On the field of definition for modularity of CM elliptic curves

山形大学・理学部・数理科学科 村林 直樹 (Naoki Murabayashi)

Department of Mathematical Sciences,
Faculty of Science,
Yamagata University

1 Introduction

Let E be a CM elliptic curve defined over an algebraic number field $F \subseteq \mathbb{C}$ whose \mathbb{Q} -algebra of endomorphisms defined over $\overline{\mathbb{Q}}$, denoted by $\operatorname{End}_{\overline{\mathbb{Q}}}^0(E)$, is isomorphic to an imaginary quadratic field $K \subseteq \mathbb{C}$. We take an integral ideal \mathfrak{m} in K and denote by $I_K(\mathfrak{m})$ the group of fractional ideals in K prime to \mathfrak{m} . We consider a homomorphism $\lambda: I_K(\mathfrak{m}) \to \mathbb{C}^\times$ such that (i) $\lambda((\alpha)) = \alpha$ for any $\alpha \in K^\times$ s.t. $\alpha \equiv 1 \mod^\times \mathfrak{m}$; (ii) λ is primitive, i.e. there is no proper divisor \mathfrak{n} of \mathfrak{m} such that λ has a extension λ to $I_K(\mathfrak{n})$ with the property: $\lambda((\alpha)) = \alpha$ for any $\alpha \in K^\times$ s.t. $\alpha \equiv 1 \mod^\times \mathfrak{n}$. Then we put

$$f_{\lambda}(z):=\sum_{\substack{\mathfrak{a}\in I_{K}(\mathfrak{m})\ a: ext{ integral}}}\lambda(\mathfrak{a})e^{2\pi iN(\mathfrak{a})z} \quad (z\in\mathfrak{H}, ext{ the complex upper plane}),$$

where $N(\mathfrak{a})$ denotes the absolute norm of an ideal \mathfrak{a} . Let -D be the discriminant of K and put $N:=DN(\mathfrak{m})$. We define a Dirichlet character $\varepsilon:(\mathbb{Z}/N\mathbb{Z})^{\times}\to\mathbb{C}^{\times}$ by

$$\overline{a}\longmapsto\left(rac{-D}{a}
ight)rac{\lambda(\,(a)\,)}{a}\quad \ (a\in\mathbb{Z},\ \ (a,\ N)=1),$$

where if $a = p_1^{e_1} \cdots p_r^{e_r}$ is the factorization of a into prime factors,

$$\left(\frac{-D}{a}\right) = \prod_{i=1}^{r} \left(\frac{-D}{p_i}\right)^{e_i}, \quad \left(\frac{-D}{p_i}\right) = \begin{cases} 1 & \text{if } p_i \text{ splits in } K/\mathbb{Q} \\ -1 & \text{if } p_i \text{ is inert in } K/\mathbb{Q}. \end{cases}$$

By Hecke-Shimura, we have the following:

Fact 1. f_{λ} is a normalized newform of weight two on $\Gamma_1(N)$ and ε is the Nebentypus of f_{λ} .

By the Eichler-Shimura theory, for any normalized newform f of weight two on $\Gamma_1(M)$, we can associate the abelian variety J_f defined over \mathbb{Q} which is a \mathbb{Q} -simple factor of $J_1(M)$, the jacobian variety of the modular curve $X_1(M)$. Shimura proved the following (see Proposition 1.6 and Remark 1.7 in [5]):

Fact 2. Hom_{$\overline{\mathbb{Q}}$} $(E, J_f) \neq \{0\}$ if and only if there exists an above λ such that $f = f_{\lambda}$, where Hom_{$\overline{\mathbb{Q}}$} (E, J_f) denotes the additive group of homomorphisms from E to J_f defined over $\overline{\mathbb{Q}}$.

For any imaginary quadratic field K, if we take an integral ideal \mathfrak{m}_0 in K such that

$$\zeta \in K$$
, ζ is a root of unity, $\zeta \equiv 1 \mod^{\times} \mathfrak{m}_0 \Longrightarrow \zeta = 1$

holds (we can always do so), there exists a homomorphism $\lambda: I_K(\mathfrak{m}_0) \to \mathbb{C}^\times$ satisfying the condition (i). Replacing \mathfrak{m}_0 by the minimal divisor \mathfrak{m} of \mathfrak{m}_0 such that λ has an extension $\widetilde{\lambda}$ to $I_K(\mathfrak{m})$ and $\widetilde{\lambda}$ has also the proprety (i), we may assume that λ is primitive. Therefore we have

Fact 3. For any CM elliptic curve E defined over an algebraic number field F, there exists a newform f such that a non-zero homomorphism $\varphi: E \to J_f$ defined over $\overline{\mathbb{Q}}$ exists, that is, E is modular over $\overline{\mathbb{Q}}$.

In this paper we will consider the following questions.

Question 1. Let E/F be as above. Under what condition does there exist a newform f such that a non-zero homomorphism $\varphi: E \to J_f$ defined over F exists, that is, when is E modular over F?

Question 2. Assume that E/F is modular over F. Therefore there exists a newform f with $\text{Hom}_F(E, J_f) \neq \{0\}$. Then, how large is $\text{Hom}_F(E, J_f)$? In other words, decide the multiplicity of E as F-simple factor of J_f .

