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Abstract The minimum vertex ranking spanning tree problem is to find a spanning tree of G whose vertex ranking
is minimum. This paper proposes an O(n®) time algorithm for solving the minimum vertex ranking spanning tree

problem on a permutation graph.

1. Introduction

Consider a simple connected undirected graph G = (V, E).
A vertex ranking of G is labeling r from the vertices of G
to the positive integers such that for each path between any
two vertices u and v, v F v, with r(u) = r(v), there exists at
least one vertex w on the path with r(w) > r(u) = r(v). The
value r(v) of a vertex v is called the rank of vertex v. A ver-
tex ranking r of G is minimum if the largest rank k assigned
by r is the smallest among all rankings of G. Such rank k
is called the vertex ranking number of G, denoted by x(G).
The vertex ranking problem is to find a mjnimum ranking of
given graph G. The vertex ranking problem has interesting
applications to e.g., communication network design, planning
efficient assembly of products in manufacturing systems [17],
and VLSI layout design [16].

As for the complexity, this problem is NP-complete even
when restricted to cobipartite graphs[ll] and bipartite

graphs[2], and a number of polynomial time algorithms for
this problem have been developed on several subclasses of
graphs. Much work has been done in finding the minimum
vertex ranking of a tree; a linear time algorithm for trees is
proposed in [14]. The problem is trivial on split graphs and
is solvable in linear time on cographs[15]. Concerning to
interval graphs, Deogun et al has given an O(n®) time algo-
rithm recently [4], which outperforms the previously known
O(n*) time algorithm [1] where n is the number of vertices.
They also presented O(n®) time algorithms on permutation
graphs and on trapezoid graphs, respectively, and showed
that a polynomial time algorithm on d-trapezoid graphs ex-
ists [4]. Moreover, a polynomial time algorithm on graphs
with treewidth at most k was developed [3].

The problem described above is the ranking with respect
to vertices, while a ranking with respect to edges is simi-
larly defined as follows. An edge ranking of G is labeling
re from the edges of G to the positive integers such that for
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each path between any two edges e, and ey, éu F €y, With
r(es) = r(ev), there exists at least one edge e, on the path
with r(ew) > r(es) = r{e,). The value r(e,) of an edge e,
is called the rank of edge e¢,. An edge ranking of G is min-
imum if the largest rank k assigned is the smallest among
all rankings of G. Such rank k is called the edge ranking
number of G, denoted by x.(G). The edge ranking problem
is to find a minimum edge ranking of given graph G. Before
the proof of this problem to be NP-complete was given, an
O(n®) time algorithm for trees was known[17). By now, a
linear time algorithm for trees is shown in [7]. Recently, it
has finally been shown that this problem on general graphs
is NP-complete [6].

Makino et al. introduced a minimum edge ranking span-
ning tree problem which is related to the minimum edge
ranking problem but is essentially different[9]. The mini-
mum edge ranking spanning tree problem is to find a span-
ning tree of G whose edge ranking is minimum. They proved
that this problem is NP-complete and presented an approx-
imation algorithm for this problem. This problem has inter-
esting applications, e.g., scheduling the parallel assembly of
a multipart product from its components and the relational
database [9].

In this paper, we consider the vertex version of this prob-
lem, i.e., the minimum vertex ranking spanning tree problem.
The minimum vertex ranking spanning tree problem is to
find a spanning tree of G whose vertex ranking is minimum.
We recently proved that this problem is NP-complete [8] and
developed an O(n®) time algorithm when an input graph is
an interval graph {10]. We show that, in this paper, an O(n®)
time algorithm for the minimum vertex ranking spanning
tree exists when an input graph is a permutation graph. It
is interesting that, for permutation graphs, the minimum ver-
tex ranking spanning tree problem is solved in O(n®) time,
although the time complexity of known algorithm for the
minimum vertex ranking problem is O(n®).

