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IDEAL CLASS GROUPS AND KNOT THEORY

HTER (ERKX-H)

Masanori Morishita(Kanazawa Univ.)
Introduction

I would like to discuss a classical problem on ideal class groups from the viewpoint of
the analogy between algebraic number theory and knot theory [Mo5].

The problem with which I am concerned here goes back to the work of C.F. Gauss [G]
two hundred years ago. Namely, his theory of genera on binary quadratic forms is stated
in terms of a number field as follows: Let k = Q(v/d) be a quadratic field with discrimiant

'd where d = p; -+ Pp, p; = 1 mod 4 (for simplicity). Then the narrow ideal class group Hj
of k has 2-rank n — 1 so that the 2-primary part Hy(2) of Hj has the form

Hi(2) = ré_;zmaez (ai > 1).
=1

Since Gauss’ time, it has been a problem to determine the whole structure of Hy(2), namely
to describe the 29-rank

eg=#{i|ai2q} (g2 1).
Among many works on this problem, L. Rédei [R1] showed the following remarkable formula

(4 (5) - (2)
ez =n—1-—rankp,(Lg), Lz = %2 (—15?) Ak

() (&) - (%)

" and further he gave similar formulas for e3 in some cases using the triple symbol introduced
by himself [R2]. Though many authors have studied this problem, in particular the case
of n = 2, by using the power residue symbols and arithmetical consideration such as Pell’s
equations (see for example [B], [Ha], [Y] etc), it still remains a problem to obtain general
formulas extending Rédei’s mentioned above for higher e;’s.

As one easily see, the problem has an immediate generalization for a cyclic extension k
over Q of arbitrary prime degree | and is formulated as a problem on the Galois module
structure of the [-primary part H(l) of the ideal class group Hj, of k. Namely, by the genus
theory of Iyanaga-Tamagawa [[T], Hi(!) has the form Hy(l) = B Zi[¢)/m* (a; > 1)

i=1
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where ( is a primitive I-th root of unity and m is the maximal ideal of Z;[¢] generated by
¢ — 1. Hence the determination of the Z;[¢]-module structure of Hi(l) is again equivalent
to that of the m%rank eq:=#{i]a; >q} (¢g>1).

The result of mine is to give a solution to this problem (for general I} in light of the
analogy between primes and knots (Theorem 5.4 below). The idea is to

regard Rédei’s matriz Ly as the mod 2 linking matriz for prime numbers py,---p, and
describe the eq ’s by introducing the higher linking matrices defined in terms of the arithmetic
Mzinor invariants.

In fact, we introduce the Alezander module for prime numbers and give its presentation
matrix by a sort of universal higher linking matriz, called the Traldi matriz, defined in terms
of the Milnor invariants. Our higher linking matrices are then obtained by truncating and
specializing the Traldi matrix.

As the analogy (cf. Section 1) suggests, we can ask a similar problem for the [-homology
of a I-fold cyclic branched cover of a link. Actually, I first worked on this link-theoretic
counterpart jointly with J. Hillman and D. Matei [HMM] and then translated each step of
our arguments into the arithmetic. Then it turned out that the analogy between primes
and knots is so close that the whole argument in topology side could be translated. So,
knot theory is suggestive and useful for the study of such arithmetical problems to get
the geometric intuition about what’s going on. Conversely, I should say that our method
_ to solve the link-theoretic counterpart is rather arithmetical in flavour of Iwasawa theory.
We use the pro-! completion of a link group, l-adic Milnor invariants and the completed
Alexander modules over the Iwasawa algebra. It seems to me that our results may indicate
further possibilities of our arithmetic approach to link theory.

Finally, let me give an example illustrative of a picture in my mind: Let L = K; U K3
be the following link of 2-components (Whitehead link) and let M be the double cover of
53 branched over L.

