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1 Introduction

Let E be a CM elliptic curve defined over an algebraic number field ' C C whose
Q-algebra of endomorphisms defined over Q, denoted by End%(E), is isomorphic to
an imaginary quadratic field K C C. We take an integral ideal m in K and denote by
Ix(m) the group of fractional ideals in K prime to m. We consider a homomorphism
X : Ix(m) — C* such that (i) A((a)) = a for any a € K* s.t. & =1 mod™m; (ii) A
is primitive, i.e. there is no proper divisor n of m such that A has a extension X to
Ix(n) with the property: A((a)) = a for any o € K* s.t. o =1 mod*n. Then we
put

H(z) = Z Ma)e?™N®@=  (; € §, the complex upper plane),

aclg (m)
a: integral

where N(a) denotes the absolute norm of an ideal a. Let —D be the discriminant of
K and put N := DN(m). We define a Dirichlet character ¢ : (Z/NZ)* — C* by

a— (i)i(—i“—)—) (aeZ (a N)=1),

a
where if a = p{' - - - p¢r is the factorization of a into prime factors,
=D _11[ =D\* =D\ _ [ 1 if p; splits in K/Q
a | I\ pi ’ p; ) | —1 if p; is inert in K/Q.

By Hecke-Shimura, we have the following:

Fact 1. f, is a normalized newform of weight two on I'1(N) and € is the Nebentypus
of fa.



By the Eichler-Shimura theory, for any normalized newform f of weight two on
I'\(M), we can associate the abelian variety J; defined over Q which is a Q-simple
factor of J;(M), the jacobian variety of the modular curve X;(M). Shimura proved
the following (see Proposition 1.6 and Remark 1.7 in [5]):

Fact 2. Homg(E, Js) # {0} if and only if there ezists an above A such that
f = fx, where HomQ(E Js) denotes the additive group of homomorphisms from E
to J; definrd over Q.

For any imaginary quadratic field K, if we take an integral ideal my in K such
that
¢ € K, (isaroot of unity, (=1 mod*myg=( =1
holds (we can always do so0), there exists a homomorphism A : Ix(mg) — C* satisfy-
ing the condition (i). Replacing mg by the minimal divisor m of mgy such that A has
an extension A to Ix(m) and A has also the proprety (i), we may assume that A is
primitive. Therefore we have

Fact 3. For any CM elliptic curve E defined over an algebraic number field F,
there exists a newform f such that a non-zero homomorphism ¢ : E — J; defined
over Q exists, that is, FE is modular over Q.

In this paper we will consider the following questions.

Question 1. Let E/F be as above. Under what condition does there erist a
newform f such that a non-zero homomorphism ¢ : E — J; defined over F' ezists,
that s, when is E modular over F'?

Question 2.  Assume that E/F is modular over F. Therefore there ezists a
newform f with Homp(E, J;) # {0}. Then, how large is Homp(E, J;)? In other
words, decide the multiplicity of E as F-simple factor of J;.

2 Preliminaries

Let E/F, K, X : Ix(m) — C*, and f = f, be as in the introduction. Let f =
> m>10md™ (g = €%™) be the Fourier expansion at i00 and put H := Q(an|m > 1)
(C C). Let n be the dimension of Jy, then H is an a.lgebralc number field with
[H : Q] = n. A Q-algebra isomorphism § : H—>End}(J;) = Endg(Jy) ®2 Q is
defined by

@y — the endomorphism of J; induced by the m-th Hecke operator w.r.t. I3(V)

(m=1, 2, ...). In 3] Shimura proved that J; is 1sogenous toE"=Ex---xE (n
terms) over Q, expressed by J; ~g E™. So we have End (Jf) ~ M. (K), the algebra
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of n X n-matrices with entries in K. Let Z be the center of End%;(J ¢). Then we have
Z = K. We denote by T the sub Q-algebra of End%(Jf) generated by Z and 6(H).

Shimura uesd the following facts in the proof of Proposition 1.6 in [5] and we state
them as a lemma without proof.

Lemma 2.1. (1) ZN6(H) = Q. Especially this implies that dimgT = 2.
(2) End%(J;) =T.

