On the field of definition for modularity of CM elliptic curves

山形大学・理学部・数理科学科 村林直樹（Naoki Murabayashi）
Department of Mathematical Sciences, Faculty of Science, Yamagata University

1 Introduction

Let E be a CM elliptic curve defined over an algebraic number field $F \subseteq \mathbb{C}$ whose \mathbb{Q}-algebra of endomorphisms defined over $\overline{\mathbb{Q}}$, denoted by $\text{End}_{\overline{\mathbb{Q}}}(E)$, is isomorphic to an imaginary quadratic field $K \subseteq \mathbb{C}$. We take an integral ideal m in K and denote by $I_K(m)$ the group of fractional ideals in K prime to m. We consider a homomorphism $\lambda : I_K(m) \rightarrow \mathbb{C}^\times$ such that (i) $\lambda((\alpha)) = \alpha$ for any $\alpha \in K^\times$ s.t. $\alpha \equiv 1 \mod^\times m$; (ii) λ is primitive, i.e. there is no proper divisor n of m such that λ has a extension $\tilde{\lambda}$ to $I_K(n)$ with the property: $\tilde{\lambda}((\alpha)) = \alpha$ for any $\alpha \in K^\times$ s.t. $\alpha \equiv 1 \mod^\times n$. Then we put

$$f_\lambda(z) := \sum_{a \in I_K(m) \atop a: \text{integral}} \lambda(a)e^{2\pi i N(a)z} \quad (z \in \mathfrak{H}, \text{ the complex upper plane}),$$

where $N(a)$ denotes the absolute norm of an ideal a. Let $-D$ be the discriminant of K and put $N := DN(m)$. We define a Dirichlet character $\varepsilon : (\mathbb{Z}/N\mathbb{Z})^\times \rightarrow \mathbb{C}^\times$ by

$$\overline{a} \mapsto \left(\frac{-D}{a}\right)^{\lambda((a))} \quad (a \in \mathbb{Z}, \ (a, \ N) = 1),$$

where if $a = p_1^{e_1} \cdots p_r^{e_r}$ is the factorization of a into prime factors,

$$\left(\frac{-D}{a}\right) = \prod_{i=1}^r \left(\frac{-D}{p_i}\right)^{e_i}, \quad \left(\frac{-D}{p_i}\right) = \begin{cases} 1 & \text{if } p_i \text{ splits in } K/\mathbb{Q} \\ -1 & \text{if } p_i \text{ is inert in } K/\mathbb{Q} \end{cases}.$$

By Hecke-Shimura, we have the following:

Fact 1. f_λ is a normalized newform of weight two on $\Gamma_1(N)$ and ε is the Nebentypus of f_λ.
By the Eichler-Shimura theory, for any normalized newform \(f \) of weight two on \(\Gamma_1(M) \), we can associate the abelian variety \(J_f \) defined over \(\mathbb{Q} \) which is a \(\mathbb{Q} \)-simple factor of \(J_1(M) \), the jacobian variety of the modular curve \(X_1(M) \). Shimura proved the following (see Proposition 1.6 and Remark 1.7 in [5]):

Fact 2. \(\text{Hom}_{\mathbb{Q}}(E, J_f) \neq \{0\} \) if and only if there exists an above \(\lambda \) such that \(f = f_{\lambda} \), where \(\text{Hom}_{\mathbb{Q}}(E, J_f) \) denotes the additive group of homomorphisms from \(E \) to \(J_f \) defined over \(\overline{\mathbb{Q}} \).

For any imaginary quadratic field \(K \), if we take an integral ideal \(m_0 \) in \(K \) such that
\[
\zeta \in K, \quad \zeta \text{ is a root of unity, } \zeta \equiv 1 \mod m_0 \implies \zeta = 1
\]
holds (we can always do so), there exists a homomorphism \(\lambda : I_K(m_0) \to \mathbb{C}^{\times} \) satisfying the condition (i). Replacing \(m_0 \) by the minimal divisor \(m \) of \(m_0 \) such that \(\lambda \) has an extension \(\tilde{\lambda} \) to \(I_K(m) \) and \(\tilde{\lambda} \) has also the property (i), we may assume that \(\lambda \) is primitive. Therefore we have

Fact 3. For any CM elliptic curve \(E \) defined over an algebraic number field \(F \), there exists a newform \(f \) such that a non-zero homomorphism \(\varphi : E \to J_f \) defined over \(\overline{\mathbb{Q}} \) exists, that is, \(E \) is modular over \(\overline{\mathbb{Q}} \).

In this paper we will consider the following questions.

Question 1. Let \(E/F \) be as above. Under what condition does there exist a newform \(f \) such that a non-zero homomorphism \(\varphi : E \to J_f \) defined over \(F \) exists, that is, when \(E \) is modular over \(F \)?

Question 2. Assume that \(E/F \) is modular over \(F \). Therefore there exists a newform \(f \) with \(\text{Hom}_F(E, J_f) \neq \{0\} \). Then, how large is \(\text{Hom}_F(E, J_f) \)? In other words, decide the multiplicity of \(E \) as \(F \)-simple factor of \(J_f \).