We then have the linking number lk(K7, K3) = 0 mod 4 and the Milnor number (1122) = 1
mod 2 from which it follows Hy(M, Z)(2) = Z/8Z. Here the condition 1k(K3, K3) = 0 mod

4 corresponds to that on the 4-th power residue symbol (;’—;)4 = (%)4 =1forp;,pp =1

mod 4 in the arithmetic side. The latter is the condition (cf. [Y]) for the class number Ay
of k = Q(,/p1pz) is divisible by 8. Yamamoto gave a condition for hj to be divisible by 16
using a solution of a certain Pell’s equation. Our condition is given in terms of the higher
linking number which is more conceptual.
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1. Analogies between number fields and 3-manifolds

We start to recall basic analogies in arithmetic topology bridging algebraic number theory
and 3-dimensional topology. This analogy was first noticed by B. Mazur in the 1960’s and
developed by A. Reznikov [Rez], M. Kapranov [K] and the author [Mo3,4] in recent years.
Here is a part of the dictionary:

number ring Spec(Ox) U {oo} — 3-manifold M
Spec(Z) U {oo} S3
prime : Spec(F,) C Spec(Ox) — knot K : S'c M
primes p1,-- ,Pn link K1 U--- UK,
infinite prime end
p-adic integers Spec(Oj) — tube n.b.d V(K)
p-adic field Spec(k;) — torus OV (K)
m1(Spec(Oy)) = (o) — m (V(K)) = (B)

wf“me(Spec(kp)) —_ (7-,0- l Tp—l[‘l', 0—] == 1) — 7T1(6V(K)) = <a,ﬁl [O.’, ﬂ] = 1)

o : Frobenius auto. — — = 3 : longitude

7 : monodromy .. o : meridian

- P z — C2(M,Z) 3 C1 (M, Z)
p:primes
a+— a0y, Y 0%
class group Hy, — Hy(M,Z)
m1(Spec(Ok) \ {p1, -+ ,pn}) — mM\ K U---UK,)
max. Galois group ~ link group

with given ramification

power residue symbol — linking number

For more analogies, we refer to [Mo3,4].
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2. Milnor invariants

Throughout this note, we fix a prime number /. Let S be a set of n distinct prime
numbers py,--- ,p, such that p; = 1 mod [, 1 <4 < n. We write p; — 1 = myg;, m; =
i (l,g;) = 1, 1 <4 < n, and set mg = min{m; | 1 < 7 < n} and fix a power m of !
with 1 < m < mg. Let Gg be the Galois group of the maximal pro-I extension Qg of the
rational number field Q unramified outside S U {oo}, and let 7; and o; be a monodromy
and a Frobenius automorphism over p; respectively (cf. [Mo1,2]). H. Koch [Ko] derived the
following information on the presentation of the pro-l group Gs. Let F be the free pro-!
group on n generators i, - ,&n and let 7 : F' — Gg be the continuous homomorphism
defined by 7(z;) = 7 for 1 < i < n. Then = is surjective and the kernel of 7 is the
closed subgroup of F' generated normally by m{"”l[xl, v1],- 22" zp, yn] where y; € F
represents o; in Gg and [z;, 3] = Tiysz; 'y

(2.1) Gs = (1, ,Tn | 20 ey, p1) = - = 2527 Tn, yal = 1)

On the other hand, fclr\ a link L consisting of n knots Kj,---, K, in the 3-sphere S3,
the pro-l completion G of the topological fundamental group Gr = 71(S3\ L) of the
complement of L in S® is shown to have the following presentation [HMM]:

(2.2) GrL=(z1," 1 Zn | [B1,01] = = [Tn,Un] = 1)

where z; and y; represent a meridian o; and a longitude 3; around K respectively. Our
basic idea is to regard (2.1) as an arithmetic analogy of (2.2). Note that the pair (7, 0;)
of a monodromy and a Frobenius automorphism over p; corresponds to the pair (e, Bi)
of a meridian and a longitude around K;. In view of this analogy, we introduce an arith-
metic analogue for prime numbers S of the Milnor link invariants (higher linking numbers)
[Mi],[Tu].

Let 0; = 619:; : Zi[[F]] — Zi[[F]] be the Fox derivative on the free pro-l group F' for
1 < i< n (|F],[Ih)), and let € : Z;[[F]] — Z; be the augmentation map. We then define,
for a multi-index I = (43 + - - %),

M(I) = E(a‘h Tt a'ir—l (yir))a and ;u'm(I) = II’(I) mod m.

