovate and sometimes arrowhead-shaped. Its two basal lobes are connate. Fig.16a is a leaf of a wild diploid, accession No.2, and Fig.16b is that of a wild triploid, accession No.17. They resemble each other. Fig.16c is a leaf of *A. macrorrhiza*. Except for a depth of gap between the lobes, its leaf shape is alike that of accession No.17. But the appearance of these two is very different; *A. macrorrhiza* has more lustrous surface and much stouter than accession No.17, the difference of them being very remarkable. Number, running direction and way of curving of the leafveins are different. From the horticultural point of view, the leaf shape is very important which is determined genetically. The present author felt some difficulties in recording leaf characteristics. For the purpose of using leafveins for classifying taro strains, he started to investigate a few numerical parameters concerning the leafveins.

Fig. 16. Leafveins of two accessions (a : No.2, and b : No.17) of C. esculenta and an accession of A. macrorrhiza.

4-2. Materials and methods

The young leaf appears outside from the vagina sheath of the preceding petiole with winded right or left. Fig.17a shows the condition, and as shown in Fig.17b the right- or left- handedness causes asymmetric leaf shape. A lamina is divided into right and left halves by the curved line of midrib. Right half lamina of a left-handed young leaf was expressed as LR. And LR, if turned over, would be RL. The handedness of right or left is usually decided by chance. For this reason, RR and LL were expected to bring almost the same result, and RL and LR also do the same. To assure this a preliminary analysis was made with accession No.2. Thirty-one leaves of RR and the same number of LL leaves were analyzed. This analysis revealed that there were some problems exsisting in treating RR in the same way as LL and RL as LR.

A grown-up leaf was cut off from the petiole and the lobes were cut apart along the connate line. The backside of this leaf was xerox-copied. The origin was set in the center of petiole-attached area, and the axis was set from the origin to the end point of midrib. The length and the angle to the axis of the secondary veins located closer to the origin were taken for measurements. Cosine value was used for the data of the angle. Actually digitizer was used to measure them. Measured veins are shown in Fig.17c. Measured points from 1 to 7 are on the RR/LL half lamine. The ratio of each length to the midrib length and the angle to the axis were normalized and analyzed by principal component analysis and Ward's cluster analysis. Five accessions, No.28, No2, No.17, No.22, No.11 and a Japanese cultivar Yatsugashira were studied. Number of their leaves measured were 50, 50, 48, 50, 50 and 50, respectively.

Fig. 17. Right- and left-handedness of a leaf.

- (a): wrapped leaves and their cross section of right-handed (R) and left-handed (L) leaves.
- (b): an unfolded leaf; RL means left half lamina of a right-handed leaf shows measured points.
- (c) : leafveins, measured (1-14). ---- : cut line

The result of a preliminary experiment was as follows. According to principal component analysis, Z1 was found to be a size factor influenced by leafvein length in all of RR, LL, RL and LR. Both components Z2 and Z3 were shape factors and were a little different between RR and LL. It was thought to be caused by the small sample size. Cumulative ratio from components Z1 to Z3 were 75.8% (LL), 87.5% (RR) and 77.0% (LL+RR). By the way, taro is much weakened when its leaf is damaged because of having few leaves per shoot, so it was difficult to cut a large number of leaves for the experiments. Supposing that RR and LL show no difference, an additional experiment was conducted by increasing the sample size a little more.

Table 9 shows the correlation between angle and principal components from Z1 to Z3 of 6 accessions and the mixed of them. Z1 component was a size factor in all accessions, which was closely correlated with the lengths of almost all the secondary veins measured, however, in some accessions, for example accession No.17, angles contributed considerably to the principal component score. As for Z2 component, it was a shape factor expressing the degree of asymmetry between right– and left–half lamina. Z3 was also a shape factor. As Table 9 shows, these 6 accessions had various principal components to express their leaf shapes. When they were analyzed together, the result was as shown in the column 'Mixed'. Cluster analysis was made using the principal component scores by the components from Z1 to Z4. Fig.18 shows the result. Accession No.11 was not so clearly characterized. However, 3 diploids (accessions No.28, No.2, Yatsugashira) and 2 diploids (accessions No.17, No.22) were cleary divided. The latter had large and relatively round and symmetric leaves.