2 Preliminaries

Let E/F, K, $\lambda:I_K(\mathfrak{m})\to\mathbb{C}^\times$, and $f=f_\lambda$ be as in the introduction. Let $f=\sum_{m\geq 1}a_mq^m$ $(q=e^{2\pi iz})$ be the Fourier expansion at $i\infty$ and put $H:=\mathbb{Q}(a_m|m\geq 1)$ $(\subseteq\mathbb{C})$. Let n be the dimension of J_f , then H is an algebraic number field with $[H:\mathbb{Q}]=n$. A \mathbb{Q} -algebra isomorphism $\theta:H\overset{\sim}{\longrightarrow}\mathrm{End}_\mathbb{Q}^0(J_f)=\mathrm{End}_\mathbb{Q}(J_f)\otimes_{\mathbb{Z}}\mathbb{Q}$ is defined by

 $a_m \longmapsto$ the endomorphism of J_f induced by the m-th Hecke operator w.r.t. $\Gamma_1(N)$ $(m=1, 2, \ldots)$. In [3] Shimura proved that J_f is isogenous to $E^n = E \times \cdots \times E$ (n terms) over $\overline{\mathbb{Q}}$, expressed by $J_f \sim_{\overline{\mathbb{Q}}} E^n$. So we have $\operatorname{End}_{\overline{\mathbb{Q}}}^0(J_f) \cong M_n(K)$, the algebra

of $n \times n$ -matrices with entries in K. Let Z be the center of $\operatorname{End}_{\overline{\mathbb{Q}}}^0(J_f)$. Then we have $Z \cong K$. We denote by T the sub \mathbb{Q} -algebra of $\operatorname{End}_{\overline{\mathbb{Q}}}^0(J_f)$ generated by Z and $\theta(H)$. Shimura uesd the following facts in the proof of Proposition 1.6 in [5] and we state them as a lemma without proof.

Lemma 2.1. (1) $Z \cap \theta(H) = \mathbb{Q}$. Especially this implies that $\dim_H T = 2$. (2) $\operatorname{End}_K^0(J_f) = T$.

Therefore, as for the structure of T, we have the possibility of the following two cases:

Case 1: T is isomorphic to an algebraic number field with degree 2n (over \mathbb{Q}) $\iff K \not\subseteq H$;

Case $2:T\cong H\oplus H \longleftrightarrow K\subseteq H$.

Let $F' = \langle F, K \rangle$ be the subfield of $\mathbb C$ generated by F and K. It is well known that $\operatorname{End}_{\overline{\mathbb Q}}^0(E) = \operatorname{End}_{F'}^0(E) \ (\cong K)$. We put $\mathcal M := \operatorname{Hom}_{\overline{\mathbb Q}}(E, J_f) \otimes_{\mathbb Z} \mathbb Q$. Then the absolute Galois group $\operatorname{Gal}(\overline{\mathbb Q}/F)$ over F acts on $\mathcal M$ by the action on coefficients of homomorphisms. If we know the structure of $\mathcal M$ as Galois module, we will be able to answer Questions 1 and 2. Therefore our purpose in this paper is to determine the structure of $\mathcal M$ as $\operatorname{Gal}(\overline{\mathbb Q}/F)$ -module. On the other hand we have the following.

Lemma 2.2. $\operatorname{Hom}_{F'}(E, J_f) \neq \{0\} \iff \operatorname{Hom}_{F}(E, J_f) \neq \{0\}.$

By this lemma, for answer to Question 1, it is enough to study the structure of \mathcal{M} as $\operatorname{Gal}(\overline{\mathbb{Q}}/F')$ -module. But, for answer to Question 2, this does not seem to be enough. Nevertheless, as we will see later, under assumption $\operatorname{Hom}_{F'}(E, J_f) \neq \{0\}$ the structure of \mathcal{M} as $\operatorname{Gal}(\overline{\mathbb{Q}}/F)$ -module can be easily recovered from that of \mathcal{M} as $\operatorname{Gal}(\overline{\mathbb{Q}}/F')$ -module. Therefore, in the following we will study the $\operatorname{Gal}(\overline{\mathbb{Q}}/F')$ -module structure.

By composition of homomorphisms, \mathcal{M} has the structure of left T- and right K-module:

$$T = \operatorname{End}_{K}^{0}(J_{f}) \curvearrowright \mathcal{M} \curvearrowright \operatorname{End}_{F'}^{0}(E) \cong K.$$

As $J_f \sim_{\overline{\mathbb{Q}}} E^n$, we have

$$\mathcal{M} \cong \operatorname{Hom}_{\overline{\mathbb{Q}}}(E, E^n) \otimes_{\mathbb{Z}} \mathbb{Q} \cong K^{\oplus n}$$

as \mathbb{Q} -vector space. In particular we have $\dim_{\mathbb{Q}} \mathcal{M} = n \times \dim_{\mathbb{Q}} K = 2n$. On the other hand $H \xrightarrow{\sim} \theta(H) \subseteq T$, we can view \mathcal{M} as H-vector space. Since $[H : \mathbb{Q}] \times \dim_H \mathcal{M} = \dim_{\mathbb{Q}} \mathcal{M} = 2n$, we have $\dim_H \mathcal{M} = 2$.

Proposition 2.3. \mathcal{M} is a free left T-module of rank 1.

Let ℓ be a prime number and put

$$V_{\ell}(E) := T_{\ell}(E) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}, \quad V_{\ell}(J_f) := T_{\ell}(J_f) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}, \quad \mathcal{M}_{\ell} := \mathcal{M} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell},$$

where $T_{\ell}(E)$ and $T_{\ell}(J_f)$ are Tate modules. We can consider the following actions:

- $\operatorname{Gal}(\overline{\mathbb{Q}}/F) \curvearrowright \mathcal{M}_{\ell} \otimes_{K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}} V_{\ell}(E)$ by diagonal; $H \hookrightarrow T \curvearrowright \mathcal{M}_{\ell} \otimes_{K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}} V_{\ell}(E)$ by the action on \mathcal{M} .