2 Preliminaries

Let \(E/F, K, \lambda : I_K(m) \to \mathbb{C}^{\times} \), and \(f = f_{\lambda} \) be as in the introduction. Let \(f = \sum_{m \geq 1} a_m q^m \) (\(q = e^{2\pi i\tau} \)) be the Fourier expansion at \(\infty \) and put \(H := \mathbb{Q}(a_m|m \geq 1) \) \((\subseteq \mathbb{C})\). Let \(n \) be the dimension of \(J_f \), then \(H \) is an algebraic number field with \([H : \mathbb{Q}] = n\). A \(\mathbb{Q} \)-algebra isomorphism \(\theta : H \cong \text{End}_Z^0(J_f) = \text{End}_Z(J_f) \otimes \mathbb{Z} \mathbb{Q} \) is defined by

\[
a_m \mapsto \text{the endomorphism of } J_f \text{ induced by the } m\text{-th Hecke operator w.r.t. } \Gamma_1(N)
\]

\((m = 1, 2, \ldots)\). In [3] Shimura proved that \(J_f \) is isogenous to \(E^n = E \times \cdots \times E \) (\(n \) terms) over \(\mathbb{Q} \), expressed by \(J_f \sim_{\mathbb{Q}} E^n \). So we have \(\text{End}_Z^0(J_f) \cong M_n(K) \), the algebra
of $n \times n$-matrices with entries in K. Let Z be the center of $\text{End}_K^0(J_f)$. Then we have $Z \cong K$. We denote by T the sub \mathbb{Q}-algebra of $\text{End}_K^0(J_f)$ generated by Z and $\theta(H)$. Shimura used the following facts in the proof of Proposition 1.6 in [5] and we state them as a lemma without proof.

Lemma 2.1. (1) $Z \cap \theta(H) = \mathbb{Q}$. Especially this implies that $\dim_H T = 2$.
(2) $\text{End}_K^0(J_f) = T$.

Therefore, as for the structure of T, we have the possibility of the following two cases:

Case 1: T is isomorphic to an algebraic number field with degree $2n$ (over \mathbb{Q})
$$
\iff K \not\subseteq H;
$$

Case 2: $T \cong H \oplus H \iff K \subseteq H$.

Let $F' = \langle F, K \rangle$ be the subfield of \mathbb{C} generated by F and K. It is well known that $\text{End}_K^0(E) = \text{End}_{F'}(E) (\cong K)$. We put $\mathcal{M} := \text{Hom}_\mathbb{Q}(E, J_f) \otimes_{\mathbb{Z}} \mathbb{Q}$. Then the absolute Galois group $\text{Gal}(\overline{\mathbb{Q}}/F)$ over F acts on \mathcal{M} by the action on coefficients of homomorphisms. If we know the structure of \mathcal{M} as Galois module, we will be able to answer Questions 1 and 2. Therefore our purpose in this paper is to determine the structure of \mathcal{M} as $\text{Gal}(\overline{\mathbb{Q}}/F')$-module. On the other hand we have the following.

Lemma 2.2. $\text{Hom}_{F'}(E, J_f) \neq \{0\} \iff \text{Hom}_F(E, J_f) \neq \{0\}$.

By this lemma, for answer to Question 1, it is enough to study the structure of \mathcal{M} as $\text{Gal}(\overline{\mathbb{Q}}/F')$-module. But, for answer to Question 2, this does not seem to be enough. Nevertheless, as we will see later, under assumption $\text{Hom}_{F'}(E, J_f) \neq \{0\}$ the structure of \mathcal{M} as $\text{Gal}(\overline{\mathbb{Q}}/F)$-module can be easily recovered from that of \mathcal{M} as $\text{Gal}(\overline{\mathbb{Q}}/F')$-module. Therefore, in the following we will study the $\text{Gal}(\overline{\mathbb{Q}}/F')$-module structure.

By composition of homomorphisms, \mathcal{M} has the structure of left T- and right K-module:

$$
T = \text{End}_K^0(J_f) \hookrightarrow \mathcal{M} \hookrightarrow \text{End}_{F'}^0(E) \cong K.
$$

As $J_f \sim_{\mathbb{Q}} E^n$, we have

$$
\mathcal{M} \cong \text{Hom}_{\mathbb{Q}}(E, E^n) \otimes_{\mathbb{Z}} \mathbb{Q} \cong K^n
$$

as \mathbb{Q}-vector space. In particular we have $\dim_{\mathbb{Q}} \mathcal{M} = n \times \dim_{\mathbb{Q}} K = 2n$. On the other hand $H \hookrightarrow \theta(H) \subseteq T$, we can view \mathcal{M} as H-vector space. Since $[H : \mathbb{Q}] \times \dim_H \mathcal{M} = \dim_{\mathbb{Q}} \mathcal{M} = 2n$, we have $\dim_H \mathcal{M} = 2$.

Proposition 2.3. \mathcal{M} is a free left T-module of rank 1.
Let ℓ be a prime number and put

\[
V_\ell(E) := T_\ell(E) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell, \quad V_\ell(J_f) := T_\ell(J_f) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell, \quad \mathcal{M}_\ell := \mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_\ell
\]

where $T_\ell(E)$ and $T_\ell(J_f)$ are Tate modules. We can consider the following actions:

- $\text{Gal}(\overline{\mathbb{Q}}/F) \curvearrowright \mathcal{M}_\ell \otimes_{K \otimes_{\mathbb{Q}} \mathbb{Q}_\ell} V_\ell(E)$ by diagonal;
- $H \rightarrow T \curvearrowright \mathcal{M}_\ell \otimes_{K \otimes_{\mathbb{Q}} \mathbb{Q}_\ell} V_\ell(E)$ by the action on \mathcal{M}.