	rcession No.28 No.2 Yatsugashira No.17		No.22	No.11	Mixed			
		Z1 Z2 Z3	Z1 Z2 Z3	Z1 Z2 Z3	$Z_1 Z_2 Z_3$	Z1 Z2 Z3	Z1 Z2 Z3	Z1 Z2 Z3
	χ,	* * (**)	(**) **	** (**)	** **	* ** (**)	(**)(**) (*)	**
	χ2	* (**)	(**) ** (*)	** (**)	** **	* ** (**)	(**)(**) (*)	**
	X 3	(* *)	(**) **	** (**)	**	**	(**) (**)	(*) **
RR	χ4	**	** (**)	**	**	** *	(* *)	**
	X 5	**	(*) **	** (**)	** **	** ** (*)	(**)	**
	χ6	**	** (**)	**	** **	* ** (*)	(* *) (*)	** (*)
	χ,	*	* (**)	*	* (**)	**	(* *) (*)	* (**)
	χ8	* (**)(**)	(*) ** *	** **	**	** **	(*) (**)	** **
	χ,	(* *) (*)	(**) ** *	** **	**	** *	(*) (**)	** **
	χ 10	(* *)(* *)	(**) *	** *	**	**	(**) (*)	(*) **
RL	χ11	(* *)	**	* *	**	* **	(* *) *	
LI	X 12	(* *)	*	** **	** (**)	** **	(* *)	**
	X 13	(* *)	* *	**	**	** *	(**) *	**
	χ ₁₄	(* *)		**	(* *)		(* *) * *	(*)
	C R	.481 .173 .110	.463 .220 .101	.465 .162 .111	.568 .163 .091	.403 .261 .100	.479 .209 .101	.460 .161 .087

Table 9. Correlation between the angles of the secondary veins $(\chi_1 - \chi_{14})$ to the midrib axis and the components from Z₁ to Z₃ of 6 accessions and the mixed of them

** and *: significant at the 1% and the 5% level, respectively, (): negative correlation, CR: contribution ratio.

Fig. 18. A dendrogram from the length and angle of leafvein.

Column 1 : No.28 (2 χ), 2 : No.2 (2 χ), 3 : No.17 (3 χ), 4 : No.22 (3 χ), 5 : No.11 (3 χ), 6 : Yatsugashira (2 χ). Arabic numerical in the column shows the number of samples in each cluster. To classify *C. esculenta* by leafvein characters seems to be a little difficult. In the present experiment, the diploid strains having relatively small leaves and the triploid ones of large round-shaped leaves were well divided because Z_1 was a size factor and the contribution ratio was largest in Z_1 . Though the correlation among the principal components are calculated as to be minimum as possible, the present result will not be used to classify *C. esculenta* because of such a close correlation between the vein length and Z_1 component. And, of course, size factors can not be ignored to describe a leaf for the purpose of classification. If the length and the angle of the secondary leafveins is useful for this purpose, so much time-consuming search for the proper measuring points will be necessary. It is not practical for the present purpose.

5-1. Plant materials

Plant materials used in the present experiments are listed in Table 3. Alocasia macrorrhiza var. variegata, Colocasia gigantea, C. esculenta var. illustris and Schismatoglottis sp. were added as outgroup species. Other 24 strains belonged to C. esculenta. They were originally collected by the present author except 3 strains in Nepal, Thailand and Japan.

5-2. Methods

5-2-1. Total DNA preparation

Extraction of DNA was made after a protocol informed by Juliana Ramser (1992) with some modifications.

Approximately 5g of fresh leaves were frozen with liquid N2 and homogenized with 25ml of $2 \times$ CTAB buffer containing 1% 2-mercaptoethanol for 30min at room temperature. Adding with 20ml of 24 : 1 chloroform iso-amylalcohol, the homogenate was shaken gently for 15min. After centrifugation at 5000rpm for 15min at room temperature, aquaous phase was taken, to which CTAB buffer was added again and the same steps were repeated. Then aquaous phase was mixed with 2/3 volume of iso-propanol gently to be centrifuged at 5000rpm for 20min. Pellet was washed with 76% ethanol containing 10mM ammonium acetate and centrifuged at 5000rpm for 15min. To dried pellet 2ml of TE was added and kept at 4°C for several days to be dissolved. DNA solution was added with 2.64g of CsCl to be dissolved, to which 20µl of 10mg/ml EtBr was added and centrifuged at 100000rpm for 4 hours. Red-colored zone was taken, from which EtBr was removed by shaking with TE-saturated 2-propanol 4 times until no color was visible. Solution was added with 2 volume of TE and next with 4 volume of 99.5% cold ethanol to 10ml, and kept at -20° C overnight. Solution was centrifuged at 5000rpm for 30min at -20° C. Pellet was dried, added with 100µl of TE and kept at 4°C to be dissolved.

