A spectral sequence for Iwasawa adjoints

Uwe Jannsen University of Regensburg

Abstract

This article is, apart from some small corrections, an unchanged version of a note written in 1994. It was circulated as a manuscript and quoted in several articles. Its aim was to provide a purely algebraic tool for the Iwasawa theory of arbitrary p-adic Lie groups, by constructing a spectral sequence which relates the generalized 'Iwasawa adjoints' $E^i(M)$ of certain Iwasawa modules M to projective limits often encountered in the applications. A somewhat extended version will be published elsewhere.

Let k be a number field, fix a prime p, and let k_{∞} be some Galois extension of k such that $\mathcal{G} = \operatorname{Gal}(k_{\infty}/k)$ is a p-adic Lie-group (e.g., $\mathcal{G} \cong \mathbb{Z}_p^r$ for some $r \geq 1$). Let S be a finite set of primes containing all primes above p and ∞ , and all primes ramified in k_{∞}/k , and let k_S be the maximal S-ramified extension of k; by assumption, $k_{\infty} \subseteq k_S$. Let $G_S = \operatorname{Gal}(k_S/k)$ and $G_{\infty,S} = \operatorname{Gal}(k_S/k_{\infty})$.

Let A be a discrete (left) G_S -module which is isomorphic to $(\mathbb{Q}_p/\mathbb{Z}_p)^r$ for some $r \geq 1$ as an abelian group (e.g., $A = \mathbb{Q}_p/\mathbb{Z}_p$ with trivial action, or $A = E[p^{\infty}]$, the group of p-power torsion points of an elliptic curve E/k with good reduction outside S). We are not assuming that $G_{\infty,S}$ acts trivially.

Let $\Lambda = \mathbb{Z}_p[[\mathcal{G}]]$ be the completed group ring. For a finitely generated Λ -module M we put

$$E^{i}(M) = \operatorname{Ext}^{i}_{\Lambda}(M, \Lambda)$$
.

Hence $E^0(M) = \operatorname{Hom}_{\Lambda}(M, \Lambda) =: M^+$ is just the Λ -dual of M. This has a natural structure of a Λ -module, by letting $\sigma \in \mathcal{G}$ act via

$$\sigma f(m) = f(m) \cdot \sigma^{-1}$$

for $f \in M^+$, $m \in M$. It is known that Λ is a noetherian ring (here we use that \mathcal{G} is a p-adic Lie group), by results of Lazard [La]. Hence M^+ is a finitely generated Λ -module again (choose a projection $\Lambda^r \twoheadrightarrow M$; then we have an injection $M^+ \hookrightarrow (\Lambda^r)^+ = \Lambda^r$). By standard homological algebra, the $E^i(M)$ are finitely generated Λ -modules for all $i \geq 0$.

Examples a) If $\mathcal{G} = \mathbb{Z}_p$, then $\Lambda = \mathbb{Z}_p[[\mathcal{G}]] \cong \mathbb{Z}_p[[X]]$ is the classical Iwasawa algebra, and, for a Λ -torsion module M, $E^1(M)$ is isomorphic to the Iwasawa adjoint, which can be defined as

ad
$$(M) = \lim_{\stackrel{\longleftarrow}{n}} (M/\alpha_n M)^{\vee}$$

where $(\alpha_n)_{n\in\mathbb{N}}$ is a sequence of elements in Λ such that $\lim_{n\to\infty}\alpha_n=0$ and (α_n) is prime to the support of M for every $n\geqslant 1$, and where

$$N^{\vee} = \operatorname{Hom}\left(N, \mathbb{Q}_p/\mathbb{Z}_p\right)$$

is the Pontrjagin dual of a compact \mathbb{Z}_p -module N. For any finitely generated Λ -module M, $E^1(M)$ is quasi-isomorphic to $\operatorname{Tor}_{\Lambda}(M)^{\sim}$, where $\operatorname{Tor}_{\Lambda}(M)$ is the Λ -torsion submodule of M, and M^{\sim} is the "Iwasawa twist" of a Λ -module M: the action of $\gamma \in \mathcal{G}$ is changed to the action of γ^{-1} .

b) If $\mathcal{G} = \mathbb{Z}_p^r$, $r \geq 1$, then the $E^i(M)$ are the standard groups considered in local duality. By duality for the ring $\mathbb{Z}_p[[\mathcal{G}]] = \mathbb{Z}_p[[x_1, \ldots, x_r]]$, they can be computed in terms of local cohomology groups (with support) or by a suitable Koszul complex.