2. Permutation graph

Let V = {v1,vs,--+,vn} and © = [ #[1},7[2],---,7[n]] be
a permutation on V. We construct an undirected graph
G(r) = (V, E) such that {v,v;} € E iff (i — j)(m ] —
7~ 1j]) < 0, where = ~*[i] denotes the position of vertex v; in
w. An undirected graph G is a permutation graph if there
exists a 7 such that G is isomorphic to G(r)[5]. Paueli
et al. [12] describe an O(n®) algorithm for testing if a given
undirected graph is a permutation graph. This result was im-
proved to O(n?) by Spinrad [13], whose algorithm produces

the corresponding permutation if the graph is a permutation
graph.

A permutation graph can also be visualized by its corre-
sponding permutation diagram. The permutation diagram
consists of two horizontal parallel channels, named the top
channel and the bottom channel, respectively. Put the index
1,2,---,n of vertices on the top channel, in the order from
left to right, and put the index of vertex in #{1], #[2],-- -, x[n]
on the bottom channel in the same way. Finally, for each i,
draw a straight line joining the two i’s, one on the top channel
and the other on the bottom channel, respectively[5]. The
index number ¢ of vertex v; is same as that of the corresr;ond-
ing line l;. Note that line /; intersects line /; in the diagram
iff I; and !; appear in the reversed order in 7. That is, lines
l; and l; intersect iff vertices v; and v; of the corresponding
permutation graph are adjacent. The reader is encouraged
to draw the permutation diagram for given =’s since they
are sometimes quite useful in visualizing the properties of
the original permutation graphs.

Permutation graphs are a useful discrete mathematical
structure for modeling practical problems [5]. Moreover, per-
mutation graphs comstruct an important class of perfect
grapbs and many problems that are NP-complete on arbi-
trary graphs are shown to admit polynomial time algorithms
on this class [5].

3. The basic idea of the algorithm

The basic idea of our algorithm is as follows: First find a
shortest path P* of G between a certain pair of vertices, then
construct a spanning tree with the minimum vertex ranking
by joining each vertex v € V.-V (P") to a vertex of P* using
an edge of G, based on the fact, to be proven in this paper,
that, for permutation graphs, v € V — V(P*) not included
in P* is adjacent to some vertex on P*. For preparation, we
introduce a known result on the vertex ranking of paths.

[Lemma 1] (17) The ranking x(P) of a path P =
T1,Z2,++,Tn i8 [lognfY +1. O
In the following, we clarify what kind of shortest path P* is
selected and how each vertex in V — V(P*) should be joined
to some vertex on P* in order to construct a minimum vertex
ranking spanning tree.

A shortest path to be selected in our algorithm is a shortest
path between a vertex corresponding to the rightmost line on
the diagram and a vertex corresponding to the leftmost line

- on the diagram. Namely, denoting the vertex corresponding

(1) : Throughout this paper, log denotes log,.



to a line whose position is 1 and n on the top (resp. bottom)
channel by v! (resp. v ) and v’ (resp. vd), respectively, we
select a path whose length is shortest among four shortest
paths from v¢ to vs, from v} to v3, from v} to v4 and from
v} to vl. If there are more than one shortest path of the
same length, any shortest path can be selected. Note here
that the length of each edge is 1. Let P* be the selected
shortest path. On a spanning tree T of permutation graph
G, as the length of a diameter of T is equal to or greater
than that of P*, for the minimum ranking x(P*) of P* on
G, x(P") £ X(T). |

Our algorithm first finds the shortest path P* described
above and then constructs a spanmning tree by joining each
vertex in V — V(P*) to a vertex on P* using an edge of G.
Now, we show that, for permutation graph G, each vertex in
V — V(P*) is adjacent to some vertices on P*.

(Lemma 2] Let a shortest path selected by the above pro-
cess be P* = vy,vs,...,v. For permutation graphs G =
(V, E), each vertex in V — V(P*) is adjacent to some vertex
on P*in G.