5-2-2. DNA fingerprinting

After the opitical density was read using a spectrophotometer, a digestion mix was prepared, and treated overnight at 37°C with *Hin*fI. Agarose gel (Sea Kem, GTG agarose, 0.8%) with $1 \times TBE$ was prepared, and digested DNA (4µg/lane) was loaded and electrophored at 40V for 48 hours. After gel was denaturated with 0.5M NaOH: 0.15M NaCl solution, washed once with H2O and was neutralized with 0.5M Tris and 0.15M NaCl (pH8.0) and dried. A synthetic oligonucleotide of (CA)8 was labelled with ³²P and used as a probe.

5-2-3. Southern hybridization

Probes were offered by Dr. R. Terauchi (Fig.19). They were DO#1, DO#2 and DO#3 clones derived from the *Sal*I fragments of chloroplast (ct) DNA of *Dioscorea opposita* Thunb. and the *abc* clone from the *BamH*I fragments of *D. bulbifera* L. ctDNA with which 2/3 of the total chloroplast genoms (ca. 152 kbp) were covered. Restriction endnucleases, *BamH*I, *DraI*, *EcoRI*, *Hin*dIII, *MspI* and *Hae*III were used in the present experiment. As for electrophoresis, 0.8% agarose gel with $1 \times$ TAE was prepared and lµg of digested ctDNA per lane was loaded and electrophored at 20V for 30hrs. CtDNA was transfered to nylon membrane after Southern blotting (Southern, 1975). Hybridized ctDNA fragments were detected with Dig luminescent method (Boehringer Manheim Biochemica, 1991). Membrane was boiled in 0.5% (w/v) 2 × SDS for 10min for reprobing.

Fig. 19. Homologous and heterologous probes used for Southern-hybridization (after Terauchi et al., 1989).

5-3. Results

5-3-1. DNA fingerprinting

Fig.20 shows band pattern of 28 strains. It was very polymorphic and there were few bands in common among the strains. However, it was analized with UPGMA method (Sneath and Sokal 1973). The dendrogram obtained was too complex to be described and discussed in the relation to the phylogenetic relationships among the strains.

Fig.21 shows band pattern of 2 sets of the parents and the F1s, i. e. accessions $No.20 \times No.18$ set and accessions $No.19 \times No.28$ set. Bands of either parent were shared by the F1s. This result proved that the crosses were made successfully.

Fig. 20. DNA fingerprinting patterns of *C. esculenta* and other species from Nepal, Thailand and Japan.

Fig. 21. DNA fingerprinting patterns of F1s and their parents. a : accessions No.20 and No.18 and their F1s, b : accessions No.19 and No.28 and their F1s.

5-3-2. Southen hybridization with ctDNA probes

Among the possible combinations between 4 probes and 6 enzymes, readable band patterns were obtained from 17 probe-enzyme combinations as shown with + sign in the following table.

	DraI	EcoRI	BamHI	HindIII	MspI	HaeⅢ
DO#1	+	+	+	+	+	+
DO#2	+	+	+			
DO#3	+	+		+	+	+
abc	+	+	+			

Some of them are shown in Figs.22 to 25. The most remarkable point was that these strains were divided into three groups;

- A. accessions No.2, No.5, No.15, No.16
- B. accession No.26
- C. others

Above all, group A was definitely separated from the others. It did not share almost any bands with other groups. Group B was a little different from group C, but had some bands in common with group C. Group C had a unity as a whole though some strains were different as to one or two bands. Accessions No.2 and No.5 of group A could not be distinguished morphologically from group C, all of which belonged to *C. esculenta*. Two other strains of group A, accession No.15 belonging to *C. gigantea*, and accession No.16 to *Alocasia macrorrhiza* var. *variegata*. Accession No.26 of group C seemed to be classified as a species of genus *Schismatoglottis*, judging from the description by Hotta (1965) on the shape of leaf, spathe and flower. If this classification is correct, this strain belongs to tribe Philodendreae, while the two genera *Colocasia* and *Alocasia* belong to tribe Colocasiae.