Therefore, as for the structure of 7', we have the possibility of the following two
cases:

Case 1 : T is isomorphic to an algebraic number field with degree 2n (over Q)
< K ¢ H;
Case2: T2HoH<—= KCH.

Let F' = (F, K) be the subfield of C generated by F and K. It is well known
that End%(E) = End% (E) _(g K). We put M := Homg(E, Jr) ®2 Q. Then the
absolute Galois group Gal(Q/F) over F acts on M by the action on coeflicients of
homomorphisms. If we know the structure of M as Galois module, we will be able

to answer Questions 1 and 2. Therefore our purpose in this paper is to determine
the structure of M as Gal(Q/F)-module. On the other hand we have the following.

Lemma 2.2. Hompr(E, Jf) # {0} <~ Hom_p(E, Jf) 7é {0}

By this lemma, for answer to Question 1, it is enough to study the structure of
M as Gal(Q/F')-module. But, for answer to Question 2, this does not seem to be
enough. Nevertheless, as we will see later, under assumption Homg(E, Jy) # {0}
the structure of M as Gal(Q/F)-module can be easily recovered from that of M as
Gal(Q/F')-module. Therefore, in the following we will study the Gal(Q/F")-module
structure.

By composition of homomorphisms, M has the structure of left T- and right
K-module:

T = End%(J;) ~» M ~ End%.(E) 2 K.

As J; ~g E™, we have
M = Homg(E, E™) ®; Q = K®"

as Q-vector space. In particular we have dimgM = n x dimgK = 2n. On the other
hand H—6(H) C T, we can view M as H-vector space. Since [H : Q] x dimgpM =
dimgM = 2n, we have dimgM = 2.

Proposition 2.3. M is a free left T-module of rank 1.
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Let £ be a prime number and put

Vi(E) == Ty(F) ®z, Qt, Va(Jy) == To(Jy) ®z, Qe, My = M g Q,

where Ty(E) and T,(Js) are Tate modules. We can consider the following actions:

o Gal(Q/F) ~» M; Qkgqq, Ve(E) by diagonal;
o H— T M;®xkgqq. Ve(E) by the action on M.

We define a homomorphism v : M, ®xgeq. Vo(E) — Vi(Jyf) by

(¢ ®a)® z — ap(z).

Proposition 2.4. v is an isomorphism of (left) H ®q Q¢ [Gal(Q/F)]-modules
and is also an isomorphism of (lef) T ®q Q¢ [Gal(Q/F")]-modules, where H ®q
Q[ Gal(Q/F)] (resp. T®qQ:[Gal(Q/F")]) denotes the group algebra of Gal(Q/F)
(resp. Gal(Q/F") ) over H ®q Q; (resp. T ®q Q¢ ).

3 The action of Gal(Q/F") on M, QkeqQ, Vi(E)

We review the known results about the structure of V,(E) as Gal(Q/F")-module.
By changing ¢ : K-—>End%,(E) if necessary, we may assume that the CM-type of
(E, 1) is (K; {id}). Then there exists a lattice a of K such that the following
commutative diagram holds:

0 — a —— Kg —— Kgp/a —— 0 (exact)

| | |

0 — g(a) — C —T> E(C) —— 0 (exact),

where Ky := K ®q R and ¢(a ® z) = az. By the theory of complex multiplication,
the following is well known (see Theorem 19.8, p. 134 in [6]).

Theorem 3.1. (1) Every point of E(C) with finite order is F,-rational, where F,,
denotes the mazimal abelian extension of F'.

(2) There ezists a unique homomorphism ag : F3* — K* (where Fy* denotes
the idele group of F') such that

e Ker(ag/ ) is open in F™;

e For any x € FL*, ag/r(T)Np i (z) 10 = a, where Ny i is the norm map from
F* to K[
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o For any z € F\*, agm(z)p(agm(z)) = N(il(z)), where p(v) is the complex
conjugate of a complex number v and il(z) is the fractional ideal of F' associated
to an idele element ;

o For any x € Fy* and w € K/a, ™= lr(w) = 7( 0w () Np x(x)"*w ), where
[z, F'] is the element of Gal(F.,/F") corresponding to x by the reciprocity law
of class field theory.