We define a homomorphism $\nu: \mathcal{M}_\ell \otimes_{K \otimes_{\mathbb{Q}} \mathbb{Q}_\ell} V_\ell(E) \rightarrow V_\ell(J_f)$ by

\[
(\varphi \otimes a) \otimes x \mapsto a\varphi(x).
\]

Proposition 2.4. ν is an isomorphism of (left) $H \otimes_{\mathbb{Q}_\ell} \mathbb{Q}_\ell \text{-modules}$ and is also an isomorphism of (left) $T \otimes_{\mathbb{Q}_\ell} \mathbb{Q}_\ell \text{-modules}$, where $H \otimes_{\mathbb{Q}_\ell} \mathbb{Q}_\ell \text{-modules}$ (resp. $T \otimes_{\mathbb{Q}_\ell} \mathbb{Q}_\ell \text{-modules}$) denotes the group algebra of $\text{Gal}(\overline{\mathbb{Q}}/F)$ (resp. $\text{Gal}(\overline{\mathbb{Q}}/F')$) over $H \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$ (resp. $T \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$).

3 The action of $\text{Gal}(\overline{\mathbb{Q}}/F')$ on $\mathcal{M}_\ell \otimes_{K \otimes_{\mathbb{Q}} \mathbb{Q}_\ell} V_\ell(E)$

We review the known results about the structure of $V_\ell(E)$ as $\text{Gal}(\overline{\mathbb{Q}}/F')$-module. By changing $\iota: K \rightarrow \text{End}_{F'}^0(E)$ if necessary, we may assume that the CM-type of (E, ι) is $(K; \{\text{id}\})$. Then there exists a lattice \mathfrak{a} of K such that the following commutative diagram holds:

\[
\begin{array}{cccccc}
0 & \rightarrow & \mathfrak{a} & \rightarrow & K_R & \rightarrow & K_R/\mathfrak{a} & \rightarrow & 0 \quad \text{(exact)} \\
& & \downarrow q & & \downarrow r & & \\
0 & \rightarrow & q(\mathfrak{a}) & \rightarrow & \mathbb{C} & \rightarrow & E(\mathbb{C}) & \rightarrow & 0 \quad \text{(exact)},
\end{array}
\]

where $K_R := K \otimes_{\mathbb{Q}} \mathbb{R}$ and $q(\mathfrak{a} \otimes x) = ax$. By the theory of complex multiplication, the following is well known (see Theorem 19.8, p. 134 in [6]).

Theorem 3.1. (1) Every point of $E(\mathbb{C})$ with finite order is F'_{ab}-rational, where F'_{ab} denotes the maximal abelian extension of F'.

(2) There exists a unique homomorphism $\alpha_{E/F'}: F'^{\times}_A \rightarrow K^{\times}$ (where F'^{\times}_A denotes the idele group of F') such that

- $\text{Ker}(\alpha_{E/F'})$ is open in F'^{\times}_A;

- For any $x \in F'^{\times}_A$, $\alpha_{E/F'}(x)N_{F'/K}(x)^{-1}a = a$, where $N_{F'/K}$ is the norm map from F'^{\times}_A to K^{\times}_A;
- For any $x \in F'_{A}^{\times}$, $\alpha_{E/F'}(x)\rho(\alpha_{E/F'}(x)) = N(il(x))$, where $\rho(v)$ is the complex conjugate of a complex number v and $il(x)$ is the fractional ideal of F' associated to an idele element x;

- For any $x \in F'_{A}^{\times}$ and $w \in K/a$, $r(x) = r(\alpha_{E/F'}(x)N_{F'/K}(x)^{-1}w)$, where $[x, F']$ is the element of $\text{Gal}(F'_{ab}/F')$ corresponding to x by the reciprocity law of class field theory.

Since $V_{\ell}(E)$ is viewed as free $K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$-module of rank 1 by ι, the action of $\text{Gal}(\bar{\mathbb{Q}}/F')$ on $V_{\ell}(E)$ determines the homomorphism

$$\vartheta : \text{Gal}(\bar{\mathbb{Q}}/F') \to (K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times}.$$ Then ϑ factors through the restriction map to F'_{ab}. So we denote by $\overline{\vartheta}$ the induced map from $\text{Gal}(F'_{ab}/F')$ to $(K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times}$ and by ϑ the composition of the reciprocity map for F' and $\overline{\vartheta}$. Thus we have the following commutative diagram:

$$\text{Gal}(\bar{\mathbb{Q}}/F') \xrightarrow{\vartheta} (K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times} \xrightarrow{\text{restriction}} F'_{ab}^{\times} \xrightarrow{\overline{\vartheta}} (K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times}.$$ Then Theorem 3.1 implies the following:

Corollary 3.2. For any $x \in F_{A}^{\times}$, $\overline{\vartheta}(x) = (\alpha_{E/F'}(x)N_{F'/K}(x)^{-1})_{\ell}$, where $(\)_{\ell}$ denotes the ℓ-component.

By Proposition 2.3, the action of $\text{Gal}(\bar{\mathbb{Q}}/F')$ on \mathcal{M} determines the homomorphism

$$\chi : \text{Gal}(\bar{\mathbb{Q}}/F') \to T^{\times}.$$ Let χ_{ℓ} be the composition of χ and the canonical map $T^{\times} \to (T \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times}$, then χ_{ℓ} corresponds to the action of $\text{Gal}(\bar{\mathbb{Q}}/F')$ on \mathcal{M}_{ℓ}. In other words, taking a basis η of \mathcal{M} over T, we have $\sigma \eta = \chi_{\ell}(\sigma) \eta$ for any $\sigma \in \text{Gal}(\bar{\mathbb{Q}}/F')$.