Fig. 22. BamHI restriction fragment patterns of ctDNAs of C. esculenta and other species. Probe: Do#2 of D. opposita.

Fig. 23. *Hind* III restriction fragment patterns of ctDNAs of *C. esculenta* and other species. Probe : Do#1 of *D. opposita*.

Fig. 24. *Dra*I restriction fragment patterns of ctDNAs of *C. esculenta* and other species. Probe : Do#2 of *D. opposita*.

*EcoR*I : DO#2

Fig. 25. Restriction fragment patterns of ctDNAs of *C. esculenta* and other species. Upper: EcoRI/DO#2, lower: DraI/Do#3, Arabic numericals on the top are accession numbers.

5-4. Discussion

The band patterns except accession No.28, of whitch clear band patterns could not be obtained, were analyzed with UPGMA method. Fig.26 shows the result. If all these strains divided into two clusters, the group A gathers in one big cluster. To another cluster, accession No.26 of different tribe belongs with many strains of *C. esculenta*. Even if divided into three clusters to separate a different tribe, it cannot be a solution as far as the group A exsists.

The results are very clear. *Alocasia*-type ctDNA exsists in genus *Colocasia*. There is no way left but to examine ctDNAs of genera *Colocasia* and *Alocasia*. The hybrid origin of No.2, No.5 and No.15 should be discussed in General discussion.

Fig. 26. A dendrogram from ctDNA showing phylogenetic relationships between ctDNAs of *C*. *esculenta* strains and other species as reference. Arabic numericals on the bottom are accession Nos.

6. Crossing Experiments

6-1. Flowering pattern of taro

In the subtropical area such as India or Thailand, taro flowers most in the summer. In Japan too, flowering period is usually from August to October. Under the good condition like a green house, flowering continues up to the next January. In the western Japan, from the end of April flowering begins if plants are vigorous. It has been often said or written that taro has self-incompatibility. Female flower is said to mature earlier than male flower.

In summer, several days after the inflorescence appears out of the vagina sheath, the color of upper half of the spathe begins to change from light green to yellow and lower half remains green. A spathe opens at a little upper part over the constriction. It begins to smell rather strong. On the next day, usually in the morning, the staminate flowers. But usually the pollen grains are blocked at the constriction and pollination is not fulfilled probably without the help of insects as flies or ants. The present author observed in Nepal that ants are gathering inside the spathe at the pistillate part. Pollination under the natural condition seems to take place rather frequently.

6-2. Crossing technique

When a spathe opens at above the constriction, spathe must be cut open and pollination is easily done. If an outcrossing is to be done, staminate part must be cut off after that treatment. In summer, about 30 or 40 days after pollination, the color of pistillate part changes from green to orange or yellow. That part is crashed in the water and seeds can be gathered. If they are dried at once, under the dry condition in the desiccater at the room temperature, even after one year, more than half of seeds can germinate. Fig.27a shows the germination of *C. esculenta* 7 days after sowing. A cotyledon is seen on the left bottom of the seed, of which longitudinal length is about 0.8mm. Seeds of *A. odora* are shown in Fig.27b for comparison. They are much larger than those of *C. esculenta*.

Fig. 27. A germinating seed of C. esculenta (a); left end is a cotyledon, and seeds of A. odora (b).

First, to know the possible period of fertilization before male flowering, the artifical pollination was done on different dates. Two wild diploid strains, accessions No.19 and No.28, were used as parents. Table 10 shows the result. Even 6 days before male flowering fertilization took place. And two or three days after male flowering fertilization was also possible, though the mucus exuded from the stigma. The result indicates that fertilization takes place by selfing as easily as by outcrossing. It is clear that the accessions used in this experiment are fully self-compatible.

Next, to know the relationships between parents and their progeny on the inflorescence length and relative length of each part, crossing were made between two accessions No.19 and No.28. The mean ratios and total length are shown in Table 11. The number of individuals studied were as follows, accession No.28 : 5, accession No.19 : 5, S1 of accession No.28 : 6, accessions No.19 × No.28 F1 hybrids : 16, accessions No.28 × No.19 F1 hybrids : 2.

Using the mean values of individual plants, principal component analysis was worked out. The results after Varimax rotation are shown in Tables 12 and 13. To know the relationships between F1s and the parents, S1s and the parent, they were analysed separately.