(Proof) We consider lines l3,13,...,L corresponding to ver-
tices v, v2,..., v, respectively. If a vertex v is not adjacent
to any vertex on P*, none of lines l1,13,...,l; intersects the
line I, corresponding to v. Hence, l, is to the left of Iz or is to
the right of ;. However, by the definition of P*, as v; (resp.
v;) corresponds to the leftmost (resp. rightmost) line on the
diagram, a line setting on the left (resp. right) position of
1, (resp. I;) but not intersecting I; (resp. I;) does not exist.
Thus, v € V — V(P") is adjacent to a vertex on P*. O

‘We now consider how each vertex in V — V(P*) should be
joined to a vertex on P* in order to construct a minimum
vertex ranking spanning tree. Let a vertex set V-V (P*) be
V'. By lemma 2, each vertex v’ € V' is adjacent to a vertex
on P*. Then, our algorithm finds a path P* of G and joins
each vertex in V' to a vertex on P* using an edge of G.

By Lemma 2, the relation of connections between vev
and vertices on P* are classified into the following three
cases. -

(1) v € V' is adjacent to only one vertex on P”*.

(2) v eV is adjacent to two consecutive vertices v;, v;j41
on P* or three consecutive vertices vj, vj+1, vi+2 on P*.
(3) v € V' is ot adjacent to comsecutive vertices on P*
but adjacent to two vertices v;, vj+2 having one skip on P*.
Note: As P* is the shortest path, veVis adjacent to nei-
ther more than three consecutive vertices on P”* in the case
(2) nor two vertices which have more than one skip on P* in

288

the case (3).

Let Vl' denote a subset of V' that contains vertices in V'
each of which is adjacent to only one vertex on P*, let Va
denote a subset of V' that contains vertices in V' each of
which is adjacent to two or three consecutive vertices on P*
and let V3' denote a subset of V' that contains vertices in V'
each of which is adjacent to two vertices v;, v;+2 having one
skip on P".

We first consider v~ € Vg' adjacent to two or three con-
secutive vertices on P*. Asfor v € V; adjacent to at least
two vertices on P*, we can select a vertex on P* to be joined
to v in order to construct a spanning tree. Then, let us
consider to which vertex of P* v € V, should be joined.
After finding the minimum vertex ranking of P*, for con-
secutive vertices v;,vi4+1 on P*, either r(v;) > r(viz1) or
r(v;) < r(vi+1) holds by the definition of the vertex ranking.
Asv' € Vz' is adjacent to at least two consecutive vertices
on P*, v" is adjacent to a vertex v on P* whose rank is at
least 2. Then, joining v towvand assigning rank 1 to 1)”, we
can construct a spanning tree T with x(T') = x(P"), without
changing the rank of vertices on P*.

Next, we consider v e A adjacent to only one vertex on
P* and v’ € Vi which is adjacent to two vertices having one
skip on P*. In this case, depending on the result of vertex
ranking of P*, v may be adjacent to a vertex v on P* with
rank 1. Then, when selecting the edge (v',v) in order to
construct a spanning tree, we must modify the rank of v for
satisfying the vertex ranking. Moreover, G may not have a
spanning tree T such that x(T') = x(P"). Fortunately, for
permutation graphs, the upper bound on x(T') is determined
as shown in the following lemma.

[Lemma 3] For permutation graph G, the ranking x(T') of
a spanning tree T satisfies the following inequality: x(7) £
x(P*) +1. '
(Proof) By lemma 2, any vertex v not included in P~ is
adjacent to some vertex on P*. We assume that each vertex
on P* is given a rank such that the ranking of P* is mini-
mum. For each vertex v on P, the rank r(v) + 1 i8 newly
assigned to v, that is, (v) « r(v) + 1. Each rank r(v') of
v €V’ is set to 1. Then, the ranking of a tree constructed
by P* and v' € V' satisfies the condition of vertex ranking.
Therefore, x(T) £ x(P*)+1. O

By lemma 3, the ranking of spanning tree x(T) is either
x(P*) or x(P*) + 1. Therefore, our algorithm tries to con-
struct a spanning tree T with rank x(P*). As a result, if
we can not construct a spanning tree T' with rank x(P*), we
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construct a spanning tree T with rank x(P*) + 1.