Firstly we consider Case 1. Since K acts T-linearly on \mathcal{M}, we can take a Q-algebra isomorphism $\kappa : K \rightarrow \sim Z \subseteq T$ such that $\eta \circ \iota(a) = \kappa(a) \circ \eta$ for any $a \in K$, denoted by $\eta a = a \eta$ for short. We take a basis v of $V_{\ell}(E)$ over $K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$. Then $\omega := \eta \otimes v$ becomes a free basis of $\mathcal{M}_{\ell} \otimes_{K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}} V_{\ell}(E)$ over $T \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ and it holds that

$$\sigma \omega = (\sigma \eta \otimes \sigma v = (\chi_{\ell}(\sigma) \circ \eta) \otimes (\vartheta(\sigma)v) + (\chi_{\ell}(\sigma) \sigma \eta \circ (\iota \otimes 1)(\vartheta(\sigma))) \otimes v = (\chi_{\ell}(\sigma)\vartheta(\sigma) \eta \otimes v = \chi_{\ell}(\sigma)\vartheta(\sigma) \omega$$
for any $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/F')$.

Next we consider Case 2. $\sqrt{-D} (\in K)$ acts T-linearly on \mathcal{M}, so there exists some $t \in T$ such that $\eta' \circ \iota(\sqrt{-D}) = t \circ \eta'$ for any $\eta' \in \mathcal{M}$. We will show that $t \in Z$ (one should note that in Case 2, T has two \mathbb{Q}-subalgebras isomorphic to K, so it is not trivial that $t \in Z$). For any $\varphi \in \text{End}_{\mathbb{Q}}(J_f)$ and $\eta' \in \mathcal{M}$, we have

$$(\varphi \circ t) \circ \eta' = \varphi \circ (t \circ \eta') = (\varphi \circ \eta') \circ (\sqrt{-D}) = t \circ (\varphi \circ \eta') = (t \circ \varphi) \circ \eta',$$

therefore $t \circ \varphi = \varphi \circ t$ in $\text{End}_{\mathbb{Q}}(J_f)$, hence $t \in Z$. This concludes that similarly with Case 1, there exists a \mathbb{Q}-algebra isomorphism $\kappa : K \sim Z \subseteq T$ with the same property. Let $\gamma_1 : K \hookrightarrow H$ be the map induced by the inclusion $K \subseteq H$ and $\gamma_2 : K \hookrightarrow H$ be the other homomorphism. We define an isomorphism of \mathbb{Q}-algebras $\varepsilon : T \sim H \oplus H$ by

$$z \ (\in Z) \mapsto (\gamma_1(\kappa^{-1}(z)), \gamma_2(\kappa^{-1}(z))), \quad \theta(a) \ (\in \theta(H)) \mapsto (a, a).$$

For $k = 1, 2$, we set

$$\chi_{\ell}^{(k)} : \text{Gal}(\overline{\mathbb{Q}}/F') \rightarrow (T \otimes \mathbb{Q}_{\ell})^x \xrightarrow{\varepsilon \otimes 1} (H \otimes \mathbb{Q}_{\ell})^x \oplus (H \otimes \mathbb{Q}_{\ell})^x \xrightarrow{\text{projection to } k\text{-th component}} (H \otimes \mathbb{Q}_{\ell})^x.$$

These arguments imply the following:

Proposition 3.3. Let the notations be as above. We regard $K \otimes \mathbb{Q}_{\ell} \subseteq T \otimes \mathbb{Q}_{\ell}$ by injection $\kappa \otimes 1$.

(1) In Case 1, it holds that for any $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/F')$,

$$\sigma \omega = \chi_{\ell}(\sigma) \theta(\sigma) \omega.$$

(2) In Case 2, identifying $T \otimes \mathbb{Q}_{\ell}$ with $(H \otimes \mathbb{Q}_{\ell})^{\otimes 2}$ by $\varepsilon \otimes 1$, it holds that for any $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/F')$,

$$\sigma \omega = (\chi_{\ell}^{(1)}(\sigma) \gamma_1(\theta(\sigma))), \chi_{\ell}^{(2)}(\sigma) \gamma_2(\theta(\sigma))) \omega,$$

where we denote $\gamma_k \otimes 1 : K \otimes \mathbb{Q}_{\ell} \hookrightarrow H \otimes \mathbb{Q}_{\ell}$ by $\gamma_k \ (k = 1, 2)$ for simplicity.

4 On relation between Eichler-Shimura theory and complex multiplication theory about J_f

In this section we will describe a relation between λ in $f = f_{\lambda}$ and the homomorphism corresponding to $\alpha_{n, \lambda'}$ in higher dimensional case. The content of this section is essentially stated in the proof of Proposition 1.6 in [5] without detailed proof. We present the results in a slightly different form to be convenient to our purpose.
Firstly we consider Case 1. Then $L := \langle K, H \rangle (\subseteq \mathbb{C})$ is a CM-field with $[L : \mathbb{Q}] = 2n$. We define an isomorphism of \mathbb{Q}-algebras $\iota' : L \sim T = \text{End}_K^0(J_f)$ by
\[
\alpha (\in K) \mapsto \kappa(\alpha) (\in Z), \quad x (\in H) \mapsto \theta(x).
\]
Then (J_f, ι') is an abelian variety with complex multiplication defined over K in the sense of Shimura (see §19.7 in [6]). Since $\theta(H) \subseteq \text{End}_0^0(J_f)$, the characteristic polynomial of any element of H acting on $H^0(J_f, \Omega^1_{J_f}) = H^0(J_f, \Omega^1_{\mathbb{Q} \otimes \mathbb{C}})$ has \mathbb{Q}-rational coefficients. Therefore, by Lemma 1 in [7] (p. 38), the representation of H on $H^0(J_f, \Omega^1_{J_f})$ is equivalent to the regular representation of H over \mathbb{Q}. It is also proved that Z acts on $H^0(J_f, \Omega^1_{J_f})$ by scalar multiple. Let $(L, \{\varpi_1, \ldots, \varpi_n\})$ be the CM-type of (J_f, ι'), then we have
\[
\{\varpi_1|H, \ldots, \varpi_n|H\} = \{\varpi : H \hookrightarrow \mathbb{C}\}, \quad \varpi_{i|K} = id_K \quad (i = 1, \ldots, n)
\]
by changing the identification of K as subfield of \mathbb{C} if necessary. Hence the reflex of $(L, \{\varpi_1, \ldots, \varpi_n\})$ is $(K, \{id_K\})$. Let $g' : K^\times_A \rightarrow L^\times_A$ be the canonical map induced from the inclusion $K \subseteq L$. Similarly with case of E/F', the action of $\text{Gal}(\overline{\mathbb{Q}}/K)$ on $V_{\iota}(J_f)$ determines the homomorphism
\[
\delta : \text{Gal}(\overline{\mathbb{Q}}/K) \rightarrow (L \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^\times
\]
and we define $\tilde{\delta} : K^\times_A \rightarrow (L \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^\times$ by the same manner as defining $\tilde{\theta}$. The theory of complex multiplication also implies the following:

Corollary 4.1. For any $x \in K^\times_A$, $\tilde{\delta}(x) = (\alpha_{J_f/K}(x)g'(x)^{-1})_{\iota}$, where $\alpha_{J_f/K} : K^\times_A \rightarrow L^\times$ is the homomorphism corresponding to $\alpha_{E/F'}$ in higher dimensional case.

Let $\{p_1, \ldots, p_s\}$ be the set of all bad primes of J_f/K. For every $p_k \ (1 \leq k \leq s)$, we take the least positive integer t_k such that
\[
x \in K^\times_{p_k} \subseteq K^\times_A, \quad x - 1 \in p_k^{t_k} \quad \Rightarrow \quad \alpha_{J_f/K}(x) = 1.
\]
We set $n := p_1^{t_1} \cdots p_s^{t_s}$, $G_K(n) := \{x \in K^\times_A | x_{\infty} = 1, x_{p_k} = 1 \ (1 \leq k \leq s)\}$, $U_K := \{x \in K^\times_A | x_p \in \mathcal{O}_{K_p}^\times \text{ for any finite prime } p\}$, and $U_K(n) := G_K(n) \cap U_K$. We consider the canonical isomorphism $G_K(n)/U_K(n) \sim I_K(n)$ by which the class represented by $x \in G_K(n)$ is sent to $il(x) \in I_K(n)$. Since $U_K(n) \subseteq \text{Ker}(\alpha_{J_f/K})$, we obtain the homomorphism
\[
\tilde{\alpha}_{J_f/K} : I_K(n) \rightarrow L^\times
\]
induced from $\alpha_{J_f/K}$. By the two properties of $\alpha_{J_f/K}$: (i) $x \in K^\times_{\infty} = \mathbb{C}^\times \subseteq K^\times_A \Rightarrow \alpha_{J_f/K}(x) = 1$; (ii) $x \in K^\times \subseteq K^\times_A \Rightarrow \alpha_{J_f/K}(x) = g'(x) = x$, it holds that
\[
\alpha \in K^\times_A, \quad \alpha \equiv 1 \text{ mod } n \quad \Rightarrow \quad \tilde{\alpha}_{J_f/K}(\alpha) = \alpha.
\]
It is clear that $\alpha_{J_{f}/K} : I_{K}(n) \to L^{\times} \subseteq \mathbb{C}^{\times}$ is primitive.

Proposition 4.2. In Case 1, we have $\lambda = \alpha_{J_{f}/K}$ and $m = n$.

Next we investigate Case 2. Since J_{f} is defined over \mathbb{Q}, $\rho_{|K}$ ($\in \text{Gal}(K/\mathbb{Q})$) acts on $T = \text{End}^{0}_{K}(J_{f})$. Identifying T with $H \oplus H$ by ϵ, this action corresponds to the automorphism of $H \oplus H$ defined by $(x, y) \mapsto (y, x)$. Let ξ_{1}, ξ_{2} be the elements of T which correspond to $(1, 0), (0, 1)$ respectively. We take a positive integer r such that $r\xi_{k} \in \text{End}^{0}_{K}(J_{f}) (k = 1, 2)$ and set $\xi'_{k} := r\xi_{k}$. Then $C := \text{Im}(\xi'_{1})$ is an abelian subvariety of J_{f} defined over K. Since $\rho\xi'_{1} = \xi'_{2}$, we have $\rho C = \text{Im}(\xi'_{2})$. So we can define an isogeny $\varphi : J_{f} \to C \times \rho C$ defined over K by $x \mapsto (\xi'_{1}(x), \xi'_{2}(x))$ and this implies $J_{f} \sim_{K} C \times \rho C$.

Lemma 4.3. We have $J_{f} \sim_{\mathbb{Q}} R_{K/\mathbb{Q}}(C) \sim_{\mathbb{Q}} R_{K/\mathbb{Q}}(\rho C)$, where $R_{K/\mathbb{Q}}(C)$ denotes the Weil restriction from K to \mathbb{Q} of C.