By convention, we set u(I) = 0 for |I| = 1. We call u(I) (resp. pm(I)) the (resp. mod
m) Milnor number. For a multi-index I, 1 < |I| < mg, we define the indeterminacy A(I)
to be the ideal of Z/mZ generated by the binomial coefficients (MS) and pm(J) where
1 <t < |I| and J ranges over all cyclic permutations of proper subsequences of I. We set

Fim(I) = pim(I) mod A(T)

and we call them the Milnor %, invariant for prime numbers S.
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The following theorem asserts that the power residue symbol and the Rédei triple symbol
[R2] are regarded as arithmetic analogues of the linking number and the triple linking
number respectively:

21 Di
m-th power residue symbol in Qp, and (r, s a primative root of unity in Qy,.

(2) Assume that p; = 1 mod 4 and the Legendre symbols (%1) =1for1<i#j<3, and
. let [p1, pa, p2] denote the Redei triple symbol. Then we have

[p1, P2, p3] = (—1)#201%%),

More generally, the Milnor invariants are interpreted as arithmetic symbols describing the
prime decomposition law in Heisenberg extensions. Let N,.(R) be the upper Heisenberg
group of degree r over a commutative ring R, namely the group of upper triangular r x r
unipotent matrices over R. For a multi-index I = (i;---4,), 2 < r < mg such that
A(I) # Z/mZ, we define a representation

Theorem 2.3. ([Mol}) (1) For i # j, we have (21) = ¢4m D) yhere (31) denotes the
m m

pr : F— N.((Z/mZ)/A(I))
by

[1 €(0;, (f))m €(0,05,(fNm -+ €G-+ 05, (F))m
€0 (fN)m - (B zr_l(f))
pr(f) = . mod A(I).

0 e(a,-,_llunm

Theorem 2.4. ([Mo2]). Notations being as above,

(1) the representation pr factors through Gg, and it gives a surjective representation of Gg
onto N.((Z/mZ)/A(I)) if i1, ,ir—1 are distinct each other.

(2) Suppose 1y,--- ,ir—1 are distinct each other. If k. denotes the extension of Q corre-
sponding to Ker(pr), kr/Q is a Galois eztension ramified over p;,- -+ ,p;,._, with Galois
group N.((Z/mZ)/A(I)) and we have

10 - 0 pm(D)]
1 0 .- 0
- p1(oi,) = : mod A(I).
0 10
i 1

Hence, p;_ is completely decomposed in k,/Q if and only if ii,,,(I) = 0.
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3. The Alexander module of the Galois group Gg.

Let Hg be the abelianization of Gg and let ¢ : Z;[[Gs]] — Z;|[Hs]] be the Z;-algebra
homomorphism of the completed group rings induced by the natural map Gs — Hg. Since
Hg ~ Z/miZ x -+ X Z/m,Z, Z;[[Hg]] is isomorphic to Zy[ty, -+ ,tn]/(t7" =1, - t7" = 1)
which is identified with Ag = Z;[[X1, -+ , Xo]]/(1 + X1)™ =1, ,(1+ Xp)™ — 1) by
sending t; to 1 + X;. We write the same 7 to stand for the Z;-algebra homomorphism
7 : Zi[[F]] — Z[[Gs]] of the completed group rings induced by m. By virtue of the
presentation (2.1) of Gg, we define the Alezander matriz Ps = (Ps(i, 7)) of Gs by

Ps(i,j) =om (31'(1??"—1[%%]))
and then the Alezander module Ag of Gg is given as the Ag-module presented by Ps:
Ag = Coker(Ag™ Fs, Ag™).

Let H be the cyclic group (t | t™ = 1) of order m and let A : Hg — H be the homo-
morphism defined by A(t;) = t for 1 < i < n. The group ring Z;[H] is identified with
Zi[t)/(t™ — 1) =~ Z;[[X]}/((1 + X)™ — 1) by which we denote A. We use the same A for
the Z;-algebra homomorphism As — A induced by A. The reduced Alezander matriz Pg
is then defined by A(Ps) and the reduced Alezander module Ag of G by the A-module
presented by Pg:

ZAs = Coker(A™ £5 A™) = Ag @4 A.

We introduce the arithmetic analog of the Traldi matrix [TY] as follows.