After assigning ranks to.vertices on P* with a minimum
ranking, if the rank of a vertex v; on P* adjacent to v € Vl’
is 1, a spanning tree satisfying the ranking condition can
not be constructed by joining v to v; by this assignment.
Similarly, if each rank of vertices v;, vj4+3 on P* adjacent to
v e Vs' is 1, a spanning tree satisfying the ranking condition
can not be constructed by joining v to vj Or ¥;j+2. In these
cases, we may get a spanning tree satisfying the ranking con-
dition either by changing the rank of v; (or vj+2) to become
greater than 1 or by joining v to a vertex in V'. Then, our
algorithm classifies each vertex v e Vf ] VQ’ according to
the connection between v and vertices on P* and selects an
edge to join v.

For illustration, we now consider the minimum vertex
ranking of trees. A tree is divided into more than one compo-
nents T3, T3, - -, T} by removing a vertex v other than a leaf.
A path from a vertex of T; to a vertex of Tj (i # j) obviously
go through v. Then, by assigning the largest rank max{
x(Th), x(T2), ---, x(T1)} + 1 to v, the condition of vertex
ranking of the tree is satisfied. However, the resulting vertex
ranking is not necessarily the minimum one. Based on this
observation, we develop an algorithm as sketched below. We
assign the largest rank x(P*)(= |log |P*|] +1) to a vertex v;
on P*(= vy, -,u). (Here |P"| denotes the number of vertex
on P*.) Then, we pay attention to two subgraphs G5, G2, of
G such that G}, is induced by path vy, vz, -, vi-1 and ver-
ticesin V' (= V-V(P*)) adjacent to vy, v, -, vi-1 and G2,
is induced by path v;41,vit2, -+, v and vertices in v adja-
cent to vi41,vit2, -, v, respectively. As will be described
in detail later, the case when G, and G2, share a common
vertex v* of V' needs to be treated separately. Then, we find
a minimum vertex ranking spanning tree T in G+, and T in
Gi., respectively. If both of minimum vertex rankings of T}
and T are not greater than |log |[P"|], a spanning tree with
ranking x(P*)(= |log|P*|] + 1) can be constructed by join-
ing Ty, Ta via v;. Even when a spanning tree with ranking
llog|P*|] + 1 can not be constructed, by using some other
vertex on P* instead of v;, a spanning tree with ranking
[log|P*|} + 1 may be constructed. Hence, we check whether
each of G, and G2, has a spanning tree with ranking at
most |log |P*|] for each v;, i =2, - -+, | — 1, with the largest
rank. For this purpose, we use the dynamic programming.
We check whether a subgraph induced by k consecutive ver-
Svskon Pt (j=1,--- 0, k=0,--,1-j), and
vertices in V' adjacent to v;, -+, v;4+x has a spanning tree
with ranking |log |Py.,,,[] +1. (Note that P;,. denotes

tices vj, -

a subpath v;, -+, v; on P*.) Therefore, we now consider a
spanning tree on a subgraph induced by consecutive vertices
vj, *+, Vj+k on P* and vertices in v’ adjacent to v,, ‘-,
Vitke

Let define some terms needed to explain the algorithm in
the following. As for consecutive vertices vj, -+, vx on P*, a
subgraph of G induced by v;, -+, vx and vertices in v adja-
cent to vj,- -,V i8 called a subgraph regarding v;, ---, vp
and denoted by G{vj, vi]. For Gfv;,vi], if we can construct
a spanning tree such that each rank of vertices in Gfv;, vi] is
at most |log | Py, |} + 1(= x(PJ;s, ), we say that Gluv;, v]
is minimum-rankable.

Note: For a subgraph Gfuv;, v;] regarding one consecutive
sequence of vertices, as we can always construct spanning
tree T with ranking at most 2 by assigning rank 2 to v;
and rank 1 to vertices adjacent to v;. Then, we say that
each subgraph G[v;, v;] regarding one consecutive vertices is
minimum-rankable.