We define a homomorphism $\nu: \mathcal{M}_{\ell} \otimes_{K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}} V_{\ell}(E) \longrightarrow V_{\ell}(J_f)$ by

$$(\varphi \otimes a) \otimes x \longmapsto a\varphi(x).$$

 ν is an isomorphism of (left) $\underline{H} \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}[\operatorname{Gal}(\overline{\mathbb{Q}}/F)]$ -modules Proposition 2.4. and is also an isomorphism of (left) $T \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}[\operatorname{Gal}(\overline{\mathbb{Q}}/F')]$ -modules, where $H \otimes_{\mathbb{Q}}$ $\mathbb{Q}_{\ell}[\operatorname{Gal}(\overline{\mathbb{Q}}/F)] \ (resp. \ T \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}[\operatorname{Gal}(\overline{\mathbb{Q}}/F')]) \ denotes \ the \ group \ algebra \ of \ \operatorname{Gal}(\overline{\mathbb{Q}}/F)$ $(resp. \ \mathrm{Gal}(\overline{\mathbb{Q}}/F')) \ over \ H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell} \ (resp. \ T \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}).$

The action of $\operatorname{Gal}(\overline{\mathbb{Q}}/F')$ on $\mathcal{M}_{\ell} \otimes_{K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}} V_{\ell}(E)$ 3

We review the known results about the structure of $V_{\ell}(E)$ as $\operatorname{Gal}(\overline{\mathbb{Q}}/F')$ -module. By changing $\iota: K \xrightarrow{\sim} \operatorname{End}_{F'}^0(E)$ if necessary, we may assume that the CM-type of (E, ι) is $(K; \{id\})$. Then there exists a lattice $\mathfrak a$ of K such that the following commutative diagram holds:

where $K_{\mathbb{R}} := K \otimes_{\mathbb{Q}} \mathbb{R}$ and $q(a \otimes x) = ax$. By the theory of complex multiplication, the following is well known (see Theorem 19.8, p. 134 in [6]).

Theorem 3.1. (1) Every point of $E(\mathbb{C})$ with finite order is F'_{ab} -rational, where F'_{ab} denotes the maximal abelian extension of F'.

- (2) There exists a unique homomorphism $\alpha_{E/F'}: F_{\mathbb{A}}' \times \longrightarrow K^{\times}$ (where $F_{\mathbb{A}}' \times$ denotes the idele group of F') such that
 - $\operatorname{Ker}(\alpha_{E/F'})$ is open in $F'_{\mathbb{A}}$
 - For any $x \in F'_{\mathbf{A}}^{\times}$, $\alpha_{E/F'}(x)N_{F'/K}(x)^{-1}\mathfrak{a} = \mathfrak{a}$, where $N_{F'/K}$ is the norm map from $F_{\mathtt{A}}^{\prime} \times \text{ to } K_{\mathtt{A}}^{\times};$

- For any $x \in F_{\mathbb{A}}^{\prime \times}$, $\alpha_{E/F'}(x)\rho(\alpha_{E/F'}(x)) = N(il(x))$, where $\rho(v)$ is the complex conjugate of a complex number v and il(x) is the fractional ideal of F' associated to an idele element x;
- For any $x \in F_{\mathbb{A}}'^{\times}$ and $w \in K/\mathfrak{a}$, $[x, F']r(w) = r(\alpha_{E/F'}(x)N_{F'/K}(x)^{-1}w)$, where [x, F'] is the element of $Gal(F'_{ab}/F')$ corresponding to x by the reciprocity law of class field theory.

Since $V_{\ell}(E)$ is viewed as free $K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ -module of rank 1 by ι , the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/F')$ on $V_{\ell}(E)$ determines the homomorphism

$$\vartheta: \operatorname{Gal}(\overline{\mathbb{Q}}/F') \longrightarrow (K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times}.$$

Then ϑ factors through the restriction map to F'_{ab} . So we denote by $\overline{\vartheta}$ the induced map from $\operatorname{Gal}(F'_{ab}/F')$ to $(K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times}$ and by $\widetilde{\vartheta}$ the composition of the reciprocity map for F' and $\overline{\vartheta}$. Thus we have the following commutative diagram:

Then Theorem 3.1 implies the following:

Corollary 3.2. For any $x \in F'_{\mathbb{A}}^{\times}$, $\widetilde{\vartheta}(x) = (\alpha_{E/F'}(x)N_{F'/K}(x)^{-1})_{\ell}$, where ()_{ℓ} denotes the ℓ -component.

By Proposition 2.3, the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/F')$ on \mathcal{M} determines the homomorphism

$$\chi: \operatorname{Gal}(\overline{\mathbb{Q}}/F') \longrightarrow T^{\times}.$$

Let χ_{ℓ} be the composition of χ and the canonical map $T^{\times} \longrightarrow (T \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times}$, then χ_{ℓ} corresponds to the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/F')$ on \mathcal{M}_{ℓ} . In other words, taking a basis η of \mathcal{M} over T, we have ${}^{\sigma}\eta = \chi(\sigma) \circ \eta$ for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/F')$.

Firstly we consider Case 1. Since K acts T-linearly on \mathcal{M} , we can take a \mathbb{Q} -algebra isomorphism $\kappa: K \xrightarrow{\sim} Z \subseteq T$ such that $\eta \circ \iota(a) = \kappa(a) \circ \eta$ for any $a \in K$, denoted by $\eta a = a\eta$ for short. We take a basis v of $V_{\ell}(E)$ over $K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$. Then $\omega := \eta \otimes v$ becomes a free basis of $\mathcal{M}_{\ell} \otimes_{K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}} V_{\ell}(E)$ over $T \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ and it holds that

$$\begin{array}{lll}
\sigma_{\omega} & = & {}^{\sigma}\eta \otimes {}^{\sigma}v = (\chi_{\ell}(\sigma) \circ \eta) \otimes (\vartheta(\sigma)v) = (\chi_{\ell}(\sigma) \circ \eta \circ (\iota \otimes 1)(\vartheta(\sigma))) \otimes v \\
& = & (\chi_{\ell}(\sigma)\vartheta(\sigma)\eta) \otimes v = \chi_{\ell}(\sigma)\vartheta(\sigma)\omega
\end{array}$$

for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/F')$.