The topic of this note is the following observation.

Theorem 1 There is a spectral sequence

$$E_2^{p,q} = E^p(H^q(G_{\infty,S}, A)^{\vee}) \Rightarrow \lim_{k',m} H^{p+q}(G_S(k'), A[p^m]).$$

Here the limit runs through the natural numbers m and the finite extensions k'/k contained in k_{∞} , via the natural maps

$$H^n(G_S(k'), A[p^{m+1}]) \to H^n(G_S(k'), A[p^m]) \quad (m \ge 1)$$

and the corestrictions.

Before we give the proof, we discuss what this spectral sequence gives in more down-toearth terms. First of all, we always have the 5-low-terms exact sequence

$$0 \to E^{1}(H^{0}(G_{\infty,S}, A)^{\vee}) \xrightarrow{\inf^{1}} \lim_{\stackrel{\longleftarrow}{k'}} H^{1}(G_{S}(k'), T_{p}A)$$

$$\to (H^{1}(G_{\infty,S}, A)^{\vee})^{+} \longrightarrow E^{2}(H^{0}(G_{\infty,S}, A)^{\vee}) \xrightarrow{\inf^{2}} \lim_{\stackrel{\longleftarrow}{k'}} H^{2}(G_{S}(k'), T_{p}A).$$

To say more, we consider some assumptions.

A.1 Assume that p > 2 or that k_{∞} is totally imaginary. Then

$$H^r(G_{\infty,S}, A) = 0 = \lim_{\stackrel{\longleftarrow}{k'}} H^r(G_S(k'), T_p A)$$

for all r > 2.

Corollary 2 Assume that $H^2(G_{\infty,S}, A) = 0$ (This is the so-called "weak Leopoldt conjecture" for A. It is stated classically for $A = \mathbb{Q}_p/\mathbb{Z}_p$, and there are precise conjectures when this is expected for representations coming from algebraic geometry, cf. [Ja2]).

Then the cokernel of inf² is

$$\ker (E^1(H^1(G_{\infty,S}, A)^{\vee}) \longrightarrow E^3(H^0(G_{\infty,S}, A)^{\vee})),$$

and there are isomorphisms

$$E^{i}(H^{1}(G_{\infty,S},A)^{\vee}) \xrightarrow{\sim} E^{i+2}(H^{0}(G_{\infty,S},A)^{\vee})$$

for $i \geqslant 2$.

Proof This comes from A.1 and the following picture of the spectral sequence

Corollary 3 Assume that $H^0(G_{\infty,S}, A) = 0$. Then

(a)
$$\lim_{\stackrel{\longleftarrow}{k'}} H^1(G_S(k'), T_p A) \stackrel{\sim}{\to} H^1(G_{\infty,S}, A)^{\vee})^+$$

(b) There is an exact sequence

$$0 \to E^{1}(H^{1}(G_{\infty,S}, A)^{\vee}) \to \lim_{\stackrel{\longleftarrow}{k'}} H^{2}(G_{S}(k'), T_{p}A)$$
$$\to (H^{2}(G_{\infty,S}, A)^{\vee})^{+} \to E^{2}(H^{1}(G_{\infty,S}, A)^{\vee}) \to 0$$

(c) There are isomorphisms

$$E^{i}(H^{2}(G_{\infty,S}, A)^{\vee}) \stackrel{\sim}{\longrightarrow} E^{i+2}(H^{1}(G_{\infty,S}, A)^{\vee})$$

for $i \geqslant 1$.

Proof In this case, the spectral sequence looks like

Corollary 4 Assume that \mathcal{G} is a p-adic Lie group of dimension 1 (equivalently: an open subgroup is $\cong \mathbb{Z}_p$). Then $E^i(-) = 0$ for $i \geqslant 3$. Let

$$B = \operatorname{im} \left(\inf^2 : E^2(H^0(G_{\infty,S}, A)^{\vee}) \to \lim_{k'} H^2(G_S(k'), T_p A) \right)$$

Then B is finite, and there is an exact sequence

$$0 \to E^{1}(H^{1}(G_{\infty,S}, A)^{\vee}) \to \lim_{\stackrel{\longleftarrow}{k'}} H^{2}(G_{S}(k'), T_{p}A)/B \to (H^{2}(G_{\infty,S}, A)^{\vee})^{+}$$
$$\to E^{2}(H^{1}(G_{\infty,S}, A)^{\vee}) \to 0,$$

and

$$E^{1}(H^{2}(G_{\infty,S}, A)^{\vee}) = 0 = E^{2}(H^{2}(G_{\infty,S}, A)^{\vee}),$$

i.e., $(H^2(G_{\infty,S}, A)^{\vee})$ is a projective Λ -module.