Using these terms, what we are going to do in the dy-
namic programming is as follows: Let subpaths of P* se-
lected in the first step be Pf = wv;,-:+,v;-; and P; =
We check whether Gflvi,v;-1],
If each of
Glvi,vj-1], G[vj41,vx] is minimum-rankable, the subgraph
Glvi, v regarding v;, - - -, v is minimum-rankable by assign-
ing |log|P;;,, 1] +1 to v;. However, when Glv;,v;-1] and

Uj+1,°° -, Uk, respectively.
Glvj+1,ve] are minimum-rankable or not.

G[vj+1,ve] share a common vertex, even if these are not
minimum-rankable, we need to check some conditions, to be
described later, because G[v;, vx] may be minimum-rankable.
If either of G[vi, vj—1] or G[vj+1, v] is not minimum-rankable
and do not share a common vertex, G[uv:, vi] is not minimum-
rankable.

As mentioned above, for constructing a minimum vertex
ranking spanning tree, our algorithm first check whether sub-
graphs Glvi,vi41], for i =1,..-,1 — 1, regarding two consec-
utive vertices on P* is minimum-rankable, and then check
whether subgraphs Glv;, vi42], for i = 1,--.,1— 2, regarding
three consecutive vertices on P* is minimum-rankable. Con-
cerning subgraphs G[vi,vi14), k £ 3, regarding more than
three consecutive vertices on P*, using known information
about subgraphs, we check whether Glv;, vi4] is minimum-
rankable by using the dynamic programming.

We then consider the way to check whether a subgraph re-
garding consecutive vertices is minimum-rankable. We clas-



sify each vertex v € Vi U "3’ according to the connection
between v’ and vertices on P* and investigate whether each
case is minimum-rankable or not.

3.1 Subgraph regarding two consecutive vertices

‘We consider whether a subgraph G[v;, v;+1] regarding two
consecutive vertices vj, v;4+1 on P* is minimum-rankable or
not. That is, we examine whether we can construct a span-
ning tree such that each rank of vertices in G[v;,v;+1] is at
most |log [Pyu; 1] + 1 (= x(Pyjv;,,) = 2)- We classify the
cases by connection between v e V,’ UVSI and a vertex of P*.
However, we do not consider, for brevity, the cases which can
be treated by discussions similar to some other cases due to
symmetry. The proof of each case is omitted due to the space
limit. ’

Case 1: v € Vl' is adjacent to only one vertex on P*.

Case 1-1: If each of v; and vj41 is adjacent to a vertex in
Vi whose degree is 1, G[vj,v;41] is not minimum-rankable.
However, if either of v; and v;41 is adjacent to a vertex in
V{ whose degree is 1, G[v;,v;j+1] is minimum-rankable.
Case 1-2: v; is adjacent to v; € V; whose degree is at least
2, or vj+1 is adjacent to vy, € V| whose degree is at least
2.

Case 1-2-1: If vj, v;j41 are adjacent to v}, v}y, € VY, re-
spectively, and v} and v}, are only adjacent to each other,
Glvj, vj+1] is not minimum-rankable.

Case 1-2-2: If v;, vj41 are adjacent to v}, v}y, € V/, respec-
tively, and v} and v}, are adjacent to a vertex v € V3,
G|vj, vj+1] is minimum-rankable.

Case 1-2-3: I vj, vj+1 are adjacent to v},vj4; € V{, respec-
tively, and v}, is adjacent to a vertex v* € V, adjacent to
v} g, then G[v;,v;41] is minimum-rankable. (By symmetry,
the case where v} is adjacent to a vertex v* € Vi adjacent
to vj_;, can be discussed in a similar way.)

Case 2: v € Vé is adjacent to not consecutive vertices on
P* but two vertices vj, vj42 having one skip on P*.

Case 2-1: v € VQ’ is adjacent to only two vertices v; and
vj4+32, then Glv;,v;j41] is minimum-rankable. (By symmetry,
the case where v € V,' is only adjacent to vj-1 and vj41,
can be discussed in a similar way.)

Case 2-2: T v" € Vg’ is adjacent to only two vertices vj41
and vj43, then Glv;, ;4] is minimum-rankable.