Next we consider Case 2. $\sqrt{-D}$ ($\in K$) acts T-linearly on \mathcal{M} , so there exists some $t \in T$ such that $\eta' \circ \iota(\sqrt{-D}) = t \circ \eta'$ for any $\eta' \in \mathcal{M}$. We will show that $t \in Z$ (one should note that in Case 2, T has two \mathbb{Q} -subalgebras isomorphic to K, so it is not trivial that $t \in Z$). For any $\varphi \in \operatorname{End}_{\overline{\mathbb{Q}}}^0(J_f)$ and $\eta' \in \mathcal{M}$, we have

$$(\varphi \circ t) \circ \eta' = \varphi \circ (t \circ \eta') = \varphi \circ (\eta' \circ \iota(\sqrt{-D})) = (\varphi \circ \eta') \circ \iota(\sqrt{-D}) = t \circ (\varphi \circ \eta') = (t \circ \varphi) \circ \eta',$$

therefore $t \circ \varphi = \varphi \circ t$ in $\operatorname{End}_{\overline{\mathbb{Q}}}^0(J_f)$, hence $t \in Z$. This concludes that similarly with Case 1, there exists a \mathbb{Q} -algebra isomorphism $\kappa: K \xrightarrow{\sim} Z \subseteq T$ with the same property. Let $\gamma_1: K \hookrightarrow H$ be the map induced by the inclusion $K \subseteq H$ and $\gamma_2: K \hookrightarrow H$ be the other homomorphism. We define an isomorphism of \mathbb{Q} -algebras $\varepsilon: T \xrightarrow{\sim} H \oplus H$ by

$$z \in Z \longrightarrow (\gamma_1(\kappa^{-1}(z)), \gamma_2(\kappa^{-1}(z))), \quad \theta(a) \in \theta(H) \longrightarrow (a, a).$$

For k = 1, 2, we set

$$\chi_{\boldsymbol{\ell}}^{(k)}: \operatorname{Gal}(\overline{\mathbb{Q}}/F') \xrightarrow{\chi_{\boldsymbol{\ell}}} (T \otimes_{\mathbb{Q}} \mathbb{Q}_{\boldsymbol{\ell}})^{\times} \xrightarrow{\sim \\ \varepsilon \otimes 1} (H \otimes_{\mathbb{Q}} \mathbb{Q}_{\boldsymbol{\ell}})^{\times} \oplus (H \otimes_{\mathbb{Q}} \mathbb{Q}_{\boldsymbol{\ell}})^{\times} \xrightarrow{\operatorname{projection to}} (H \otimes_{\mathbb{Q}} \mathbb{Q}_{\boldsymbol{\ell}})^{\times}.$$

These arguments imply the following:

Proposition 3.3. Let the notations be as above. We regard $K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell} \subseteq T \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ by injection $\kappa \otimes 1$.

(1) In Case 1, it holds that for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/F')$,

$$^{\sigma}\omega = \chi_{\ell}(\sigma)\vartheta(\sigma)\omega.$$

(2) In Case 2, identifying $T \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ with $(H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\oplus 2}$ by $\varepsilon \otimes 1$, it holds that for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/F')$,

$${}^{\sigma}\omega = (\,\chi_{\ell}^{(1)}(\sigma)\gamma_1(\,artheta(\sigma)\,),\,\,\chi_{\ell}^{(2)}(\sigma)\gamma_2(\,artheta(\sigma)\,)\,)\,\omega,$$

where we denote $\gamma_k \otimes 1 : K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell} \hookrightarrow H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ by γ_k (k = 1, 2) for simplicity.

4 On relation between Eichler-Shimura theory and complex multiplication theory about J_f

In this section we will describe a relation between λ in $f = f_{\lambda}$ and the homomorphism corresponding to $\alpha_{E/F}$ in higher dimensional case. The content of this section is essentially stated in the proof of Proposition 1.6 in [5] without detailed proof. We present the results in a slightly different form to be convenient to our purpose.

Firstly we consider Case 1. Then $L:=\langle K,H\rangle\ (\subseteq\mathbb{C})$ is a CM-field with $[L:\mathbb{Q}]=2n$. We define an isomorphism of \mathbb{Q} -algebras $\iota':L\overset{\sim}{\longrightarrow}T=\mathrm{End}_K^0(J_f)$ by

$$a \in K \longmapsto \kappa(a) \in Z$$
, $x \in H \longmapsto \theta(x)$.

Then $(J_f, \ \iota')$ is an abelian variety with complex multiplication defined over K in the sense of Shimura (see §19.7 in [6]). Since $\theta(H) \subseteq \operatorname{End}_{\mathbb{Q}}^0(J_f)$, the characteristic polynomial of any element of H acting on $H^0(J_f, \ \Omega^1_{/c}) = H^0(J_f, \ \Omega^1_{/Q}) \otimes_{\mathbb{Q}} \mathbb{C}$ has \mathbb{Q} -rational coefficients. Therefore, by Lemma 1 in [7] (p. 38), the representation of H on $H^0(J_f, \ \Omega^1_{/c})$ is equivalent to the regular representation of H over \mathbb{Q} . It is also proved that Z acts on $H^0(J_f, \ \Omega^1_{/c})$ by scalar multiple. Let $(L, \{\varpi_1, \ldots, \varpi_n\})$ be the CM-type of $(J_f, \ \iota')$, then we have

$$\{\varpi_{1|H}, \ldots, \varpi_{n|H}\} = \{\varpi \mid \varpi : H \hookrightarrow \mathbb{C}\}, \quad \varpi_{i|K} = id_K \ (i = 1, \ldots, n)$$

by changing the identification of K as subfield of \mathbb{C} if necessary. Hence the reflex of $(L, \{\varpi_1, \ldots, \varpi_n\})$ is $(K, \{id_K\})$. Let $g': K_{\mathbb{A}}^{\times} \longrightarrow L_{\mathbb{A}}^{\times}$ be the canonical map induced from the inclusion $K \subseteq L$. Similarly with case of E/F', the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/K)$ on $V_{\ell}(J_f)$ determines the homomorphism

$$\delta: \operatorname{Gal}(\overline{\mathbb{Q}}/K) \longrightarrow (L \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times}$$

and we define $\widetilde{\delta}: K_{\mathbb{A}}^{\times} \longrightarrow (L \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times}$ by the same manner as defining $\widetilde{\vartheta}$. The theory of complex multiplication also implies the following:

Corollary 4.1. For any $x \in K_{\mathbb{A}}^{\times}$, $\widetilde{\delta}(x) = (\alpha_{J_f/K}(x)g'(x)^{-1})_{\ell}$, where $\alpha_{J_f/K}: K_{\mathbb{A}}^{\times} \longrightarrow L^{\times}$ is the homomorphism corresponding to $\alpha_{E/F}$ in higher dimensional case.