Proof Quite generally, for a p-adic Lie group \mathcal{G} of dimension n one has $vcd_p(\mathcal{G}) = n$ for the virtual cohomological p-dimension of \mathcal{G} , and hence $E^i(-) = 0$ for i > n + 1, cf. [Ja3]. The finiteness of $E^2(M)$ (for a finitely generated Λ -module M) in our case is well-known, cf. [Ja3]. The remaining claims follow from the following shape of the spectral sequence:

Lemma 5 Assume that \mathcal{G} is a p-adic Lie group of dimension n (e.g., \mathcal{G} contains an open subgroup $\cong \mathbb{Z}_p^n$). Then $E^i(H^0(G_{\infty,S},A)^{\vee})=0$ for $i\neq n,\ n+1$.

(a) If $H^0(G_{\infty,S}, A)$ is divisible (e.g., if $G_{\infty,S}$ acts trivially on A), then

$$E^{i}(H^{0}(G_{\infty,S}, A)^{\vee}) = \left\{ \begin{array}{cc} 0 & \text{for } i \neq n \\ \text{Hom } (D, H^{0}(G_{\infty,S}, A)), & \text{for } i = n, \end{array} \right.$$

where D is the dualising module for $\mathcal{G}(D = \mathbb{Q}_p/\mathbb{Z}_p \text{ if } \mathcal{G} = \mathbb{Z}_p^n)$.

(b) If $H^0(G_{\infty,S}, A)$ is finite, then

$$E^{i}(H^{0}(G_{\infty,S}, A)^{\vee}) = \begin{cases} 0 & \text{for } i \neq n+1\\ \text{Hom } (H^{0}(G_{\infty,S}, A), D)^{\vee} & \text{for } i = n+1 \end{cases}$$

Proof This is well-known, see [Ja3].

Corollary 6 Let \mathcal{G} is a p-adic Lie group of dimension 2 (e.g., \mathcal{G} contains an open subgroup $\cong \mathbb{Z}_p^2$). If $G_{\infty,S}$ acts trivially on A, then there are exact sequences

$$0 \to \lim_{\stackrel{\longleftarrow}{k'}} H^1(G_S(k'), T_p A) \to (H^1(G_{\infty,S}, A)^{\vee})^+$$
$$\to T_p A \xrightarrow{\inf^2} \lim_{\stackrel{\longleftarrow}{k'}} H^2(G_S(k'), T_p A)$$

and

$$0 \to E^{1}(H^{1}(G_{\infty,S}, A)^{\vee}) \to \lim_{k'} H^{2}(G_{S}(k'), T_{p}A) / \text{im inf}^{2}$$
$$\to (H^{1}(G_{\infty,S}, A)^{\vee})^{+} \to E^{2}(H^{1}(G_{\infty,S}, A)^{\vee}) \to 0,$$

an isomorphism

$$E^1(H^2(G_{\infty,S}, A)^{\vee}) \xrightarrow{\sim} E^3(H^1(G_{\infty,S}, A)^{\vee}),$$

and one has

$$E^{2}(H^{2}(G_{\infty,S}, A)^{\vee}) = 0 = E^{3}(H^{2}(G_{\infty,S}, A)^{\vee}).$$

Proof The spectral sequence looks like

Corollary 7 Let \mathcal{G} be a p-adic Lie group of dimension 2 (So $E^i(-)=0$ for $i\geqslant 4$). If $H^0(G_{\infty,S},A)$ is finite, then

$$\lim_{\stackrel{\longleftarrow}{k'}} H^1(G_S(k'), T_pA) \cong (H^1(G_{\infty,S}, A)^{\vee})^+.$$

If

$$d_2^{1,1}: E^1(H^1(G_{\infty,S},A)^{\vee}) \to E^3(H^0(G_{\infty,S},A)^{\vee})$$

is the differential of the spectral sequence in the theorem, then one has an exact sequence

$$0 \to \ker d_2^{1,1} \to \varprojlim_{k'} H^2(G_S(k'), T_p A) \to$$

$$\to \ker(d_2^{0,2}: (H^2(G_{\infty,S}, A)^{\vee})^+ \twoheadrightarrow E^2(H^1(G_{\infty,S}, A)^{\vee})) \to \operatorname{coker} d_2^{1,1} \to 0,$$

an isomorphism

$$E^1(H^2(G_{\infty,S},A)^{\vee}) \stackrel{\sim}{\to} E^3(H^1(G_{\infty,S},A)^{\vee}),$$

and the vanishing

$$E^{2}(H^{2}(G_{\infty,S}, A)^{\vee}) = 0 = E^{3}(H^{2}(G_{\infty,S}, A)^{\vee}).$$