To understand the action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $V_{\ell}(J_{f})$, it is sufficient to do so for that of $\text{Gal}(\overline{\mathbb{Q}}/K)$ on $V_{\ell}(C)$ by this lemma. Putting $R := \theta^{-1}(\text{End}_{\mathbb{Q}}(J_{f}))$, we define a ring homomorphism $\iota'' : R \to \text{End}_{K}(C)$ by

$$a \mapsto (C \ni x \mapsto (\theta(a))(x) \in C)$$

and denote $\iota'' \otimes 1 : H = R \otimes_{\mathbb{Q}} \mathbb{Q} \to \text{End}^{0}_{K}(C)$ by the same notation ι''. In Case 2, $K \subseteq H$, so H is a CM-field. Then (C, ι'') is an abelian variety with complex multiplication defined over K. Let H_{0} be the maximal real subfield of H and $(H, \{\tau_{1}, \ldots, \tau_{n}\})$ ($n_{1} := \frac{n}{2}$) be the CM-type of (C, ι''). Since $H_{0} \subseteq \text{End}^{0}_{K}(C)$, the characteristic polynomial of any element of H_{0} acting on $H^{0}(C, \Omega^{1}_{/C})$ has K-rational coefficients. Since H_{0} is totally real, its coefficients also lie in \mathbb{R}. So it has \mathbb{Q}-rational coefficients. It is also proved that $K \subseteq H$ acts on $H^{0}(C, \Omega^{1}_{/C})$ by scalar multiple because $\iota''(K)$ coincides with the center of $\text{End}^{0}_{K}(C) \cong M_{n_{1}}(K)$. Therefore we have

$$\{\tau_{1 \mid H_{0}}, \ldots, \tau_{n \mid H_{0}}\} = \{\tau \mid \tau : H_{0} \hookrightarrow \mathbb{R}\}, \quad \tau_{i \mid K} = id_{K} \quad (i = 1, \ldots, n_{1})$$

by changing the identification of K as subfield of \mathbb{Q} if necessary. Hence the reflex of $(H, \{\tau_{1}, \ldots, \tau_{n}\})$ is $(K, \{id_{K}\})$. Let $g'' : K^{x}_{A} \to H^{x}_{A}$ be the canonical map induced from $\gamma_{1} : K \hookrightarrow H$. Similary with Case 1, we have

$$\delta' : \text{Gal}(\overline{\mathbb{Q}}/K) \to (H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{x}, \quad \tilde{\delta'} : K^{x}_{A} \to (H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{x},$$

and the following:

Corollary 4.4. For any $x \in K^{x}_{A}$, $\tilde{\delta'}(x) = (\alpha_{c/K}(x)g''(x)^{-1})_{\ell}$.
Let n' be the one corresponding to n in case of C/K. Then, as Case 1, we can define
\[\overline{\alpha_{C/K}} : I_K(n') \rightarrow H^\times. \]

Proposition 4.5. In Case 2, we have $\lambda = \overline{\alpha_{C/K}}$ and $m = n'$.

5 Main results

Let $\beta_{E/F'} : F'_{\lambda} \rightarrow C^\times$ be the Grössen-character of E/F'. (By definition, $\beta_{E/F'}(x) = (\alpha_{E/F'}(x)N_{F'/K}(x)^{-1})_{\infty}$.)

Theorem 5.1. Let E be an elliptic curve with complex multiplication defined over an algebraic number field F ($\subseteq C$) with $\text{End}_{\mathbb{Q}}(E) \cong K$ ($\subseteq C$). Put $F' := (F, K)$ ($\subseteq C$). Then the following three conditions are equivalent:

1. E is modular over F.
2. There exists a Grössen-character $\gamma : K_{\lambda}^\times \rightarrow C^\times$ such that $\gamma \circ N_{F'/K} = \beta_{E/F'}$.
3. All the points of E of finite order are rational over $\langle F', K_{ab} \rangle$.

Proof. The equivalence of (2) and (3) is a special case of Theorem 4. p. 511 in [4].

We will prove that (1) implies (2). By assumption, there exists a normalized newform f of weight two (obtained by some $\lambda : I_K(m) \rightarrow C^\times$ as $f = f_\lambda$) such that $\text{Hom}_{F'}(E, J_f) \neq \{0\}$. From f we define H as above. Firstly we consider Case 1. We define $\tilde{\chi}_L : F'_{\lambda}^\times \rightarrow (T \otimes_{\mathbb{Q}} \mathbb{Q}_L)^\times$ from χ_L by the same manner as defining $\tilde{\theta}$ from θ in Section 3. By the commutative diagram

\[
\begin{array}{ccc}
F'_{\lambda}^\times & \xrightarrow{\text{norm}} & K_{\lambda}^\times \\
\text{reciprocity law} \downarrow & & \downarrow \text{reciprocity law} \\
\text{Gal}(F_{ab}'/F') & \xrightarrow{\text{restriction}} & \text{Gal}(K_{ab}/K),
\end{array}
\]

Proposition 2.4, Corollary 3.2, Proposition 3.3, and Corollary 4.1, we have that
\[\tilde{\chi}_L(x) = \alpha_{E/F'}(x)^{-1}\alpha_{J_f/K}(N_{F'/K}(x)) \text{ for any } x \in F'_{\lambda}^\times. \]

(We identify L with T by ι'.) In Case 1, T is a field, so we have
\[\text{Hom}_{F'}(E, J_f) \neq \{0\} \iff \chi = 1 \iff \tilde{\chi}_L = 1 \iff \alpha_{J_f/K} \circ N_{F'/K} = \alpha_{E/F'}. \]

We note that Proposition 4.2 is rephrased to that the map
\[G_K(m) \xrightarrow{u} I_K(m) \xrightarrow{\lambda} C^\times \]
can be continuously extended to K_A^\times by the manner: any $x \in K^\times (\subseteq K_A^\times)$ is mapped to 1 and this extended map, denoted by $\overline{\lambda}$, coincides with $\beta_{J_f/K}$. Then it holds that

$$\alpha_{J_f/K} \circ N_{F'/K} = \alpha_{E/F'} \iff \overline{\lambda} \circ N_{F'/K} = \beta_{E/F'},$$

so we can take $\overline{\lambda}$ as γ in (2).