Case 3: Both vertices in V; and in Vs exist in G[v;, vj41).
Case 3-1: A vertexin V1' and a vertex in V3' share a common
vertex on P*.

Case 8-1-1: v €V is adjacent to v; and v;42 on P* and
either v; or v;+1 is adjacent to vertices in V;.
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Case 3-1-2: £ v € V4 is adjacent to v;41 and vj43 on
P* and v;41 is adjacent to a vertex in Vi, Gluj,vis1) is
minimum-rankable.

Case 8-2: Vertices in Vl’ and these in V:,' do not share a com-
mon vertex: v € V3' is adjacent to vj4+1, vj+s on P*, the
degree of v" is 2 and a vertex in Vl’ with degree 1 is adjacent
to v;.

When a vertex in Vl' is adjacent to v;, v"" can not be joined
t0 vj4: for Glvj,vj41] to be minimum-rankable. Then, in
this case, whether G[vj,v;41] is minimum-rankable or not
depends on the rank of v;13 in a subgraph G[v;4a, *] regard-
ing vj43, Uj44, --+. If the rank of vj;3 is greater than 1,
we can join v to v;+s. Therefore, in this case, we decide
whether G[vj, vj+1] is minimum-rankable or not when con-
necting a spanning tree in G[v;,v;+1] and one in G[v;43, |
via vj4a. .

In the following, we call a vertex like v’ a suspension
vertez and if G[vj,vj4+1] has a suspension vertex, we say
that G[vj,vj4+1] is not minimum-rankable by a suspension
vertex.

3.2 Subgraph regarding three consecutive ver-

tices '

We consider whether a subgraph G[v;,v;42] regarding
three consecutive vertices vj, ¥j41, vj+2 on P* is minimum-
rankable or not. We classify the cases with respect to con-
nection between v € Vl' U V3' and a vertex of P*. However,
we eliminate the cases which can be treated in a manner sim-
ilar to some other cases due to symmetry. The proof of each
case is omitted due to the space limit.

Case 4: v e Vl' is adjacent to only one vertex on P*.

Case 4-1: If v; is an articulation (1-cut) vertex in G and
v; € V, adjacent to v; is not adjacent to a vertex adjacent
to vj-1, then Glvj,v;42] is not minimum-rankable. Note
that an articulation vertexz is a vertex of a connected graph
whose deletion disconnects the graph. (By symmetry, the
case where v, is an articulation vertex and v}, € Vi ad-
jacent 'to v;4+2 is not adjacent to a vertex adjacent to vj+s,
can be discussed in a similar way.)

Case 4-2: If v} € V; adjacent to v; is adjacent to v;_; adja-
cent to0 vj—1, Glvj,v;j42] is minimum-rankable. (By symme-
try, the case where vi, € V: adjacent to vj+2 is adjacent to
v};3 adjacent to vj+3, can be discussed in a similar way.)
Case 4-3: v; and vj+2 are not articulation vertices: Whereas
v € V, is adjacent to vj, if v} € Va UV, that is adjacent to
vj—1 and v;y; exists, G[vj, v;42] is minimum-rankable. (As
for v;42, we can discuss in a similar way.)



272

Case 5: v € V; is adjacent to not consecutive vertices on
P* but adjacent to two vertices v;, v;+2 having one skip on
P~

Case 5-1: If v € V;,' is adjacent to only two v; and v;42 on
P* and v; and v;+2 are articulation vertices, then G[v;, vj+a}
is not minimum-rankable.

Case 5-2: v € Va' is adjacent to two vertices vj, v;4+2 and
vj43 € V' is adjacent to vj4s, then G[v;,v;42] is minimum-
rankable.

Case 5-9: If v"' € Vj is adjacent to both v; and vj42 on
P* and v* € V;, UV, that is adjacent to both vj41 and vj43
exits, then G[v;,v;4+2] is minimum-rankable.

Case 5-4: If v € Vs' is adjacent to two vertices vj41, ;43
on P*, then Gfvj,vj+2] is minimum-rankable. (By symme-
try, the case where - V; is adjacent to two vertices v;-1,
vj+1 on P*, can be discussed in a similar way.)