Proof The spectral sequence looks like

Remark In the situation of Corollary 5, one has an exact sequence up to finite modules:

$$0 \to E^{1}(H^{1}(G_{\infty,S}, A)^{\vee}) \to \lim_{\stackrel{\longleftarrow}{k'}} H^{2}(G_{S}(k'), T_{p}A)$$
$$\to (H^{2}(G_{\infty,S}, A)^{\vee})^{+} \to E^{2}(H^{1}(G_{\infty,S}, A)^{\vee}) \to 0.$$

Corollary 8 Let G be a p-adic Lie group of dimension > 2. Then

$$(H^1(G_{\infty,S},A)^{\vee})^+\cong \varprojlim_{F'} H^1(G_S(k'),T_pA)$$

Proof The first three columns of the spectral sequence look like

We now turn to the proof of Theorem 1:

Let G be any profinite group, let $H \leq G$ be a closed normal subgroup, and denote $\mathcal{G} = G/H$. Let M_G be the category of discrete G-modules which are torsion as abelian groups, and let $M_G^{\mathbb{N}}$ be the category of inverse systems (A_n) in M_G as in [Ja1]. For any A in M_G , one gets an inverse system $T_pA := (A[p^n])$, where the transition maps $A[p^{n+1}] \to A[p^n]$ are induced by multiplication with p in A. For reasons explained later, denote by $H_{\text{cont}}^m(G, H; RT_pA)$ the value at A of the m-th derived functor of the left exact functor

$$F: A \mapsto \lim_{\substack{\longleftarrow \\ n}} \lim_{\substack{\longleftarrow \\ U}} H^0(U, A[p^n])$$

where U runs through all open subgroups $U \subset G$ containing H, and the transition maps are the corestriction maps and these coming from $A[p^{n+1}] \to A[p^n]$, respectively. We can write F as the composition of the functors

$$\begin{array}{ccc} T_p: M_G & \to & M_G^{\mathbb{N}} \\ & A & \rightarrowtail & (A[p^n]) \end{array}$$

and

$$H^0_{\mathrm{cont}}(G, H; -): M^{\mathbf{N}}_G \to Ab$$
 $(A_n) \mapsto \lim_{\substack{\longleftarrow \\ \overline{n} \ \overline{V}U}} H^0(U, A_n)$

where Ab is the category of abelian groups. Because T_p maps injectives to $H^0_{\text{cont}}(G, H; -)$ -acyclics we get a spectral sequence

$$E_2^{p,q} = H_{\text{cont}}^p(G, H; R^q T_p A) \Rightarrow H_{\text{cont}}^{p+q}(G, H; R T_p A).$$

One has

$$R^q T_p A = \begin{cases} (A/p^m A) & q = 1\\ 0 & q > 1 \end{cases}$$

and hence short exact sequences

$$0 \to H^n_{\mathrm{cont}}(G, H; T_p A) \to H^n_{\mathrm{cont}}(G, H; R T_p A) \to H^{n-1}_{\mathrm{cont}}(G, H; R^1 T_p A) \to 0$$

explaining the notation for R^nF . In fact, $H^n_{\text{cont}}(G, H; RT_pA)$ is the hypercohomology with respect to $H^0_{\text{cont}}(G, H; -)$ of a complex RT_pA in M^N_G computing the R^iT_pA . If A is p-divisible, then $R^qT_pA = 0$ for all q > 0, the spectral sequence degenerates and gives isomorphisms $H^n_{\text{cont}}(G, H; RT_pA) \cong H^n_{\text{cont}}(G, H; T_pA)$. There is another spectral sequence from deriving the inverse limit, viz.

$$E_2^{p,q} = R^p \lim_{\Lambda \to I} H^q(U, A_n) \Rightarrow H^{p+q}_{cont}(G, H; (A_n))$$