Since Vy(E) is viewed as free K ®q Q,-module of rank 1 by ¢, the action of
Gal(Q/F’) on Vy(E) determines the homomorphism

9. Gal(@/F’) — (K b Qg)x.

Then ¥ factors through the restriction map to Fg,. So we denote by 9 the induced
map from Gal(F,,/F") to (K ® Q¢)* and by 9 the composition of the reciprocity
map for F” and ¥. Thus we have the following commutative diagram:

Gal(Q/F') — (K ®q Qo).
restriction )

Gal(F,/F') /' 5

reciprocity
map

F*
Then Theorem 3.1 implies the following:

Corollary 3.2. For any z € F,*, ¥(z) = (ag)e () Ne i (2)1)e, where (),
denotes the £-component.

By Proposition 2.3, the action of Gal(Q/F’) on M determines the homomorphism
x : Gal(Q/F') — T*.

Let x, be the composition of x and the canonical map T* — (T ®q Q¢)*, then x,
corresponds to the action of Gal(Q/F’) on M,. In other words, taking a basis 7 of
M over T, we have °n = x(c) o for any o € Gal(Q/F").

Firstly we consider Case 1. Since K acts T-linearly on M, we can take a Q-
algebra isomorphism « : K—Z C T such that 7o «(a) = k(a) on for any a € K,
denoted by na = an for short. We take a basis v of Vj(E) over K ®q Q,. Then
w := 1 ® v becomes a free basis of My @kgqq, Ve(E) over T ®g Q¢ and it holds that

‘w = n®v=(xe(o) on) ® (B(0)v) = (xe(o) om0 (L ®1)(F(0))) ®v
= (xe(0)d(0)n) ® v = xe(0)¥(o)w
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for any o € Gal(Q/F").

Next we consider Case 2. v—D (€ K) acts T-linearly on M, so there exists some
t € T such that 7/ o t(v/=D) = t o7 for any i’ € M. We will show that ¢t € Z ( one
should note that in Case 2, T has two Q-subalgebras isomorphic to K, so it is not
trivial that ¢ € Z). For any ¢ € Endg(Jy) and n' € M, we have

(pot)or = po(ton’) = po(n'ou(v/=D)) = (pon')os(v—D) = to(por) = (top)or,

therefore top = pot in End%(Jf), hence t € Z. This concludes that similarly

with Case 1, there exists a Q-algebra isomorphism k : K—Z C T with the same
property. Let 7y : K < H be the map induced by the inclusion K C H and
v, : K — H be the other homomorphism. We define an isomorphism of Q-algebras
e: T—H®H by

2 (€ 2) — (m(x7'(2)), m(x7(2))), 6(a) (€ 8(H)) — (a, a).

For k =1, 2, we set

X : Gal(@/F") — (T9eQy)* = (H®Q:)*®(H@qQ)* 222 (HeQ:)*.

k-th component

These arguments imply the following:

Proposition 3.3. Let the notations be as above. We regard K ®q Q; € T ®q Q¢
by injection k ® 1. _
(1) In Case 1, it holds that for any o € Gal(Q/F"),

“w = xe(0)¥ (o) w.

(2) In Case 2, identifying T ®q Q. with (H ®q Q)®? by e ® 1, it holds that for any
o € Gal(Q/F"),

“w=(xP(E)n(9)), x(@)r(¥(0)))w,

where we denote 1, ® 1 : K ®q Qe = H ®q Q¢ by v (k =1, 2) for simplicity.

4 Onrelation between Eichler-Shimura theory and
complex multiplication theory about J;

In this section we will describe a relation between A in f = f, and the homomor-
phism corresponding to s in higher dimensional case. The content of this section
is essentially stated in the proof of Proposition 1.6 in [5] without detailed proof. We
present the results in a slightly different form to be convenient to our purpose.
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Firstly we consider Case 1. Then L := (K, H) (C C) is a CM-field with [L :
Q] = 2n. We define an isomorphism of Q-algebras ¢’ : LT = End%(J;) by

a (€ K)+— k(a) (€ Z), =z (€ H)— 8(z).