Let $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_s\}$ be the set of all bad primes of J_f/K . For every \mathfrak{p}_k $(1 \le k \le s)$, we take the least positive integer t_k such that

$$x \in K_{\mathfrak{p}_k}^\times \subseteq K_{\mathbb{A}}^\times, \quad x-1 \in \mathfrak{p}_k^{t_k} \Longrightarrow \alpha_{J_f/K}(x) = 1.$$

We set $\mathfrak{n}:=\mathfrak{p}_1^{t_1}\cdots\mathfrak{p}_s^{t_s},\ G_K(\mathfrak{n}):=\{x\in K_{\mathbb{A}}^\times\,|\,x_\infty=1,\ x_{\mathfrak{p}_k}=1\ (1\leq k\leq s)\},\ U_K:=\{x\in K_{\mathbb{A}}^\times\,|\,x_{\mathfrak{p}}\in\mathcal{O}_{K_{\mathfrak{p}}}^\times\ \text{for any finite prime }\mathfrak{p}\},\ \text{and}\ U_K(\mathfrak{n}):=G_K(\mathfrak{n})\cap U_K.$ We consider the canonical isomorphism $G_K(\mathfrak{n})/U_K(\mathfrak{n})\overset{\sim}{\longrightarrow} I_K(\mathfrak{n})$ by which the class represented by $x\in G_K(\mathfrak{n})$ is sent to $il(x)\in I_K(\mathfrak{n})$. Since $U_K(\mathfrak{n})\subseteq \mathrm{Ker}(\alpha_{J_f/K})$, we obtain the homomorphism

$$\widetilde{\alpha_{J_f/K}}:I_K(\mathfrak{n})\longrightarrow L^{\times}$$

induced from $\alpha_{J_f/K}$. By the two properties of $\alpha_{J_f/K}$: (i) $x \in K_{\infty}^{\times} = \mathbb{C}^{\times} \subseteq K_{\mathbb{A}}^{\times} \Longrightarrow \alpha_{J_f/K}(x) = 1$; (ii) $x \in K^{\times} \subseteq K_{\mathbb{A}}^{\times} \Longrightarrow \alpha_{J_f/K}(x) = g'(x) = x$, it holds that

$$\alpha \in K^{\times}, \quad \alpha \equiv 1 \mod^{\times} \mathfrak{n} \Longrightarrow \widetilde{\alpha_{J_f/K}}((\alpha)) = \alpha.$$

It is clear that $\widetilde{\alpha_{J_f/K}}:I_K(\mathfrak{n})\longrightarrow L^\times\subseteq\mathbb{C}^\times$ is primitive.

Proposition 4.2. In Case 1, we have $\lambda = \widetilde{\alpha_{J_f/K}}$ and $\mathfrak{m} = \mathfrak{n}$.

Next we investigate Case 2. Since J_f is defined over \mathbb{Q} , $\rho_{|K}$ (\in Gal(K/\mathbb{Q})) acts on $T = \operatorname{End}_K^0(J_f)$. Identifying T with $H \oplus H$ by ε , this action corresponds to the automorphism of $H \oplus H$ defined by $(x, y) \longmapsto (y, x)$. Let ξ_1, ξ_2 be the elements of T which correspond to (1, 0), (0, 1) respectively. We take a positive integer r such that $r\xi_k \in \operatorname{End}_K(J_f)$ (k = 1, 2) and set $\xi'_k := r\xi_k$. Then $C := \operatorname{Im}(\xi'_1)$ is an abelian subvariety of J_f defined over K. Since ${}^{\rho}\xi'_1 = \xi'_2$, we have ${}^{\rho}C = \operatorname{Im}(\xi'_2)$. So we can define an isogeny $\varphi : J_f \longrightarrow C \times {}^{\rho}C$ defined over K by $x \longmapsto (\xi'_1(x), \xi'_2(x))$ and this implies $J_f \sim_K C \times {}^{\rho}C$.

Lemma 4.3. We have $J_f \sim_{\mathbb{Q}} R_{K/\mathbb{Q}}(C) \sim_{\mathbb{Q}} R_{K/\mathbb{Q}}({}^{\rho}C)$, where $R_{K/\mathbb{Q}}(C)$ denotes the Weil restriction from K to \mathbb{Q} of C.

To understand the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $V_{\ell}(J_f)$, it is sufficient to do so for that of $\operatorname{Gal}(\overline{\mathbb{Q}}/K)$ on $V_{\ell}(C)$ by this lemma. Putting $R := \theta^{-1}(\operatorname{End}_{\mathbb{Q}}(J_f))$, we define a ring homomorphism $\iota'' : R \longrightarrow \operatorname{End}_K(C)$ by

$$a \longmapsto (C \ni x \mapsto (\theta(a))(x) \in C)$$

and denote $\iota''\otimes 1: H=R\otimes_{\mathbb{Z}}\mathbb{Q}\longrightarrow \operatorname{End}_K^0(C)$ by the same notation ι'' . In Case 2, $K\subseteq H$, so H is a CM-field. Then (C, ι'') is an abelian variety with complex multiplication defined over K. Let H_0 be the maximal real subfield of H and $(H, \{\tau_1, \ldots, \tau_{n_1}\})$ $(n_1:=\frac{n}{2})$ be the CM-type of (C, ι'') . Since $H_0\subseteq \operatorname{End}_K^0(C)$, the characteristic polynomial of any element of H_0 acting on $H^0(C, \Omega_{/C}^1)$ has K-rational coefficients. Since H_0 is totally real, its coefficients also lie in \mathbb{R} . So it has \mathbb{Q} -rational coefficients. It is also proved that $K\subseteq H$ acts on $H^0(C, \Omega_{/C}^1)$ by scalar mutiple because $\iota''(K)$ coincides with the center of $\operatorname{End}_{\mathbb{Q}}^0(C)\cong M_{n_1}(K)$. Therefore we have

$$\{ au_{1|H_0}, \ldots, \tau_{n_1|H_0}\} = \{ au \mid au : H_0 \hookrightarrow \mathbb{R}\}, \quad au_{i|K} = id_K \ (i = 1, \ldots, n_1)$$

by changing the identification of K as subfield of \mathbb{C} if necessary. Hence the reflex of $(H, \{\tau_1, \ldots, \tau_{n_1}\})$ is $(K, \{id_K\})$. Let $g'': K_A^{\times} \longrightarrow H_A^{\times}$ be the canonical map induced from $\gamma_1: K \hookrightarrow H$. Similarly with Case 1, we have

$$\delta': \operatorname{Gal}(\overline{\mathbb{Q}}/K) \longrightarrow (H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times}, \quad \widetilde{\delta'}: K_{\mathbb{A}}^{\times} \longrightarrow (H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times},$$

and the following:

Corollary 4.4. For any $x \in K_{\mathbf{A}}^{\times}$, $\widetilde{\delta}'(x) = (\alpha_{C/K}(x)g''(x)^{-1})_{\ell}$.

