<table>
<thead>
<tr>
<th>Title</th>
<th>The main conjectures of non-commutative Iwasawa theory (Algebraic Number Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Coates, John</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2004, 1376: 1-5</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25611</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
The main conjectures of non-commutative Iwasawa theory

John Coates

(University of Cambridge)

1 Introduction

The lecture reported on joint work with T. Fukaya, K. Kato, R. Sujatha, and O. Venjakob [1] on the formulation of the main conjectures of non-commutative Iwasawa theory. The general methods developed in [1] were inspired by the Heidelberg Habilitation Thesis of Venjakob [2].

Let G be a compact p-adic Lie group. We assume throughout that G has no element of order p, so that G has finite p-homological dimension. Let $\Lambda(G)$ denote the Iwasawa algebra of G. Let M be a finitely generated torsion $\Lambda(G)$-module. How can we define a characteristic element for M, and relate it to the Euler characteristic of M and its twists? In the classical case, when $G = \mathbb{Z}_p^d$ for some integer $d \geq 1$, such characteristic elements are defined via the structure theory of such modules up to pseudo-isomorphism. In fact, an analogue of the structure theorem is proven in [3] for all non-commutative G which are p-valued. However, in the non-commutative theory this does not seem to yield characteristic elements, both because reflexive ideals of $\Lambda(G)$ are not, in general, principal, and because pseudo-null modules with finite G-Euler characteristic do not, in general, have Euler characteristic 1[4]. The goal of [1] is to use localization techniques to find a way out of this dilemma for an important class of p-adic Lie groups G and a class of finitely generated torsion $L(G)$-modules which we optimistically hope includes all modules which occur in arithmetic at ordinary primes.
2 Algebraic theory

From now on, we assume that G satisfies the following:

Hypothesis on G There is no element of order p in G, and G has a closed normal subgroup H such that $\Gamma = G/H$ is isomorphic to \mathbb{Z}_p.

For example, if G is the Galois group of a p-adic Lie extension of a number field F which contains the cyclotomic \mathbb{Z}_p-extension of F, then G satisfies the second part of our hypotheses. We do not consider the category of all finitely generated torsion $\Lambda(G)$-modules, but rather the full subcategory $\mathfrak{M}_H(G)$ consisting of all finitely generated $\Lambda(G)$-modules M such that $M/M(p)$ is finitely generated over $\Lambda(H)$; here $M(p)$ denotes the p-primary submodule of M. In the special case when $H = 1$, $\mathfrak{M}_H(G)$ is indeed the category of all finitely generated torsion $\Lambda(G)$-modules. We define S to be the set of all f in $\Lambda(G)$ such that $\Lambda(G)/\Lambda(G)f$ is a finitely generated $\Lambda(H)$-module, and put

$$S^* = \bigcup_{n \geq 0} p^n S.$$

Theorem 2.1 The set S^* is a multiplicatively closed left and right Ore set in $\Lambda(G)$, all of whose elements are non-zero divisors. A finitely generated $\Lambda(G)$-module M is S^*-torsion if and only if it belongs to the category $\mathfrak{M}_H(G)$.

Thus S^* is a canonical Ore set in $\Lambda(G)$, and we write $\Lambda(G)_{S^*}$ for the localization of $\Lambda(G)$ at S^*. If R is any ring with unit, we write $K_m R$ ($m = 0, 1$) for the m-th K-group of R, and R^\times for the group of units of R.

Theorem 2.2 The natural map

$$\Lambda(G)^\times_{S^*} \longrightarrow K_1(\Lambda(G)_{S^*})$$

is surjective.

Let $K_0(\mathfrak{M}_H(G))$ denote the Grothendieck group of the category $\mathfrak{M}_H(G)$. We recall that $\Lambda(G)$ has finite global dimension because G has no element of order p.

Theorem 2.3 We have an exact sequence of localization

$$K_1(\Lambda(G)) \longrightarrow K_1(\Lambda(G)_{S^*}) \xrightarrow{\delta_2} K_0(\mathfrak{M}_H(G)) \longrightarrow 0.$$
If $M \in \mathfrak{M}_{H}(G)$, we write $[M]$ for the class of M in $K_{0}(\mathfrak{M}_{H}(G))$. We then define a characteristic element of M to be any element ξ_{M} of $K_{1}(\Lambda(G)_{S^{*}})$ such that

$$\partial_{G}(\xi_{M}) = [M].$$

It is shown in [1] that ξ_{M} has all the good properties we would expect of characteristic elements. Most important amongst these for arithmetic applications is its behaviour under twisting. Let

$$\rho : G \rightarrow GL_{n}(O)$$

be any continuous homomorphism, where O denotes the ring of integers of a finite extension of \mathbb{Q}_{p}. Of course, ρ induces a ring homomorphism

$$\rho : \Lambda(G) \rightarrow M_{n}(O),$$

where $M_{n}(O)$ denotes the ring of $n \times n$ matrices with entries in O. If f is any element of $\Lambda(G)$, we define $f(\rho)$ to be the determinant of $\rho(f)$. Although it is far from obvious, it is shown in [1] that one can extend this notion to define $\xi_{M}(\rho)$ to be either ∞ or a. If M is any module in $\mathfrak{M}_{H}(G)$, we can also define

$$tw_{\rho}(M) = M \otimes_{\mathbb{Z}_{p}}O^{n}$$

where G acts on the second factor via ρ, and on the whole tensor product via the diagonal action. Again we have $tw_{\rho}(M)$ belongs to $\mathfrak{M}_{H}(G)$. We define

$$\chi(G, tw_{\rho}(M)) = \prod_{i \geq 0} \#(H_{i}(G, tw_{\rho}(M)))^{(-1)^{i}},$$

saying that the Euler characteristic is finite if all the homology groups $H_{i}(G, tw_{\rho}(M))$ are finite. We write $\hat{\rho}$ for the contragredient representation of ρ, i.e. $\hat{\rho}(g) = \rho(g^{-1})^{t}$, where the 't' denotes the transpose matrix.