Definition 3.1. The Traldi matriz Ts = (Ts(,j)) of Gg over Ag is defined by

X7HA+XP -1 Y i) X o X, =]
r>11<i1,,iy <N
TS(i:j) = i
pUDX:+Y Y i) XX o X, i # 7.

r2>211<iy oS0

where Ts(4, j) is regarded as an element of Ag and we also define the reduced Traldi matriz
Ts of Gs over A by _
Ts= A(TS) = TS(Xa to aX)

By computing the Alexander matrix in terms of the Milnor number using the Fox free
differential calculus, we obtain ‘

Theorem 3.2. The Traldi matriz T (resp. reduced Traldi matriz T'g) gives a presentation
matriz of the Alezander module Ag (resp. reduced Alezander module Ag) over Ag (resp.
A). .
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Finally, we introduce the truncated Traldi matrices as follows.
Definition 8.3. For q > 2, the g-th truncated Traldi matriz Ts'? = (T59 (4, 7)) is defined
by

( !

XNA+XP =)= 3wl Xe o Xa, i=
r=1 1__<_i1:~--,?1,-$n

Ts(q) (3,7) = ¢ , ir#i
.

WX+ ), D wla i) XiXe o X, i#

r=11<i;,,ir<n
and we also define the g-th truncated reduced Traldi matriz Ts(k) by
Ts@ = ATs@) = 5@ (X, .., X).

Remark. We note Ts® = X - L® where L® = (LP@(1,5)) is given by L@ (5, 4) =
ZJ# (44), L@ (i,7) = w(ji) for i # j. By (1) of Theorem 2.3, Rédei’s matrix Ly [R1]

mentioned in the introduction is essentially same as the linking matriz L®. Thus our
Traldi matrix T is regarded as a universal higher linking matriz.

4. Relation between the Alexander module and the /-class group

Let K be the subextension of Qs/Q corresponding to the kernel of Ao : Gs — H so
that K is a cyclic extension of degree m over Q with Galois group Gal(K/Q) = H = (t).
Let k be the (unique) subfield of K of degree [ over Q so that k is a cyclic extensmn of Q
with Galois group Gal(k/Q) = H/H' = (v), v = t mod H*. Let M be the maximal abelian
subextension of Qg/K and let X denote the Galois group of M over K on which H acts
via inner automorphism so that X is regarded as a A-module. Note that the narrow I-class
group Hy(1) of k is isomorphic to the Galois group over k of the narrow Hilbert [-class field
of k by the Artin reciprocity map.

.
/|
\’r

Firstly, we recall the Crowell exact sequence which gives the relation between the reduced
Alexander module Ag and the Galois group X.
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Theorem 4.1 ([Mol,Theorem 2.2.9]) There is a split exact sequence of A-modules
0 — X —Ag 5 Iy —0
where I is the augmentation ideal of A and ¢ and k are given as follows: (g mod [Y,)]) =

(Ao on(8i(f)) for n(f) = g and ((as) mod Im(Ps)) = (¢ — 1) 7, .

Next, we give the connection between X and the [-class group Hg(l). Set y(t) =
1+t+---+¢1. Since the norm v() acts trivially on H(l), H(l) is regarded as a module
over the complete discrete valuation ring O := Z;[H]/(v(t)) = A/(vi(1+ X)) = Z;[(] where
¢ =t mod (y(t)). The following theorem is proven by the standard arguments in Iwasawa
theory [W].

Theorem 4.2. Notation being as above, we have an isomorphism of O-modules

/Y/I/l(t)/l) ~ Hi(l).

By Theorems 4.1 and 4.2, we obtain the following relation between the reduced Alexander
module As and the [-class group Hg(l), which is analogous to the relation between the
reduced Alexander module of a link and the homology of a cyclic branched cover (cf. [Hi,
5.4,5.7]).

Theorem 4.3. We have an isomorphism of O-modules

As )0 ~ Hiy()® O.

~ 5. Galois module structure of the /-class group

We first recall the genus theory for the number field & [IT]. Let m be the maximal ideal
of O generated by w = { — 1 with residue field O/m = F; of | elements.

Lemma 5.1. The dimension of Hy(l) @ F; over F; is n — 1.