Let \mathfrak{n}' be the one corresponding to \mathfrak{n} in case of C/K. Then , as Case 1, we can define

$$\widetilde{\alpha_{C/K}}: I_K(\mathfrak{n}') \longrightarrow H^{\times}.$$

Proposition 4.5. In Case 2, we have $\lambda = \widetilde{\alpha_{C/K}}$ and $\mathfrak{m} = \mathfrak{n}'$.

5 Main results

Let $\beta_{E/F'}: F_{\mathbb{A}}' \times \longrightarrow \mathbb{C}^{\times}$ be the Grössen-character of E/F'. (By definition, $\beta_{E/F'}(x) = (\alpha_{E/F'}(x)N_{F'/K}(x)^{-1})_{\infty}$.)

Theorem 5.1. Let E be an elliptic curve with complex multiplication defined over an algebraic number field $F \subseteq \mathbb{C}$ with $\operatorname{End}_{\overline{\mathbb{Q}}}^0(E) \cong K \subseteq \mathbb{C}$. Put $F' := \langle F, K \rangle$ $\subseteq \mathbb{C}$. Then the following three conditions are equivalent:

- (1) E is modular over F.
- (2) There exists a Grössen-character $\gamma: K_{\mathbb{A}}^{\times} \longrightarrow \mathbb{C}^{\times}$ such that $\gamma \circ N_{F'/K} = \beta_{E/F'}$.
- (3) All the points of E of finite order are rational over $\langle F', K_{ab} \rangle = \langle F, K_{ab} \rangle$.

Proof. The equivalence of (2) and (3) is a special case of Theorem 4. p. 511 in [4].

We will prove that (1) implies (2). By assumption, there exists a normalized newform f of weight two (obtained by some $\lambda: I_K(\mathfrak{m}) \longrightarrow \mathbb{C}^\times$ as $f = f_\lambda$) such that $\operatorname{Hom}_{F'}(E, J_f) \neq \{0\}$. From f we define H as above. Firstly we consider Case 1. We define $\widetilde{\chi}_\ell: F_{\mathbb{A}}^{\prime \times} \longrightarrow (T \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)^{\times}$ from χ_ℓ by the same manner as defining $\widetilde{\vartheta}$ from ϑ in Section 3. By the commutative diagram

$$F_{\mathbf{A}}'^{\times} \xrightarrow{\mathrm{norm}} K_{\mathbf{A}}^{\times}$$
 $\downarrow^{\mathrm{reciprocity}}$
 $\downarrow^{\mathrm{reciprocity}}$
 $\downarrow^{\mathrm{law}}$
 $\mathrm{Gal}(F_{ab}'/F') \xrightarrow{\mathrm{restriction}} \mathrm{Gal}(K_{ab}/K),$

Proposition 2.4, Corollary 3.2, Proposition 3.3, and Corollary 4.1, we have that

$$\widetilde{\chi}_{\boldsymbol\ell}(x) = lpha_{\scriptscriptstyle E/F'}(x)^{-1} lpha_{\scriptscriptstyle J_{\boldsymbol f}/K}(\,N_{\scriptscriptstyle F'/K}(x)\,) \quad ext{ for any } x \in F_{\mathbf A}'^{\, imes}.$$

(We identify L with T by ι' .) In Case 1, T is a field, so we have

$$\operatorname{Hom}_{F'}(E, J_f) \neq \{0\} \iff \chi = 1 \iff \widetilde{\chi}_{\ell} = 1 \iff \alpha_{J_{\ell}/K} \circ N_{F'/K} = \alpha_{E/F'}.$$

We note that Proposition 4.2 is rephrased to that the map

$$G_K(\mathfrak{m}) \xrightarrow{il} I_K(\mathfrak{m}) \xrightarrow{\lambda} \mathbb{C}^{\times}$$

can be continuously extended to $K_{\mathbb{A}}^{\times}$ by the manner: any $x \in K^{\times}$ ($\subseteq K_{\mathbb{A}}^{\times}$) is mapped to 1 and this extended map, denoted by $\overline{\lambda}$, coincides with $\beta_{J_f/K}$. Then it holds that

$$lpha_{J_{\mathbf{f}}/K} \circ N_{\mathbf{f}'/K} = lpha_{\mathbf{E}/\mathbf{f}'} \Longleftrightarrow \overline{\lambda} \circ N_{\mathbf{f}'/K} = eta_{\mathbf{E}/\mathbf{f}'},$$

so we can take $\overline{\lambda}$ as γ in (2).

Next we consider Case 2. By the argument in the proof of Proposition 4.5, the action of $Gal(\overline{\mathbb{Q}}/F')$ on $V_{\ell}(J_f)$ corresponds to the homomorphism

$$\begin{array}{cccc} \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) & \stackrel{\Phi_{\ell}}{\longrightarrow} & GL_{2}(H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}) \\ \cup & & \cup \\ \operatorname{Gal}(\overline{\mathbb{Q}}/F') & \longrightarrow & (H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times} \oplus (H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times} \\ \cup & & \cup \\ \sigma & \longmapsto & (\delta'(\sigma), \ \delta'(\rho\sigma\rho)). \end{array}$$

By Proposition 2.4 and Proposition 3.3, we have that one of the following two statements holds:

(a)
$$\chi_{\ell}^{(1)}(\sigma) = \gamma_1(\vartheta(\sigma))^{-1}\delta'(\sigma)$$
, $\chi_{\ell}^{(2)}(\sigma) = \gamma_2(\vartheta(\sigma))^{-1}\delta'(\rho\sigma\rho)$ for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/F')$;
(b) $\chi_{\ell}^{(1)}(\sigma) = \gamma_1(\vartheta(\sigma))^{-1}\delta'(\rho\sigma\rho)$, $\chi_{\ell}^{(2)}(\sigma) = \gamma_2(\vartheta(\sigma))^{-1}\delta'(\sigma)$ for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/F')$.