Case 5-5: H v € Vsl is adjacent to only two vertices vj+2
and v;j4+4 on P* and v;42 and v;44 are articulation vertices,
then G[vj,v;42] is not minimum-rankable by a suspemsion
vertex. (By symmetry, the case where v’ eV is adjacent
to only two vertices v; and v;—z on P*, and the fact that
v; and v;_p are articulation vertices can be discussed in a
similar way.)

Case 5-6: v € V; is adjacent to vj42, vj+4 on P* and is
adjacent to u;-.,_s eV adjacent to v;+s, then Glv;, v;4a] is
minimum-rankable.

Case 5-7: If v € Vj is adjacent to vj42, vj4+4 on P* and
v € V-.: U Val that is adjacent to v;j4+1 and vj43 exits, then
G[vj, vj+2] is minimum-rankable.

Case 6: Both vertices in V; and in Vs exists in Glvj,vj42].
Case 6-1: If a vertex in V3’ is adjacent to two vertices vj,
Uj42, 'v; eV, (resp. v;-.,.g € Vll) is adjacent to v; (resp. vj42)
and v; (resp. v;42) is articulation vertices, then G(vj, vj43]
is not minimum-rankable.

Case 6-2: A vertex v € V_-,' is adjacent to two vertices v;,
Ujt2, u;-.,.z € Vi (resp. v;- € V) is adjacent to vj+2 (resp.
v;) and a vertex v}+a € V' adjacent to vj4s is adjacent to
v or v}+,.

Case 6-2-1: If v;-+3 eV is adjacent to v e Vsl, then
G[v;, vj42} is minimum-rankable,

Case 6-2-2: If v;-+3 eV is adjacent to v;-+2 € Vl' but not
adjacent to v, then Glv;,vj+2] is not minimum-rankable.
Case 6-3: A vertex v € V_; is adjacent to two vertices vj,
Vj42, v;.,.z € Vi (esp. v; € V1) is adjacent to vj42 (resp.
v;) and a vertex v* € V; ] VE,’ is adjacent to v;4+; and vjis.
In this case, G[v;, v;j+2] is minimum-rankable.

Case 6-4: If a vertex v € Vg' is adjacent to two vertices

Vj42, Vj+4 and v;+2 € V; adjacent to v;4+2 is adjacent to vm,
then G[v;, vj42] is not minimum-rankable.

Case 6-5: If a vertex v € ‘/3’ is adjacent to two vertices
V42, Uj+d, "J"+2 € Vl’ adjacent to v;42 is adjacent v" and
v is adjacent to v;~+3 € V' adjacent to v;j+3, then Glv;, v;42]
is minimum-rankable.

Case 6-6: If a vertex v € Va' is adjacent to two vertices
Uj42, Vjtd, 'u;~+2 € Vl' adjacent to vj+3 is adjacent v" and
a vertex v* € V,’ U Vs' is adjacent to v;j4+1 and v;4s. In this
case, G[v;, vj+2} is minimum-rankable.

4. An algorithm for solving the minimum
vertex ranking spanning tree problem

Following the above explanations given in sections 3.1 and
3.2, we can check whether spanning trees with rank 2 can be
constructed in subgraphs regarding two consecutive vertices
and subgraphs regarding three consecutive vertices, respec-
tively.

Using the dynamic programming, we then check whether
spanning trees with rank x(PJ.,,;,,)(= llog | Py 5|/ +1 =
3) can be constructed in subgraphs regarding four consecu-
tive vertices v;, - - -, v;43 on P* and spanning trees with rank
X(Poiuy 0 )(= |l0g|Pyy;,.]] +1 = 3) can be constructed
in subgraphs regarding five consecutive vertices and so on.
Namely, for example, if each of G[vi,v:], Gvi42,visa] is
minimum-rankable, the subgraph G[vi,v:43] regarding four
consecutive vertices vi, - - -, ti+3 iS minimum-rankable by as-
signing rank |log|Pyy; 5] + 1(= 3) to viyy or if each of
Glvi, vi+1], Glviya, vita] is minimum-rankable, the subgraph
G[vi,viy3] is minimum-rankable by assigning rank 3 to viya.
Thus, if a pair of Glvi,vj—1] and Glvj+1,vx] which are
minimum-rankable exists, G[v;, vx] is minimum-rankable, as
otherwise, G[v;, vx] is not minimum-rankable.