Then (Jf, ) is an abelian variety with complex multiplication defined over K in
the sense of Shimura (see §19.7 in [6]). Since 6(H) C Endg(Jy), the characteristic
polynomial of any element of H acting on H°(Jy, 2).) = H%(J;, £2},) ®¢ C has
Q-rational coefficients. Therefore, by Lemma 1 in [7] (p. 38), the representation of
H on H(Js, £2).) is equivalent to the regular representation of H over Q. It is also
proved that Z acts on H°(Jy, {2.) by scalar multiple. Let (L, {w@y, ..., wn}) be
the CM-type of (J, ¢'), then we have

{wlli{’ ey wﬂ,”{}:{WIW:HL‘)C}, Wilxzidk (Z=1, ceey n)

by changing the identification of K as subfield of C if necessary. Hence the reflex
of (L, {wy, ..., wn})is (K, {idk}). Let ¢ : K —> LY be the canonical map
induced from the inclusion K C L. Similarly with case of E/F’, the action of
Gal(Q/K) on V,(J;) determines the homomorphism

6 : Gal(Q/K) — (L ®q Qo)™

and we define § : K} — (L ®¢Q¢)* by the same manner as defining J. The theory
of complex multiplication also implies the following:

Corollary 4.1. For any z € K, g(a:) = (as,,x(2)g () ™")e, where a,,/x : KX —
L* is the homomorphism corresponding to ag,r in higher dimensional case.

Let {p1, ..., Ps} be the set of all bad primes of J;/K. For every p; (1 < k < s),
we take the least positive integer t; such that

g€ KX CKY, z—1€pft=0,,x(z)=1

We set n := pit---ple, Gk(n) == {z € K |20 =1, 25, =1 (1 < k < )},
Uk = {z € K|z, € Ok, for any finite prime p}, and Uk(n) := Gk(n) N Uk.
We consider the canonical isomorphism Gy (n)/Ug(n)—Ix(n) by which the class
represented by z € G(n) is sent to il(z) € Ix(n). Since Ux(n) C Ker(ay,/x), we
obtain the homomorphism
) &T]:;; : IK(n) —s L*

induced from a,,,x. By the two properties of a;,,x: (i) z € K% =C* C K =
a,,x(x) = 1; (ii) T € K* C K = a,,/x(z) = ¢'(z) = =, it holds that

a€ K*, a=1mod*n= a,,x((a)) =a.



It is clear that a,,/x : Ix(n) — L* C C* is primitive.
Proposition 4.2. In Case 1, we have A = @, x and m =n.

Next we investigate Case 2. Since J; is defined over Q, pjx (€ Gal(K/Q)) acts
on T = End%(Js). Identifying T with H @ H by ¢, this action corresponds to the
automorphism of H @ H defined by (z, y) — (y, z). Let &, & be the elements of
T which correspond to (1, 0), (0, 1) respectively. We take a positive integer r such
that r&;, € Endg(Js) (k =1, 2) and set &}, := ré;. Then C := Im(¢]) is an abelian
subvariety of J; defined over K. Since £} = &, we have °C = Im(£;). So we can
define an isogeny ¢ : Jf — C x ?C defined over K by z +— (&i(z), &(z)) and
this implies J; ~x C x *C.

Lemma 4.3. We have J; ~g Rk/o(C) ~q Rk/o(°C), where Rg/q(C) denotes the
Weil restriction from K to Q of C.

To understand the action of Gal(Q/Q) on V,(J;), it is sufficient to do so for that
of Gal(Q/K) on V,(C) by this lemma. Putting R := 6~'(Endg(J;) ), we define a
ring homomorphism ¢” : R — Endg(C) by

a— (C3>z+~ (0(a))(z) €C)

and denote :"®1 : H = R®zQ — End%(C) by the same notation .”. In Case 2, K C
H, so H is a CM-field. Then (C, (") is an abelian variety with complex multiplication
defined over K. Let H, be the maximal real subfield of H and (H, {71, ..., Tn,})

(n, = g) be the CM-type of (C, ). Since Hy C End%(C), the characteristic

polynomial of any element of Hy acting on H°(C, 2).) has K-rational coefficients.
Since Hy is totally real, its coefficients also lie in R. So it has Q-rational coefficients.
It is also proved that K C H acts on H%(C, (2}.) by scalar mutiple because +"(K)
coincides with the center of End%(C) >~ M,,(K). Therefore we have