We will prove that (b) is impossible. For this we assume that (b) holds. For k=1, 2, we define $\chi_{\ell}^{(k)}$ similarly with $\widetilde{\chi}_{\ell}$. If $\sigma_{|F'_{ab}}=[x,F']$ ([x,F'] denotes the image of $x\in F'_{\mathbf{A}}^{\times}$ by the reciprocity law of F'), then we have $\rho\sigma\rho_{|K_{ab}}=[\rho(N_{F'/K}(x)),K]$ by the class field theory. Therefore, for any $x\in F'_{\mathbf{A}}^{\times}$, we have

$$\widetilde{\chi_{\ell}^{(1)}}(x) = \gamma_{1}(\widetilde{\vartheta}(x)^{-1})\widetilde{\delta'}(\rho(N_{F'/K}(x)))
= \gamma_{1}(\alpha_{E/F'}(x))^{-1}\gamma_{1}((N_{F'/K}(x))_{\ell})\alpha_{C/K}(\rho(N_{F'/K}(x)))\gamma_{1}((\rho(N_{F'/K}(x)))_{\ell})^{-1}.$$

Since $\gamma_1 \circ \rho = \gamma_2$, this is rephrased to that

$$rac{\gamma_1(\,(\,N_{F'/K}(x)\,)_{m\ell})}{\gamma_2(\,(\,N_{F'/K}(x)\,)_{m\ell})} = rac{\widetilde{\chi^{(1)}_{m\ell}}(x)lpha_{E/F'}(x)}{lpha_{C/K}(\,
ho(\,N_{F'/K}(x)\,)\,)}.$$

We can take a transcendental element π of \mathbb{Q}_{ℓ} over \mathbb{Q} and put $x_0 := 1 \otimes 1 + \sqrt{-D} \otimes \pi \in (K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times} \subseteq (F' \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^{\times} \subseteq F_{\mathbb{A}}^{\times}$. Now we suppose that ℓ splits completely in H. Since $K \subseteq H$, we can view $K \subseteq \mathbb{Q}_{\ell}$. By the isomorphism

$$\Big(\prod_{\substack{j: H \hookrightarrow \mathbb{Q}_{\ell} \\ j(\sqrt{-D}) = \sqrt{-D}}} j \otimes 1\Big) \oplus \Big(\prod_{\substack{r: H \hookrightarrow \mathbb{Q}_{\ell} \\ r(\sqrt{-D}) = -\sqrt{-D}}} r \otimes 1\Big) : H \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell} \xrightarrow{\sim} \underbrace{(\mathbb{Q}_{\ell} \oplus \cdots \oplus \mathbb{Q}_{\ell})}_{\frac{n}{2}} \oplus \underbrace{(\mathbb{Q}_{\ell} \oplus \cdots \oplus \mathbb{Q}_{$$

the element

$$rac{\gamma_1(\,(\,N_{F'/K}(x_0)\,)_{\ell})}{\gamma_2(\,(\,N_{F'/K}(x_0)\,)_{\ell})} = rac{\gamma_1(x_0^d)}{\gamma_2(x_0^d)}$$

is mapped to

$$\left(\left(\frac{1+\pi\sqrt{-D}}{1-\pi\sqrt{-D}}\right)^d, \ldots, \left(\frac{1+\pi\sqrt{-D}}{1-\pi\sqrt{-D}}\right)^d, \left(\frac{1-\pi\sqrt{-D}}{1+\pi\sqrt{-D}}\right)^d, \ldots, \left(\frac{1-\pi\sqrt{-D}}{1+\pi\sqrt{-D}}\right)^d\right),$$

where d = [F' : K]. Putting

$$\xi := \frac{\widetilde{\chi_{\boldsymbol{\ell}}^{(1)}}(x_0)\alpha_{E/F'}(x_0)}{\alpha_{C/K}(\rho(N_{F'/K}(x_0)))} \in H^{\times} \subseteq (H \otimes_{\mathbb{Q}} \mathbb{Q}_{\boldsymbol{\ell}})^{\times}$$

and taking $j: H \hookrightarrow \mathbb{Q}_{\ell}$ with $j(\sqrt{-D}) = \sqrt{-D}$, we have that

$$\left(\frac{1+\pi\sqrt{-D}}{1-\pi\sqrt{-D}}\right)^d=j(\xi) \ \ {
m in} \ \ \mathbb{Q}_\ell.$$

We note that $j(\xi)$ is algebraic over \mathbb{Q} . So we have that

$$\pi = \frac{\sqrt[d]{j(\xi)} - 1}{\sqrt{-D}(1 + \sqrt[d]{j(\xi)})} \in \overline{\mathbb{Q}}.$$

This is a contradiction. Hence we have proved that (a) holds.

We set

$$\iota''': H \longrightarrow \operatorname{End}_K^0({}^{\rho}C), \quad a \longmapsto \theta(\rho(a))_{|{}^{\rho}C}.$$

Then $({}^{\rho}C, \iota''')$ is an abelian variety with complex multiplication defined over K which has the same CM-type with (C, ι'') . As case of (C, ι'') , we have $\alpha_{{}^{\rho}C/K}: K_{\mathbb{A}}^{\times} \longrightarrow H^{\times}$. Since $\alpha_{{}^{\rho}C/K} = \rho \circ \alpha_{C/K} \circ \rho$, it holds that

$$(\mathrm{a}) \Longleftrightarrow \widetilde{\chi_{\ell}^{(1)}}(x) = \alpha_{E/F'}(x)^{-1}\alpha_{C/K}(N_{F'/K}(x)), \quad \widetilde{\chi_{\ell}^{(2)}}(x) = \rho(\alpha_{E/F'}(x)^{-1}\alpha_{\ell C/K}(N_{F'/K}(x)))$$
for any $x \in F_{\mathbf{A}}^{\times}$.

