<table>
<thead>
<tr>
<th>Title</th>
<th>A topological L-function for a threefold (Algebraic Number Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sugiyama, Ken-ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1376: 103-116</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25622</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A topological L-function for a threefold

Ken-ichi SUGIYAMA *

January 6, 2004

1 Introduction

In recent days, analogies between the number theory and the theory of threefolds are discussed by many mathematicians([1][6][7]). It will be Mazur who first pointed out analogies between primes and knots in the standard three-dimensional sphere. Morishita([7]) has investigated a similarity between the absolute Galois of Q and a link group. (A link group is defined to be the fundamental group of a complement of a link in the standard three sphere.) Moreover he has interpreted various symbols (eg. Hilbert, Rédei) from a topological point of view. For an example, he has shown one may consider the Hilbert symbol of two primes as their “linking number”.

In this report, we will study a similarity between the number theory and the theory of topological threefold from a viewpoint of a representation theory. Namely an L-function associated to a topological threefold will be discussed. Since our definition of an L-function will be based on one of a local system on a curve defined over a finite field (i.e. the Hasse-Weil’s congruent L-function), we will recall the definition the L-function in the arithmetic case.

2 A brief review of the Hasse-Weil’s congruent L-function

In what follows, for an object Z over a finite field F_q, its base extension to \overline{F}_q will be denoted by \overline{Z}. We fix a rational prime l which is prime to q.

Let C be a smooth curve over a finite field F_q and let $C \to \overline{C}^{*}$ be its compactification. Suppose we are given a \mathbb{Q}_l-smooth sheaf \mathcal{F} on C. Then the q-th Frobenius ϕ_q acts on $H^1(\overline{C^{*}}, j_{*}\mathcal{F})$ and the Hasse-Weil L-function is defined to be

$\displaystyle L(C, \mathcal{F}, T) = \det[1 - \phi_q^{*}T|H^1(\overline{C^{*}}, j_{*}\mathcal{F})].$

It has

* Address: Ken-ichi SUGIYAMA, Department of Mathematics and Informatics, Faculty of Science, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
† e-mail address: sugiyama@math.s.chiba-u.ac.jp
• an functional equation,
• an Euler product.

Suppose \mathcal{F} is deduced from an abelian fibration. Namely let $A \xrightarrow{\mathcal{F}} C$ be an abelian fibration whose moduli is not a constant. We set $\mathcal{F} = R^1f_*\mathbb{Q}_l$ and

$$L(A, s) = L(C, \mathcal{F}, q^{-s}).$$

Then $L(A, s)$ is an entire function and Artin and Tate ([11]) have given a detailed conjecture for a special value of L-function, which is a geometric analogue of the Birch and Swinnerton-Dyer conjecture. Their conjecture predicts that the order of $L(A, s)$ at $s = 1$ should be equal to the rank of the Mordell-Weil group of the fibration. They have shown this is equivalent to the finiteness of l-primary part of the Brauer group of A.

3 A definition of an L-function of a topological threefold

3.1 The definition

Let X be the complement of a knot K in the standard three dimensional sphere. By the Alexander duality, we know $H_1(X, \mathbb{Z}) \simeq \mathbb{Z}$ and therefore it admits a infinite cyclic covering

$$Y \xrightarrow{\pi} X.$$

Let S be a minimal Seifert surface of K. Then its inverse image $\pi^{-1}(S)$ is a disjoint union $\sqcup_{n \in \mathbb{Z}} S_n$ of copies of S indexed by integers. We assume that the genus of S is greater than or equal to two and that the fundamental groups of $S_0 = S$ and Y are isomorphic. Let \mathcal{L}_X be a polarized local system on X and let \mathcal{L}_S be its restriction to S. The deck transformation of the covering may be considered as a diffeomorphism of S and it is easy to see it lifts to an isomorphism $\hat{\phi}$ of the local system \mathcal{L}_S.

Let us compare our situation to the arithmetic one. The covering $Y \xrightarrow{\pi} X$ corresponds to $\bar{C} \rightarrow C$ and the local system \mathcal{L}_X is an analogy of \mathcal{F}. Let ρ_X be the representation of $\pi_1(X)$ associated to \mathcal{L}_X. Since $\pi^*\mathcal{L}_X$ is the local system for the restriction of ρ_X to $\pi_1(Y) \simeq \pi_1(S)$, we may identify it with \mathcal{L}_S. Hence \mathcal{L}_S is an analogy of \mathcal{F} and $\hat{\phi}$ corresponds to the Frobenius.

According to the observation above, we will make the following set up.

Let \bar{X} be a compact smooth threefold which may have smooth boundaries. Suppose it has an infinite cyclic covering

$$\bar{Y} \xrightarrow{\pi} \bar{X}$$

which satisfies the following properties.
1. There is a smoothly embedded connected surface
\[\overline{S} \hookrightarrow \overline{X} \]
whose genus is greater than or equal to 2 and the boundaries are contained in \(\partial \overline{X} \) via \(i \).

2. Let \(\overline{T} \) be the inverse image of \(\overline{S} \) by \(\pi \), which is a disjoint union of copies of \(\overline{S} \) indexed by integers:
\[\overline{T} = \bigsqcup_{n \in \mathbb{Z}} \overline{S}_n, \quad \overline{S}_n \cong \overline{S}. \]

Then the map \(i_0 \) induces an isomorphism
\[\pi_1(\overline{S}, s_0) \cong \pi_1(Y, i_0(s_0)). \]

We will refer such an infinite cyclic covering to be of a surface type. The following notations will be used.