In both the F1 and S1 progenies, F1 component was commonly and strongly affected by a character χ_4 (relative length of pistillate part), whereas components F2 and F3 were mainly determined by different characters in the F1 and S1.

Based on the five infloresence parameters, χ_1 - χ_5 , the parents and the F₁ and S₁ progenies were clustered by Ward's method. The results are given in Fig.28. The S₁ progeny slightly differed from the parent accession No.28. No clear difference was found between the reciprocal F₁ hybrids, accessions No.19 × No.28 and accessions No.28 × No.19. About half of the F₁s were intermediate of the two parents, whereas the remaining half closely resembled one of the parents, accession No.19.

And other sets of crossing were made, i. e. accessions No.4 \times .No.51, No.51 \times No.4, No.33 \times No.51, No.51 \times No.19, No.19 \times No.28, No.28 \times No.19, and two sets of F2 were obtained. In Fig.29, they are shown in the same dendrogram that was used in Fig.15.

In taro, petiole color varied. As it is strongly influenced by environment factors, critical analysis is difficult. But the progeny of the almost green-colored strains are usually green. Here, petiole color of the parents and offspring recorded, i. e., top of petiole, vagina sheath and the upper and lower half of petiole. Four plant parts were selected for observation which were relatively stable in color. The result is shown in Table 14. All progenies of type B (almost green) were also type B, whereas those of type D and E segregated other types indicating their hybrid nature. But in other materials (indicated as 'source' in Table 14) too, different types segregated.

	No. inflorescences							
(a)	fertile	sterile	total					
outcrossing	12	13	25					
selfing	11	10	21					

(1			N	o. inflo	rescenc	es			
days before r	0	1	2	3	4	5	6	total	
outcrossing	fertile	1	4	2	1	2	0	2	12
	sterile	1	5	2	3	2	0	0	13
selfing*	fertile	6	2	0	0	1	1	1	11
	sterile	5	4	0	0	0	1	0	10

(a) : summary of (b), (b) : pollinated on the different dates before male flowering, * : pollinated with a flower of the same individual.

accessions	X 1	χ2	χ3	χ4	χ5
No.28	20.9	34.9	15.9	28.3	233 ± 34.2
S1 of No.28	16.0	39.5	13.8	30.7	204 ± 29.4
No.19 x No.28 F1	27.8	34.0	14.1	24.1	266 ± 58.7
No.28 x No.19 F1	31.9	31.0	13.5	23.6	277 ± 46.3
No.19	35.8	35.3	11.0	17.9	297 ± 53.6

Table 11. Mean ratios from χ_1 to χ_4 and mean length of χ_5

Table 12. Rotated factor loading matrix and correlation coefficients among the five factors of thefive inflorescence characters of accessions No.19, No.28 and their F1 hybrids

a. Rotate	ed factor loading	g matrix			b. Correlation coefficients among the five factors						
	F1	F ₂	F3	F4		F1	F ₂	F3	F4	F5	
χ1	707	.502	.387	.308	F1	1.000					
χ2	.148	982**	.110	042	F ₂	.371	1.000				
χ3	.158	.094	968**	172	F3	432	124	1.000			
χ4	.925*	116	105	347	F4	764	378	.387	1.000		
χ5	483	.074	.242	.838	F5	405	379	.433	.282	1.000	

 Table 13. Rotated factor loading matrix and correlation coefficients among the five factors of accession No.28 and its selfed progeny

	F1	F2	F3	F4		Fı	F ₂	F3	F4	F5
χ1	239	.370	.269	857	Fı	1.000				
X 2	.228	.032	908*	.351	F ₂	.220	1.000			
χ3	628	400	.605	.280	F3	638	315	1.000		
χ4	.925*	.029	212	.315	F4	.310	546	357	1.000	
χ5	.092	.965**	085	231	F5	354	427	.355	.461	1.000

Table 14. Classification of plants into five types (A–E) according to coloration in the four plant parts (a), and the segregation of those types in the progenies (b)

(a)		P	art	-	
Туре	1	2	3	4	2 : vagina sheath
Δ				_	3 : upper half
					4 : lower half
В	±	<u>+</u>	<u>+</u>		- : completely green
С	· ±	· +	\pm	+	\pm : almost green
D	+	+	+	+*	+ : colored
E		++	++	++	+* : colored with stripes
Ľ					++ : colored dark