{TIIH()) ey Tﬂllﬂo} = {T|T : Ho — R}, Ti[K = ZdK (7; == 1, ceey nl)
by changing the identification of K as subfield of C if necessary. Hence the reflex
of (H, {m, ..., Tn,}) is (K, {idk}). Let g" : Ki — Hj be the canonical map
induced from y; : K < H. Similary with Case 1, we have
& : Gal(Q/K) — (H®oQp)*, & : KX — (H®qQy),
and the following:

Corollary 4.4. For any z € K, &(z) = (ac/x(@)g" (@)™ e

19
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Let n’ be the one corresponding to n in case of C/K. Then , as Case 1, we can
define
Qo Ig(n') — H*.

Proposition 4.5. In Case 2, we have A = a¢g/x and m = ',

5 Main results

Let Bg/r : Fi* —> C* be the Grossen-character of E/F'. (By definition,
Ber () = (g (2)Ne/x(2) ™ )oo- )

Theorem 5.1. Let E be an elliptic curve with complez multiplication defined over
an algebraic number field F (C C) with Endg(E) = K (C C). Put F' := (F, K)
(C C). Then the following three conditions are equivalent:

(1) E is modular over F. _
(2) There ezists a Grissen-character vy : K — C* such that v o Np/jx = B /e
(3) All the points of E of finite order are rational over (F', Ka) = (F, Ka).

Proof. The equivalence of (2) and (3) is a special case of Theorem 4. p.511 in [4].

We will prove that (1) implies (2). By assumption, there exists a normalized
newform f of weight two (obtained by some A : Ix(m) — C* as f = f,) such that
Homp(E, Js) # {0}. From f we define H as above. Firstly we consider Case 1. We
define x; : F3* — (T ®q Q)™ from x, by the same manner as defining 3 from ¥ in
Section 3. By the commutative diagram

7 % © norm X
F} _zorm, K}

reciprocity reciprocity
law law

Gal(F,,/F') —— Gal(Ku/K),

restriction

Proposition 2.4, Corollary 3.2, Proposition 3.3, and Corollary 4.1, we have that

Xe(z) = am/p(2) " as, x( Neyx(@)) for any z € Fy-.
(We identify L with T by ¢'.) In Case 1, T is a field, so we have
Homp(E, J5) #{0} <= x =1 Xe =1 <> a;,/x © Np/x = ag/p.
We note that Proposition 4.2 is rephrased to that the map |

G (m)—2 I (m)—2C*
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can be continuously extended to K by the manner: any z € K* (C K) is mapped
to 1 and this extended map, denoted by A, coincides with 3;,/x. Then it holds that

Qg x © Npjx = Qg < A0 Npijx = :BE/F',

so we can take X as v in (2).
Next we consider Case 2. By the argument in the proof of Proposition 4.5, the
action of Gal(Q/F") on Vy(Jy) corresponds to the homomorphism

Gal(@/Q) —2- GLy(H ®¢ Qr)
U U

Gal(Q/F') —— (H ®qQe)* & (H ®q Qe)*
W W
o — (8'(o), 8'(pop)).

By Proposition 2.4 and Proposition 3.3, we have that one of the following two state-
ments holds:

(8) X3(0) = m(9(0))28(0), X7 (0) = 72(B(0)) '8 (pop) for any o € Gal(Q/F');
(b) x¢"(0) = 1(9(0)) 8 (pop),  x¢"(0) = m2(¥(0)) 7 (0) for any o € Gal(Q/F).