Next we consider Case 2. By the argument in the proof of Proposition 4.5, the action of $\text{Gal}(\overline{\mathbb{Q}}/F')$ on $V_\ell(J_f)$ corresponds to the homomorphism

$$\begin{array}{ccc}
\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) & \xrightarrow{\phi_{\ell}} & GL_2(H \otimes_{\mathbb{Q}} \mathbb{Q}_\ell) \\
\cup & & \cup \\
\text{Gal}(\overline{\mathbb{Q}}/F') & \longrightarrow & (H \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)^\times \oplus (H \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)^\times \\
\sigma & \mapsto & (\delta'(\sigma), \delta'(\rho\sigma\rho)).
\end{array}$$

By Proposition 2.4 and Proposition 3.3, we have that one of the following two statements holds:

(a) $\chi^{(1)}_{\ell}(\sigma) = \gamma_1(\theta(\sigma))^{-1}\delta'(\sigma)$, $\chi^{(2)}_{\ell}(\sigma) = \gamma_2(\theta(\sigma))^{-1}\delta'(\rho\sigma\rho)$ for any $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/F')$;

(b) $\chi^{(1)}_{\ell}(\sigma) = \gamma_1(\theta(\sigma))^{-1}\delta'((\rho\sigma\rho)(\sigma))$, $\chi^{(2)}_{\ell}(\sigma) = \gamma_2(\theta(\sigma))^{-1}\delta'(\sigma)$ for any $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/F')$.

We will prove that (b) is impossible. For this we assume that (b) holds. For $k = 1, 2$, we define $\overline{\chi^{(k)}_{\ell}}$ similarly with $\tilde{\chi}_{\ell}$. If $\sigma_{|F_{ab}} = [x, F']$ ($[x, F']$ denotes the image of $x \in F_A^\times$ by the reciprocity law of F'), then we have $\rho\sigma\rho_{|K_{ab}} = [\rho(N_{F'/K}(x)), K]$ by the class field theory. Therefore, for any $x \in F_A^\times$, we have

$$\begin{align*}
\overline{\chi^{(1)}_{\ell}}(x) &= \gamma_1(\tilde{\theta}(x)^{-1})\delta'(\rho(N_{F'/K}(x))) \\
&= \gamma_1((\rho\sigma\rho)(x))^{-1}\gamma_1((N_{F'/K}(x))_{\ell})\alpha_{C/K}(\rho(N_{F'/K}(x)))\gamma_1((\rho\sigma\rho)(x))^{-1}.
\end{align*}$$

Since $\gamma_1 \circ \rho = \gamma_2$, this is rephrased to that

$$\begin{align*}
\frac{\gamma_1((N_{F'/K}(x))_{\ell})}{\gamma_2((N_{F'/K}(x))_{\ell})} &= \frac{\overline{\chi^{(1)}_{\ell}}(x)\alpha_{E/F'}(x)}{\alpha_{C/K}(\rho(N_{F'/K}(x)))}.
\end{align*}$$

We can take a transcendental element π of \mathbb{Q}_{ℓ} over \mathbb{Q} and put $x_0 := 1 \otimes 1 + \sqrt{-D} \otimes \pi \in (K \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)^\times \subseteq (F' \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)^\times \subseteq F_A^\times$. Now we suppose that ℓ splits completely in H. Since $K \subseteq H$, we can view $K \subseteq \mathbb{Q}_\ell$. By the isomorphism

$$\left(\prod_{j: H^\times \otimes_{\mathbb{Q}_\ell} \mathbb{Q}_\ell} j \otimes 1 \oplus \prod_{r: H^\times \otimes_{\mathbb{Q}_\ell} \mathbb{Q}_\ell} r \otimes 1 \right) : H \otimes_{\mathbb{Q}_\ell} \mathbb{Q}_\ell \sim (\mathbb{Q}_\ell \oplus \cdots \oplus \mathbb{Q}_\ell) \oplus (\mathbb{Q}_\ell \oplus \cdots \oplus \mathbb{Q}_\ell),$$

the element

$$\frac{\gamma_1((N_{F'/K}(x_0))_{\ell})}{\gamma_2((N_{F'/K}(x_0))_{\ell})} = \frac{\gamma_1(x_0^d)}{\gamma_2(x_0^d)},$$

where d is the degree of F'/\mathbb{Q}. Since $x_0 \in (K \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)^\times$, we have

$$\frac{\gamma_1((N_{F'/K}(x_0))_{\ell})}{\gamma_2((N_{F'/K}(x_0))_{\ell})} = \frac{\gamma_1(x_0^d)}{\gamma_2(x_0^d)}.$$
is mapped to
\[
\left(\frac{1 + \pi \sqrt{-D}}{1 - \pi \sqrt{-D}}, \ldots, \frac{1 + \pi \sqrt{-D}}{1 - \pi \sqrt{-D}}, \frac{1 - \pi \sqrt{-D}}{1 + \pi \sqrt{-D}}, \ldots, \frac{1 - \pi \sqrt{-D}}{1 + \pi \sqrt{-D}}\right),
\]
where \(d = [F' : K]\). Putting
\[
\xi := \frac{\chi_{\ell}^{(1)}(x_0)\alpha_{E/F'}(x_0)}{\alpha_{c/K}(\rho(N_{F'/K}(x_0)))} \in H^x \subseteq (H \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)^x
\]
and taking \(j : H \hookrightarrow \mathbb{Q}_\ell\) with \(j(\sqrt{-D}) = \sqrt{-D}\), we have that
\[
\left(\frac{1 + \pi \sqrt{-D}}{1 - \pi \sqrt{-D}}\right)^d = j(\xi) \quad \text{in} \quad \mathfrak{G}.
\]
We note that \(j(\xi)\) is algebraic over \(\mathbb{Q}\). So we have that
\[
\pi = \frac{\sqrt{j(\xi)} - 1}{\sqrt{-D}(1 + \sqrt{j(\xi)})} \in \overline{\mathbb{Q}}.
\]
This is a contradiction. Hence we have proved that (a) holds.