Therefore we have

$$\begin{aligned} \operatorname{Hom}_{F'}(E,\,J_f) \neq \{0\} &\iff \chi^{(1)} = 1 \ \text{or} \ \chi^{(2)} = 1 \Longleftrightarrow \chi^{(1)}_{\ell} = 1 \ \text{or} \ \chi^{(2)}_{\ell} = 1 \\ &\iff \alpha_{C/K} \circ N_{F'/K} = \alpha_{E/F'} \ \text{or} \ \alpha_{PC/K} \circ N_{F'/K} = \alpha_{E/F'}. \end{aligned}$$

Set $\lambda' := \rho \circ \lambda \circ \rho : I_K(\rho(\mathfrak{m})) \longrightarrow \mathbb{C}^{\times}$. As Case 1, we can construct a Grössen-character $\overline{\lambda}$ (resp. $\overline{\lambda'}$) of $K_{\mathbb{A}}^{\times}$ from λ (resp. λ'). Then we have

$$\alpha_{C/K} \circ N_{F'/K} = \alpha_{E/F'} \text{ or } \alpha_{PC/K} \circ N_{F'/K} = \alpha_{E/F'} \Longleftrightarrow \overline{\lambda} \circ N_{F'/K} = \beta_{E/F'} \text{ or } \overline{\lambda'} \circ N_{F'/K} = \beta_{E/F'}.$$

Hence we can take $\overline{\lambda}$ or $\overline{\lambda'}$ as γ in (2).

Finally we will prove that (2) implies (1). By Lemma 2.2, it is sufficient to show that there exists a normalized newform $f = f_{\lambda}$ of weight two constructed from some $\lambda: I_K(\mathfrak{m}) \longrightarrow \mathbb{C}^{\times}$ such that $\operatorname{Hom}_{F'}(E, J_f) \neq \{0\}$.

Claim. Let γ be as in (2) and \mathfrak{n}_0 be the conductor of γ . As defining $\widetilde{\alpha_{J_f/K}}$ from $\alpha_{J_f/K}$ in Section 4, we can also define $\widetilde{\gamma}: I_K(\mathfrak{n}_0) \longrightarrow \mathbb{C}^\times$ from γ . Then it holds that for any $x \in K^\times$ s.t. $x \equiv 1 \mod^\times \mathfrak{n}_0$,

$$\widetilde{\gamma}((x)) = x.$$

By Claim, from $\tilde{\gamma}$ we can construct a normalized newform $f = f_{\tilde{\gamma}}$ of weight two. Then the arguments in the proof of the statement: $(1) \Rightarrow (2)$ imply that

$$\gamma \circ N_{F'/K} = \beta_{E/F'} \iff \begin{cases} \alpha_{J_f/K} \circ N_{F'/K} = \alpha_{E/F'} & \text{(if } K \nsubseteq H) \\ \alpha_{C/K} \circ N_{F'/K} = \alpha_{E/F'} & \text{(if } K \subseteq H) \end{cases}$$
$$\implies \text{Hom}_{F'}(E, J_f) \neq \{0\}.$$

So we have proved that $(2) \Rightarrow (1)$.

Theorem 5.2. Let E/F, K, F', and $\beta_{E/F'}$ be as in Theorem 5.1. Assume that the condition (2) in Theorem 5.1 holds. Let \mathfrak{m} be the conductor of γ and set

$$f(z) = f_{\widetilde{\gamma}}(z) := \sum_{\substack{\mathfrak{a} \in I_K(\mathfrak{m}) \ \mathfrak{a}: \, ext{integral}}} \widetilde{\gamma}(\mathfrak{a}) q^{N(\mathfrak{a})} = \sum_{m \geq 1} a_m q^m \quad (q = e^{2\pi i z}).$$

Put $H := \mathbb{Q}(a_m | m \geq 1)$. Then we have the followings:

- (1) For any normalized newform g of weight two, $\operatorname{Hom}_F(E, J_g) \neq \{0\}$ if and only if there exists some γ as above such that $g = f_{\widetilde{\gamma}}$.
- (2) Case 1: $K \nsubseteq H$. Then we have

$$J_f \sim_F \underbrace{E \times \cdots \times E}_n \quad (n = \dim J_f = [H:\mathbb{Q}]).$$

Case 2: $K \subseteq H$.

(a) If $\gamma = \rho \circ \gamma \circ \rho$ on $P := K^{\times}N_{F'/K}(F'_{\mathbb{A}})$, then we have

$$J_f \sim_F \underbrace{E \times \cdots \times E}_n.$$

(b) If $\gamma \neq \rho \circ \gamma \circ \rho$ on P, then we have that F = F' and there exists an abelian variety A of dimension $\frac{n}{2}$ defined over K such that

$$J_f \sim_F \underbrace{E \times \cdots \times E}_{\frac{n}{2}} \times A_{/F}, \quad \operatorname{Hom}_F(E, A_{/F}) = \{0\}.$$

References

- [1] J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177-190.
- [2] N. Murabayashi, A remark on the modularity of abelian varieties of GL₂-type over Q, J. of Number Theory 82 (2000), 288-298.
- [3] G. Shimura, On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J. 43 (1971), 199-208.
- [4] G. Shimura, On the zeta-function of an abelian variety with complex multiplication, Ann. of Math. 94 (1971), 504-533.
- [5] G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math. 95 (1972), 130-190.
- [6] G. Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Univ. Press, 1998.
- [7] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its application to number theory, Math. Soc. Japan, 1975.
- [8] A. Weil, On a certain type of characters of the idèle-class group of an algebraic number-field, Proceedings of the International Symposium on Algebraic Number Theory, Tokyo-Nikko, 1955, 1-7.