Theorem 2.4 Let $M \in \mathfrak{M}_{H}(G)$, and let ξ_{M} denote a characteristic element of M. For each continuous representation $\rho : G \rightarrow GL_{n}(\sigma)$ such that $\chi(G, tw_{\rho}(M))$ is finite, we have $\xi_{M}(\rho) \neq 0, \infty$ and

$$\chi(G, tw_{\rho}(M)) = |\xi_{M}(G)|_{p}^{-m_{\rho}},$$

where m_{ρ} denotes the degree over \mathbb{Q}_{p} of the quotient field of O.
3 Connexion with L-values

We only briefly discuss the main conjecture when E is an elliptic curve defined over \mathbb{Q}, $p \geq 5$ is a prime of good ordinary reduction, $F_\infty = \mathbb{Q}(E_{\rho_\infty})$, and G is the Galois group of F_∞ over \mathbb{Q}. Thus G has dimension 2 or 4 according as E does or does not have complex multiplication. Let $X(E/F_\infty)$ be the dual of the Selmer group of E over F_∞. Taking H to be the subgroup of G which fixes the cyclotomic \mathbb{Z}_p-extension of \mathbb{Q}, the following conjecture (which can be proven in some cases) is made in [1].

Conjecture 3.1 $X(E/F_\infty)$ belongs to $\mathcal{M}_H(G)$.

Now let ρ be a variable Artin representation of G, i.e. a representation which factors through a finite quotient of G. Let $L(\rho, s)$ denote the complex L-function of ρ, and $L(E, \rho, s)$ the complex L-function of E twisted by ρ. The L-functions $L(E, \rho, s)$ appear to have many interesting properties, but they appear to have been somewhat neglected by the experts on automorphic forms. The point $s = 1$ is critical for $L(E, \rho, s)$, and we assume in what follows the analytic continuation is known at $s = 1$. We fix a minimal Weierstrass equation for E over \mathbb{Q}, and let $\Omega_+(E)$ and $\Omega_-(E)$ denote generators of the groups of real and purely imaginary periods of the Néron differential of E. Let $d^+(\rho)$ (resp. $d^-(\rho)$) denote the dimension of the subspace of the realization of ρ which is fixed by complex multiplication (resp. on which complex conjugation acts like -1). A special case of Deligne's conjecture asserts that

$$\frac{L(E, \rho, 1)}{\Omega_+(E)^{d^+(\rho)}\Omega_-(E)^{d^-(\rho)}} \in \bar{\mathbb{Q}}.$$

Let p^{f_ρ} denote the p-part of the conductor of ρ. For each prime q, we let $P_q(\rho, X)$ be the polynomial such that the Euler factor of $L(\rho, s)$ at q is $P_q(\rho, q^{-s})^{-1}$. Also, since E is ordinary at p, we have

$$1 - a_p X + pX^2 = (1 - uX)(1 - wX),$$

where $u \in \mathbb{Z}_p^\times$ and, as usual, $p + 1 - a_p$ is the number of points over \mathbb{F}_p on the reduction of E module p. Let R be the finite set consisting of p and all primes q such that $\text{ord}_q(j_E) < 0$. We write $L_R(E, \rho, s)$ for the complex L-function obtained by suppressing in $L(E, \rho, s)$ the Euler factors at the primes in R. The following two conjectures are made in [1].
Conjecture 3.2 Assume that $p \geq 5$ and E has good ordinary reduction at p. Then there exists \mathcal{L}_E in $K_1(\Lambda(G)_{S^*})$ such that, for all Artin representations ρ of G, we have $\mathcal{L}_E(\rho) \neq \infty$, and

$$\mathcal{L}_E(\rho) = \frac{L_R(E, \rho, 1)}{\Omega_+(E)^{d^+(\rho)} \Omega_-(E)^{d^-(\rho)}} \cdot e_p(\rho) w^{-f_\rho} \cdot \frac{P_p(\hat{\rho}, u^{-1})}{P_p(\rho, u^{-1})},$$

where $e_p(\rho)$ denotes the local ϵ-factor attached to ρ at p.

Conjecture 3.3 (The main conjecture) Assume that $p \geq 5$, E has good ordinary reduction at p, and $X(E/F_{\infty})$ belongs to $\mathfrak{M}_H(G)$. Granted Conjecture 2, the p-adic L-function \mathcal{L}_E in $K_1(\Lambda(G)_{S^*})$ is a characteristic element of $X(E/F_{\infty})$.

Of course, when E does not admit complex multiplication, very little is known at present about Conjecture 3. However, when $E = X_1(11)$ and $p = 5$, some remarkable numerical calculations of T. Fisher and T. and V. Dokchitser provide fragmentary evidence in support of it.

John Coates
Emmanuel College
Cambridge CB2 3AP
England
J.H.Coates@dpmms.cam.ac.uk

References