We will prove that (b) is impossible. For this we assume that (b) holds. For k =1, 2,

we define xﬁ.k) similary with X;. If 0z, = [z, F'] ([z, F'] denotes the image of z € F*
by the reciprocity law of F”), then we have pop«,, = [p( Ne/x(z)), K] by the class
field theory. Therefore, for any z € F,*, we have

(@) = n@@))F(p( N ()
= m(ap (x) )_171( (Npyx(x) )l)acm( p( NF'/K(-'L') ) )1 ((p( Neyx (z)) )t)_l-

Since 1 o p = 72, this is rephrased to that

—

N((Neyxe(@))e) _ _ xi”(@osye(z)
Yo( (Neyx(2) )e)  osx(p( Neyx(2)))
We can take a transcendental element 7 of Q, over Q and put Zg := 1®1+v—D®7 €

(K ®¢ Qr)* C (F' ® Q¢)* C F,*. Now we suppose that £ splits completely in H.
Since K C H, we can view K C Q,. By the isomorphism

(I Je)e( I rel): HeeQ =@ -eQe@e -oQ)
WDy V= e 3

VER

2

the element : J
Y1(( Net/x(To) )e) _ Y1(xg)

V2((Neyx(@o))e) — 72(2§)
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is mapped to

V—=D\d V=D —m/—=D\¢ 1 —mv/—=D\¢
() () (2 (evs) )

where d = [F' : K]. Putting

— ;Sls(xo)aa/w (o)
. ac/x(p( Neyx(20)))

and taking j : H < Q, with j(+/—D) = v—D, we have that

(1 +7nv—-D

1—-mv/-D

We note that j(£) is algebraic over Q. So we have that
i

{3 -1 =

T = ' e Q.

v=D(1+ {/i(£))

This is a contradiction. Hence we have proved that (a) holds.
We set

€ H* C (H ®q Q¢)*

) =i©) n @

" : H — End%(°C), a+— 8(p(a))yc-

Then (°C, ") is an abelian variety with complex multiplication defined over K which
has the same CM-type with (C, ). As case of (C, ("), we have asg/x : K5 — H*.
Since Qeg/xk = PO Qgyx o p, it hOldS that
(a) = Xgl)(m) = agr (%) o/ Np/x(2) ), ng) () = p(ag/r(x) sk Npyx () ))
for any z € F*.

Therefore we have

Homp(E, J5) # {0} < xM' =1 or =1 xgl) =1 or xf’ =1
<~ ac/KONF'/K =OZE/F' or aPc/KONF//K :aE/F'.

Set X := poXop: Ix(p(m)) —> C*. As Case 1, we can construct a Grdssen-
character A (resp. X) of K} from A (resp. X’). Then we have

aC/KONF'/K = Qg/p' O aﬂC/KONF'/K = Qgpr <~ )\ONF'/K = ,HE/F' or XONF'/K = ﬂE,’F"

Hence we can take X or X as v in (2).

Finally we will prove that (2) implies (1). By Lemma 2.2, it is sufficient to show
that there exists a normalized newform f = f) of weight two constructed from some
A : Ix(m) — C* such that Homp (E, J;) # {0}.




Claim. Let v be as in (2) and ny be the conductor of v. As defining a; ,x from
o,k n Section 4, we can also define ¥ : Ix(ng) — C* from . Then it holds that
for any z € K* s.t. z =1 mod*ny,

((z)) ==

By Claim, from ¥ we can construct a normalized newform f = f5 of weight two.
Then the arguments in the proof of the statement: (1) = (2) imply that

, _ , an/KONF'/X:aE/F' (ingH)
v 0o Npyx = Bgjp { Qo x © Netjx = Qe (1f K C H)
== HomF,(E, Jf) # {0}

So we have proved that (2) = (1). O

Theorem 5.2. Let E/F, K, F', and Bg be as in Theorem 5.1. Assume that the
condition (2) in Theorem 5.1 holds. Let m be the conductor of v and set

f@ =)= 3 F@)"@=3 and™ (=),

a€lg (m) m>1
a: integral

Put H := Q(am|m > 1). Then we have the followings: ‘

(1) For any normalized newform g of weight two, Homg(E, J,) # {0} if and only if
there ezxists some vy as above such that g = f5.

(2) Case 1: K ¢ H. Then we have

JfNFEX--'XE (n=d1me—-=[HQ])

n

Case 2: K C H.
“(a) If y=poyop on P:=K*Np,(F,*), then we have

JfNFEX---XE.

n

(b) If Y # poyop on P, then we have that F = F' and there exists an abelian variety
A of dimension g defined over K such that

Jf ~pEXx---xXE XA/F, Homp(E, A/F) = {0}

NS
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