(b)				No.	plants		Total		
Туре	Generation	Source	В	С	D	E	В	Others	
B B x B	$ \begin{bmatrix} S_1 \\ S_1 \\ F_1 \\ F_2 \end{bmatrix} $	C8030 C81145 C8030 x C81145 ″	21 48 42 67				21 48 42 67		
D	$ \left(\begin{array}{c} S_1\\ S_1\\ S_1 \end{array}\right) $	C81135 C81027 C81019	4 4 6	13	1	2 2 3	4 4 6	15 3 3	
D x A	Fı	C81027 x C81125	28*	2	6	1	28	9	
ВхЕ	\mathbf{F}_{1}	C81079 x C81081	25	1	2	15	25	18	
DхE	Fı	C81027 x C81081	6		4	8	6	12	
Е	Sı	C81081	2	2	1	2	2	5	
ЕхЕ	$ \left(\begin{array}{c} F_2\\ F_2 \end{array}\right) $	C81079 x C81081 ″	5 3	1 4		6 5	5 3	7 9	

Fig. 28. A dendrogram from the inflorescence showing the relationships among the parents and their F1 and S1 progenies (after Ward's cluster analysis)

1 : parent accession No.28, 2 : S1 progenies of accession No.28, 3 : accessions No.19 x No.28 F1 hybrids, 4 : accessions No.28 x No.19 F1 hybrids, 5 : parent accession No.19. • corresponds to one individual

Fig. 29. A dendrogram from the inflorescence showing the relationships between parents (column P) and their progenies (column F1, F2, S1), Arabic numerical in each column is accession No. (F1) a : accessions No.4 x No.51, b : accessions No.51 x No.4, c : accessions No.33 x No.51, d : accessions No.51 x No.19, e : accessions No.19 x No.28, f : accessions No.28 x No.19, (F2) accession No.94 : self of accession No.81, accession No.95 : self of accession No.91, (S1) self of accession No.28.

Contrary to general belief, taro was found to be fully self-compatible (Table 10b). However, S2 progeny is a little difficult to be selfed, and some strains did not produce S1 progenies. These facts indicate that some degree of self-incompatibility exsists in taro. To compensate, taro is usually reproduced by tuber or stolon.

As for the genetic control of the inflorescence characters, this inheritance is not so simple. The S1 progeny of accession No.28 more or less differed from the latter (Table 11, Fig.29). Furthermore, the F1 hybrids between accessions No.29 and No.19 showed wide variation, indicating possible involvement of polygenic system. It is reasonable because most adaptive characters of the plant are known to be quantitative characters under control of the polygenic system. Anthocyanin pigmentation in different plant parts showed segregation in the selfed progenies of types D and E, although type B (almost green type) appeared to be bred true. This fact suggests that most colored plants are heterozygous for the genes controlling this character. Because of this heterozygosity of the parents, it was not possible to test segregation ratios in different parental combinations against any specific theoretical ratio on a sound basis.

7. General Discussion

The result of cluster analysis based on five inflorescence characters are shown in Fig.15, in which the accession numbers of the strains used in the restriction endonuclease analysis are also given. Fig.30 and Fig.31 show the plants of some accessions which were used in the present investigation. *A. ordora* in Fig.30 bottom is shown for comparing with accession No.16 (*A. macrorrhiza* var. *variegata*). Accession No.3 in Fig.31 is a typical wild diploid from Nepal, classified as *C. esculenta* var. *aquatilis*. Fig.32 shows the inflorescence of accession No.26 (probably *Schismatoglottis* sp.) on top and that of *A. odora* on bottom. They show clear differences of their inflorescence components from those of *C. esculenta*. Other strains which were used in the restriction endonuclease analysis did not produce enough number of inflorescences necessary for the principal component analysis.

In the dendrogram of ctDNA (Fig.26), accessions No.17 and No.27 are located in one of the two clusters of the group C to which all other strains of *C. esculenta* belonged. The results from the inflorescence and those from ctDNA analysis coincide well. In the dendrogram of ctDNA, four accessions, No.2, No.5 (both wild *C. esculenta* from Nepal), No.15 (*C. gigantea*) and No.16 (*Alocasia macrorrhiza* var. *variegata*) are placed in group A, greatly differing from all other accessions. Three of them, mainly, accessions No.5, No.15 and No.16 are not included in the inflorescence analysis. Therefore, it is not clear whether these three accessions are located in the same cluster as accession No.2, when their inflorescences are studied. This point must be confirmed in a future experiment.