By Lemma 5.1, we have the isomorphism
n-1
Hi(l) ~ @O/m“‘ (a; > 1)
i=1

of O-modules. Hence the determination of the O-module structure of Hg(l) is equivalent
to that of the m?-rank

€q = #{Z | a; 2 q} = dimg, Hg(l) ®omq”1/mq (¢g=>1).
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We describe the m%-rank e, in terms of the higher linking matrices obtained from the
truncated reduced Traldi matrices (3.3) evaluated at X = w.

Definition 5.2. The higher linking matriz Ls = (Ls(4,j)) over O is defined by

“Z Z p(is - - ipt)w” | =7
r>1 1<idy, A,z,‘<n
Ls(i,5) =Ts(i, j)(w) = ¢ b

wGw+y, Y, i)™t i

r>11<i1,,ir<n

For q > 2, the g-th truncated higher linking matriz Lg]) is defined by

q—-1

r |
D D DGR o i=j

r=11<i1,,ir<n

LY, 5) = T (i, 5)(w) = < WA
q_

sz-{-z o u(iyigd)w™t i#

r=11<i1, i, <N

By Theorems 3.2 and 4.3, we have

Theorem 5.3. The higher linking matriz Ls gives a presentation matriz for the O-module

Hy(l)® O. For q > 2, the g-th truncated higher linking matriz L(q) gives a presentation
matriz for the O/mq-module (Hp(1) ®0 O/m?) & O/m4.

Restating Theorem 5.3 in terms of ey, we obatin our main formula.

Theorem 5.4. For ¢ > 2, we have
eq = n — 1 —rankp, (L_(gq) ® mq'l/mq)
where for a n x n matric A over O, we denote by A ® m?~1/m? the F;-linear map on
(m2~1/m2)™ induced by A.
For the initial term of £ = 2 , we recover Rédei’s formula for arbitrary l.

Corollary 5.5. We have
es = n — 1 — rankg, (L mod [)

where L = (L,;j)‘ is the linking matriz defined by Ly = — 3., p(j1), Lij = p(ji) for i # j.
Let us see the case of n = 2. By Lemma 5.1, Hj(!) has m-rank 1

Hi(l) = O/m® (a > 1)
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and e; = 0 or 1. By Theorem 4.5 we have

eg=1<= L_(g") = Oz mod w?.
where O, is 2 by 2 zero matrix. Since L‘(gq)(l, 2) = —Lg’)(l, 1), Lfsf])(2, 2) = ——Lg’)(2, 1), we
have the following

Corollary 5.6. Suppose n = 2. For each q > 1, assuming e, = 1, we have

(g
' Z E p(iy - ip—121)w” = 0 mod w?t?,

=141, ,ipr_1=1,2
q
> Y p(irceir-112)@” = 0mod w7t

\ ™=141, ,8p_1=1,2

eg+1 = 1 = <

Example. D. Vogel [V] computed many Milnor invariants making the computer program.
He finds that the triple S = {13,61,937} is really an arithmetical analog mod 2 of the
Borromean ring in the sense that pa(ij) = 0 for all 1 < ¢,7 < 3 and py(ijk) = 1 for any
parmutation ijk of 123 and p(ijk) = 0 for other ijk.

13

e)

Further, we have all p4(ij) = 0 (I owe this computation to Prof. K. Yamamura). We then
find that L2 = O3 mod 4 and

0 4 4
LY = (4 4) mod 8, i.e, rankp,(LY ® (4)/(8)) =2
4 0

o RO

and so e; = 2 and e3 = 0 by Theorem 4.4. Hence Hi(2) = Z/4Z & Z/4Z for k =

Q(v/13-61-937).

On the other hand, for the triple {5,101, 8081}, all Milnor number p3(I) vanishes if |I| < 3
([V]). Further all u4(ij) = 0 (Yamamura) and so L.(s?) = O3 mod 8. Hence e3 = 2 and
H, ® Z/8Z = Z./8Z & Z/8Z for k = Q(+/5- 101 - 8081).

After the conference, Prof. K. Yamamura kindly informed me of the existence of [BS]
where there is given an algorithm to calculate by computer the 2-part of a quadratic field
with discriminant up to 500 figures. My approach is conceptual and geometric, and I think
that the most essential aspect of my work lies in bridging two fields in mathematics.
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