Our algorithm is described as follows. In the algorithm,
If Gvi,v;] is
minimum-rankable, ‘OK’ is assigned to Rfv;, v;].

we use an array R[v;,v;], for i, j= 1,

Procedure Find_Minimum Ranking Spanning._Tree

begin

Step 1. Find a path P*(= v1,vs,...,v) whose length is
shortest among four shortest paths from v} to ¢,
from v} to v8, from v} to v and from v? to v5.

Step 2. For V — V(P*), find vertex sets W, Vs and Vs.

Step 3. If every vertex in V - V(P*)isin V;, a spanning
tree with x(T') = |log|P"|]+1 can be constructed.
Stop.



Step 4. For4,j =1 to I, Rlvi,v;] + ‘null’

For k =1 to I, R[vk, v « ‘OK".
Step 5. For subgraph G[v;,v;+1] regarding two consecu-

tive vertices vj, vj41, 7 = 1,---,{ — 1, on P*,
check whether G[vj,v;41] is minimum-rankable.
If G[vj,vj+1] is minimum-rankable, R{vj, vi41] ¢
s )

Step 6. For s.ubgraph Glv;, vj42] regarding three consecu-
tive vertices vj, vj+1, vj4+2,J =1,---,1—2, 0n P*,
check whether Glvj,vj4+2] is minimum-rankable.
I G[v,-,v”g] is minimum-rankable, R[v,~,v,~+z] —

‘OK’. :
Step 7. For the pairs of vertices on P* whose distance is

greater than 3, sort R[v;, vx)’s in increasing order
according to value of the distance between v; and

Step 8. t()JI::;mpute R|vi, v]’s in the order of step 7 as fol-
lows :

“for each j such that i < j < k do

begin

If G[vi,v;-1] is not minimum-rankable by a sus-
pension vertex vm, we check whether the rank of
vj+1 adjacent to v in Glvj41,ve)is 1. If the rank
of v;41 is not 1, as a suspension vertex v" can be
joined to vj41 in Gvj41,ve) for Glvs, v;-1] to be
minimum-rankable, then R[v;,v;-1] + ‘OK’.

If Gfvj41,vk] is not minimum-rankable by a sus-
pension vertex v , we check whether the rank of
vj—1 adjacent to v in Gv;,v;j—1]is 1. If the rank

. . "
of vj—; is not 1, as a suspension vertex v can be.

joined to vj—1 in G(vi,v;—1] for Glvj4+1,vi] to be

minimum-rankable, then R[v;41,t:] + ‘OK’.
If the value of R[vi,v;-1] is ‘OK’, that of

Rvj+1,vx] is ‘OK’ and max{|log |P,.,_,|] +
1, log | Py, v, }] + 1} £ llog|Ps,.,|] then,
R[vi, vi] + ‘OK".

Step 9. Itgrgxe value of R[1,1] is ‘OK’, a spanning
tree with x(T') = |log|P*|] + 1 can be con-
structed. Otherwise, a spanning tree with
x(T) = |log|P*|] +1+ 1(= x(P*) + 1) can
be constructed.

end.

[Theorem 1] Procedure Find Minimum Ranking Spanning_
Tree solves the minimum vertex ranking spanning tree prob-

lem in O(n®) time.

The proof is lengthy and is omitted due to the space limit.
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Conclusion

In this paper, we proposed an O(n®) time algorithm for
solving the minimum vertex ranking spanning tree problem,
when an input graph is a permutation graph. It is interesting

that, for permutation graphs, the minimum vertex ranking

spanning tree problem is solved in O(n®) time, although the

time complexity of known algorithm for the minimum vertex

ranking problem is O(n®).
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