The group A of the ctDNA clusters raises a great challenge to the present classification of taro. As mentioned above, group A includes four accessions, i. e., two Nepalese accessions of C. esculenta (accessions No.2 and No.5), an accession of C. gigantea and an accession of A. macrorrhiza.

Accession No.2 is a diploid, showing abnormal meiosis, and complete pollen sterility. All attempts to pollinate it with other diploid C. esculenta accessions have been failed. From these facts accession No.2 might be assumed to have been originated as a hybrid between Alocasia (as a maternal parent) and Colocasia, thus having morphological similarity to C. esculenta, and ctDNA similarity to A. macrorrhiza. Its pollen sterility would be resulted from the nature of the intergeneric hybridity. As for accession No.5 that is triploid, it might have been produced from an unreduced gamete pollinated with normal C. esculenta pollen. Finaly accession No.15 that belong to C. gigantea is said to be diploid. The possibility of its hybrid origin seems to be large, because of its appearance is much more resemble to Alocasia macrorrhiza. than to C. esculenta. All these considerations favor to suppose that the three accessions, No2. and No.5 of C.esculenta, and No.15 of C. gigantea are hybrid origin, having an A. macrorrhiza as mother. On this point, another noteworthy report may support this hypothesis; Matthews (1990) compared mitochondrial (mt) DNA of three species, i. e. C. esculenta, C. gigantea and Alocasia brisbanensis, and similar BamHI and HaeIII fragments were detected for C. gigantea and A. brisbanensis but different from the fragments produced by C. esculenta with mtDNA probes from maize. Considering that ctDNA is said to have less variation than mtDNA, the present result that the same type of ctDNA exsists in

the three species will have considerable significance in the phylogeny of this family.

Accepting the above-mentioned hypothesis of their hybrid origin, an important question is left; the placenta of *Alocasia* is basal, but that of *Colocasia* is parietal. Plancentation is an important key character in the classic classification, in some cases, for example, a key character to distinguish genera *Remusatia* and *Gonatanthus* (Hotta, 1970). Then, a second hypothesis is proposed, that is, the parietal placenta is expressed epistatically over the basal placenta in the intergeneric hybrids between *Alocasia* and *Colocasia*. Furthermore, tha last unsolved question is whether their intercrosses will give viable hybrids or not. So far, no case of successful crosses between these two genera has been reported. The most important work left in future is to obtain the F1 hybrids between those genera, having *Alocasia* as mother, and to test the nature of placentation and other characters of taxonomical importance.

Fig. 30. Leaf, stalk and tuber of *Alocasia*. Top : *A. macrorrhiza* var. *variegata*, accession No.16 Bottom : *A. odora* (Roxb.) C. Koch.

Fig. 31. Six (accessions No.2, 3, 5, 15, 17 and 26) of the strains used in the restriction endonuclease analysis. Refer Table 3 for their informations.

Fig. 32. Inflorescence of an accession No.26 (S. gamoandra ?) (top) and that of A. odora (bottom).

8. Summary

The component of inflorescence is often described as a key character in the classification of family Araceae. The present work has aimed to examine the genetic stability, the differences and the phylogenetic significance of the inflorescence of *Colocasia esculenta* Schott and further to verify the usefulness of nuclear and chloroplast DNA in its phylogenetic study.

From the results obtained, the following conclusions are drawn:

- 1. The ratios of 4 inflorescence parts to the whole inflorescence length of *C. esculenta* are comparatively stable characters if they are normalized.
- 2. The ratios of the sterile parts, an appendage and a sterile part (staminode), to the fertile parts, a staminate and a pistillate, are useful indexes in the classification of *C. esculenta*.
- 3. The angles of the secondary veins to the midrib axis are useful parameter to indicate asymmetry of leaf shape.
- 4. From the leaf shape, 6 strains of *C. esculenta* have been divided into two clusters, diploid and triploid, but the usefulness of this character as a taxonomic key has not been claimed because of difficulty in its numeration.
- 5. From the total DNA fingerprinting using a synthetic oligonucleotide as a probe, *C. esculenta* showed extensive polymorphism making clustering of the accessions impossible.
- 6. The F1s hybrids of two cross combinations have been proved to be true hybrids by DNA fingerprinting.
- 7. Two strains of *C. esculenta* and one strain of *C. gigantea* have been proved to have the same ctDNA as *Alocasia macrorrhiza* var. *variegata*. Their restriction fragment patterns are greatly different from those of other *C. esculenta* strains and 1 *Schismatoglottis* species.
- 8. Some *C. esculenta* strains have been proved to be self compatible. Cross pollination is successful 6 days before and 2 or 3 days after male flowering. Seeds can be alive and germinate after being stored in the desiccater at room temperature at shortest 1 year after seed harvest.
- 9. Most Strains are heterozygous for petiole color genes, segregating diffrent pigmentation types in the hybrid as well as selfed progenies. However, almost green individuals are found to be bred true.
- 10. Three *Colocasia* strains, two of *C. esculenta* and one of *C. gigantea*, are assumed to have been originated from intergeneric cross, *Alocasia* (mother) ×. *Clocasia*.

9. Acknowledgement

I wish to express my sincere thanks to Prof. K.Tsunewaki who has long been anxious about me since my student days and gave an opportunity to do the present work with his continuous advice. Dr. R. Terauchi was kind enough to offer his probes and many useful materials and proper suggestions. Dr. N. Miyashita also guided and helped me with essential laboratory works. Mr. Y. Yasui, Mr. Y. Kimura and Mr. Y. Matsuoka were always minding me to cover my clumsy work. With my grateful heart I wish to say I could have good days to work with them.

The late Prof. emer. H. Kihara supported my research on *Colocasia* first when I was in the Kihara Institute for Biology. I wish to send my best thanks.

And I wish to say thanks to Mr. T. Kojima and his family. I could not continue my work without their help.

- Bailey, L.H. (1924) Manual of cultivated plants. 133-136.
- (Boehlinger Manheim Biochemica) (1991) Detection of digoxigenin-labeled nucleic acids by enzyme immunoassay with luminescence on nylon membranes.
- Engler, A. u. Krause K. (1920) Araceae-Colocasioideae. Das Pflanzenreich. 62-86.
- Engler, A. (1889) Araceae. Die Natürlichen Pflanzenreich. 111-113, 250, 263.
- Hidaka, Y. (1977) (Dictionary of vegetables: in Japanese) 1038.
- Hooker, J.D. (1894) Flora of British India. 6: 490-492, 523-524. L. Reeve & Co., Ltd.
- Hotta, M. (1965) Notes on Schismatoglottidinae. 237-238. Mem. Coll. Sci. Univ. Kyoto
 - (1970) A System of Family Araceae. series: B. 76-95. Mem. Coll. Sci. Univ. Kyoto
 - ------ (1971) Study of the Family Araceae, General Remarks. 287-293.
- Kaisar, H.F. (1958) The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrica 23: 187-200.
- Kitamura, S., G. Murata, Koyama. (1957) Colored Illustration of Herbacious Plants in Japan (in Jananese). 192-193. Hoiku-sha
- Kitamura, S. (1949) Notes on Araceae in Japan. Acta. Phytotax. Geobot. 14-1. pp.7.
- Matthews, P.J. (1990) The Origin, Dispersal and Domestications of Taro (Doctor thesis submitted to the Australian National University). 141-144.
- Ohwi, J. (1956) Flora Japonica (in japanese). 248-251.
- Ramser, J. (informed 1992) A protocol for oligonucleotide DNA fingerprinting of plant species. Plant molecular biology group, Frankfurt University, Germany.
- Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy. pp. 573. Freeman & Co., San Francisco.
- Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517.
- Terauchi, R., Terachi, T. and Tsunewaki, K. (1989) Physical map of chloroplast DNA of aerial yam. Theor. Appl. Genet. 77.
- Ward, J.H. (1963) Hierarchial grouping to optimize an objective function. Jour. Amer. Statist. Ass. 58: 234-244.
- Yoshino, H. (1976) On the Wild or Escaped and Cultivated Species of Tribe Colocasieae in Eastern Nepal. Scientific Report of Kyoto University Yalung Kang Expedition. 47-62. Kyoto.
- Young, R.A. (1924) Taros and Yautias. U.S.D.A. Dept. Bull. No.1247. Washington D.C.