If G/H has a countable basis of neighbourhoods of identity, i.e., if there is a countable family U_{ν} of open subgroup, $H \leq U_{\nu} \leq G$, with $\bigcup_{\nu} U_{\nu} = H$, then $R^{p} \lim_{\stackrel{\longleftarrow}{h,U}} = 0$ for p > 1, and $R^{1} \lim_{\stackrel{\longleftarrow}{h,U}}$ has the usual description ([Ja1]). If, in addition, all $H^{q}(U, A_{n})$ are finite, then $R^{1} \lim_{\stackrel{\longleftarrow}{h,U}} H^{q}(U, A_{n}) = 0$, and we get isomorphisms

$$H_{\text{cont}}^n(G, H; (A_n)) = \lim_{\longleftarrow} \lim_{\longleftarrow} H^n(U, A_n).$$

All this applies in the situation of the theorem, so that

$$H_{\text{cont}}^n(G_S, G_{\infty,S}; RT_pA) = \lim_{\stackrel{\longleftarrow}{n}} \lim_{\stackrel{\longleftarrow}{T_I}} H^n(G_S(k'), A[p^m])$$

where k' runs through the finite extensions k'/k contained in k_{∞} .

On the other hand, we can write F as the composition of the left exact functors

$$H^0(H, -): M_G \rightarrow M_G$$

 $A \mapsto A^H$

and

$$\begin{array}{ccc} M_{\mathcal{G}} & \to & Ab \\ B & \mapsto & \operatorname{Hom}_{\Lambda} (B^{\vee}, \Lambda) \end{array}$$

where $\Lambda = \mathbb{Z}_p[|\mathcal{G}|]$ is the completed \mathbb{Z}_p -group ring of \mathcal{G} and B^{\vee} is the Pontrjagin dual of B, which is a compact Λ -module. In fact, one has (cf. [Ja3] p. 179).

$$\begin{array}{rcl} \operatorname{Hom}_{\Lambda}(B^{\vee}, \Lambda) & = & \lim\limits_{\stackrel{\longleftarrow}{U}} \operatorname{Hom}_{\mathcal{G}}(B^{\vee}, \, \mathbb{Z}_{p}[G/U]) \\ & = & \lim\limits_{\stackrel{\longleftarrow}{\eta}} \lim\limits_{\stackrel{\longleftarrow}{U}} \operatorname{Hom}(H^{0}(U/H, B)^{\vee}, \, \mathbb{Z}/p^{n}\mathbb{Z}) \\ & = & \lim\limits_{\stackrel{\longleftarrow}{\eta}} \lim\limits_{\stackrel{\longleftarrow}{U}} \operatorname{Hom}(H^{0}(U/H, B[p^{n}])^{\vee}, \, \mathbb{Z}/p^{n}\mathbb{Z}) \\ & = & \lim\limits_{\stackrel{\longleftarrow}{\eta}} \lim\limits_{\stackrel{\longleftarrow}{U}} H^{0}(U/H, B[p^{n}]) \end{array}$$

and hence

$$\operatorname{Hom}_{\Lambda}(H^{0}(H, A)^{\vee}, \Lambda) = \lim_{\stackrel{\longleftarrow}{n}} \lim_{\stackrel{\longleftarrow}{T_{I}}} (H^{0}(U, A[p^{n}]) = F(A).$$

Since taking Pontrjagin duals is an exact functor

$$M_{\mathcal{G}} \to (\text{compact } \Lambda\text{-modules})$$

taking injectives to projectives, the derived functors of the functor $B \mapsto \operatorname{Hom}_{\Lambda}(B^{\vee}, \Lambda)$ are the functors $B \mapsto \operatorname{Ext}_{\Lambda}^{i}(B^{\vee}, \Lambda) = E^{i}(B^{\vee})$, and we get a spectral sequence

$$E_2^{p,q} = E^p(H^q(H, A)^{\vee}) \Rightarrow R^{p+q}F(A) = H_{\text{cont}}^{p+q}(G, H; RT_pA)$$

The theorem follows.

References

- [Ja1] U. Jannsen: Continuous étale cohomology, Math. Ann. 280 (1988), 207-245
- [Ja2] U. Jannsen: On the l-adic cohomology of varieties over number fields and its Galois cohomology, Galois groups over Q (Berkeley, CA, 1987), 315–360, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989
- [Ja3] U. Jannsen: Iwasawa modules up to isomorphism, Algebraic Number theory, 171–207, Adv. Stud. Pure Math. 17, Academic Press Boston 1989
- [La] M. Lazard: Groupes analytiques p-adiques, Publ. Math. IHES 26 (1965), 389-603.