We set
\[
\iota''' : H \longrightarrow \text{End}_K^0(\rho C), \quad a \mapsto \theta(\rho(a))|_{\rho C}.
\]
Then \((\rho C, \iota''')\) is an abelian variety with complex multiplication defined over \(K\) which has the same CM-type with \((C, \iota'')\). As case of \((C, \iota'')\), we have \(\alpha_{c/K} : K^x \longrightarrow H^x\).
Since \(\alpha_{c/K} = \rho \circ \alpha_{c/K} \circ \rho\), it holds that
\[
(a) \iff \chi_{\ell}^{(1)}(x) = \alpha_{E/F'}(x)^{-1}\alpha_{c/K}(N_{F'/K}(x)), \quad \overline{\chi_{\ell}^{(2)}}(x) = \rho(\alpha_{E/F'}(x)^{-1}\alpha_{c/K}(N_{F'/K}(x)))
\]
for any \(x \in F_{\mathbb{A}}^x\).

Therefore we have
\[
\text{Hom}_{F'}(E, J_f) \neq \{0\} \iff \chi^{(1)} = 1 \quad \text{or} \quad \chi^{(2)} = 1 \iff \chi_{\ell}^{(1)} = 1 \quad \text{or} \quad \chi_{\ell}^{(2)} = 1
\]
\[
\iff \alpha_{c/K} \circ N_{F'/K} = \alpha_{E/F'} \quad \text{or} \quad \alpha_{c/K} \circ N_{F'/K} = \alpha_{E/F'}.
\]
Set \(\lambda' : \rho \circ \lambda \circ \rho : I_K(\rho(m)) \longrightarrow \mathbb{C}^x\). As Case 1, we can construct a Grössen-character \(\lambda\) (resp. \(\overline{\lambda}\)) of \(K^x\) from \(\lambda\) (resp. \(\lambda'\)). Then we have
\[
\alpha_{c/K} \circ N_{F'/K} = \alpha_{E/F'} \quad \text{or} \quad \alpha_{c/K} \circ N_{F'/K} = \alpha_{E/F'} \iff \overline{\lambda} \circ N_{F'/K} = \beta_{E/F'} \quad \text{or} \quad \overline{\lambda} \circ N_{F'/K} = \beta_{E/F'}.
\]
Hence we can take \(\lambda\) or \(\overline{\lambda}\) as \(\gamma\) in (2).

Finally we will prove that (2) implies (1). By Lemma 2.2, it is sufficient to show that there exists a normalized newform \(f = f_\lambda\) of weight two constructed from some \(\lambda : I_K(m) \longrightarrow \mathbb{C}^x\) such that \(\text{Hom}_{F'}(E, J_f) \neq \{0\}\).
Claim. Let γ be as in (2) and n_0 be the conductor of γ. As defining $\alpha_{J_f/K}$ from $\alpha_{J_f/K}$ in Section 4, we can also define $\widetilde{\gamma}: I_K(n_0) \rightarrow \mathbb{C}^\times$ from γ. Then it holds that for any $x \in K^\times$ s.t. $x \equiv 1 \mod n_0$,
\[
\widetilde{\gamma}(x) = x.
\]

By Claim, from $\widetilde{\gamma}$ we can construct a normalized newform $f = f_{\widetilde{\gamma}}$ of weight two. Then the arguments in the proof of the statement: (1) \Rightarrow (2) imply that
\[
\gamma \circ N_{F'/K} = \beta_{E/F'} \iff \begin{cases}
\alpha_{J_f/K} \circ N_{F'/K} = \alpha_{E/F'} & \text{(if } K \nsubseteq H) \\
\alpha_{c/K} \circ N_{F'/K} = \alpha_{E/F'} & \text{(if } K \subseteq H)
\end{cases}
\implies \text{Hom}_{F'}(E, J_f) \neq \{0\}.
\]
So we have proved that (2) \Rightarrow (1).

Theorem 5.2. Let E/F, K, F', and $\beta_{E/F'}$ be as in Theorem 5.1. Assume that the condition (2) in Theorem 5.1 holds. Let m be the conductor of γ and set
\[
f(z) = f_{\widetilde{\gamma}}(z) := \sum_{a \in I_K(m)} \widetilde{\gamma}(a)q^{N(a)} = \sum_{m \geq 1} a_m q^m \quad (q = e^{2\pi i z}).
\]

Put $H := \mathbb{Q}(a_m | m \geq 1)$. Then we have the followings:
1. For any normalized newform g of weight two, $\text{Hom}_F(E, J_g) \neq \{0\}$ if and only if there exists some γ as above such that $g = f_{\widetilde{\gamma}}$.
2. Case 1: $K \nsubseteq H$. Then we have
\[
J_f \sim_F E \times \cdots \times E \quad (n = \dim J_f = [H: \mathbb{Q}]).
\]

Case 2: $K \subseteq H$.
(a) If $\gamma = \rho \circ \gamma \circ \rho$ on $P := K^\times N_{F'/K}(F_{\Lambda}^\times)$, then we have
\[
J_f \sim_F E \times \cdots \times E.
\]
(b) If $\gamma \neq \rho \circ \gamma \circ \rho$ on P, then we have that $F = F'$ and there exists an abelian variety A of dimension $\frac{n}{2}$ defined over K such that
\[
J_f \sim_F E \times \cdots \times E \times A_{/F}, \quad \text{Hom}_F(E, A_{/F}) = \{0\}.
\]
References