Notations 3.1.
1. \(X \) (resp. \(S, Y \)) is the interior of \(\overline{X} \) (resp. \(\overline{S}, \overline{Y} \)).

2. \(\Pi_S \) (resp. \(\Pi_Y, \Pi_X \)) is the fundamental group of \(S \) (resp. \(Y, X \)) with respect to the base point \(s_0 \) (resp. \(i_0(s_0), \pi(i_0(s_0)) \)).

3. \(\Pi_{Y/X} \) is the covering transformation group of \(Y \to X \).

Let \(\Phi \) be a deck transformation generating \(\Pi_{Y/X} \). Identifying \(S \) with \(S_0 \) (resp. \(S_1 \)) via \(i_0 \) (resp. \(i_1 \)), \(\Phi \) induces a diffeomorphism \(\phi \) on \(S \) by restriction. Since the genus of \(S \) is greater than or equal to 2, it is diffeomorphic to a quotient of the Poincaré upper half plane \(\mathbb{H}^2 \) by a discrete subgroup \(\Gamma \) of \(PSL_2(\mathbb{R}) \). Adding cusps \(\Sigma \) to the quotient, we get compactification \(S^* \). We will sometimes identify \(S \) with \(S^* \setminus \Sigma \).

Remark 3.1. Note that there is an exact sequence
\[1 \to \Pi_S \to \Pi_X \to \mathbb{Z} \to 1. \]

This is a geometric counterpart of the following situation in arithmetic geometry. Let \(C \) be a smooth curve defined over \(\mathbb{F}_q \) and let \(\overline{C} \) be its base extension to \(\overline{\mathbb{F}}_q \). Then their fundamental groups fit in the exact sequence
\[1 \to \pi_1(\overline{C}) \to \pi_1(C) \to \hat{\mathbb{Z}} \to 1. \]

Let \(F \) be a field of characteristic 0 and let \(L \) be a vector space over \(F \) of dimension \(2g \) with a skew-symmetric nondegenerate pairing \(\alpha \). Suppose we are given a representation
\[\Pi_X \to \text{Aut}(L, \alpha) \]
such that
\[L^{\Pi_S} = 0, \quad (1) \]
Let ρ_S be the restriction of ρ_X to Π_S and the local system associated to ρ_X (resp. ρ_S) will be denoted by \mathcal{L}_X (resp. \mathcal{L}_S). Then the diffeomorphism ϕ induces an isomorphism of a polarized local system:

$$
\mathcal{L}_S \xrightarrow{\phi} \mathcal{L}_S
$$

$$
\mathcal{L}_S \xrightarrow{\sim} \mathcal{L}_S
$$

$S \xrightarrow{\phi} S$

Fig. 2.2

Let j be the open immersion of S into S^* and let i be the inclusion of Σ into S^*. Then $\hat{\phi}$ acts on $H^1(S^*, j_* \mathcal{L}_S)$, which is a geometric analogue of the Frobenius action. For a point P in Σ, let Δ_P be a small disc centered at P and we set $\Delta^*_P = \Delta_P \setminus \{P\}$. The parabolic cohomology H^1_P is defined to be

$$
H^1_P(S, \mathcal{L}_S) = \text{Ker}[H^1(S, \mathcal{L}_S) \to \bigoplus_{P \in \Sigma} H^1(\Delta^*_P, \mathcal{L}_S)].
$$

One can easily see that $H^1_P(S, \mathcal{L}_S)$ admits an action of $\hat{\phi}$ and it is isomorphic to $H^1(S^*, j_* \mathcal{L}_S)$ as a $F[\hat{\phi}]$-module. Also the nondegenerate skew-symmetric pairing α and the Poincaré duality induce a perfect pairing on $H^1_P(S, \mathcal{L}_S)$, which is invariant under the action of $\hat{\phi}$. Hence $H^1_P(S, \mathcal{L}_S)$ is a semisimple $F[\hat{\phi}]$-module and it is isomorphic to its dual as a $F[\hat{\phi}]$-module.

Now we define the topological L-function $L(X, \mathcal{L}_X)$ for the local system \mathcal{L}_X to be

$$
L(X, \mathcal{L}_X) = \det[1 - \hat{\phi}^* T | H^1_P(S, \mathcal{L}_S)].
$$

Here T is an indeterminate.

Let $M_\phi(S)$ be the mapping torus of ϕ and let $M_\phi(\mathcal{L}_S)$ be the local system on X which is obtained by the same way as "mapping torus" from the isomorphism $\hat{\phi} \cong \mathcal{L}_S$. Note that by the definition we have

$$
L(X, \mathcal{L}_X) = L(M_\phi(S), M_\phi(\mathcal{L}_S)).
$$

3.2 Examples

Let K be a knot embedded in the standard three dimensional sphere S^3 and let N_K be its tubular neighborhood. Let \bar{X} be the closure of the complement of
N_K in S^3. Then $H_1(\bar{X}, \mathbb{Z})$ is isomorphic to \mathbb{Z} by the Alexander duality and \bar{X} admits an infinite cyclic covering

$$\bar{Y} \overset{\beta}{\to} \bar{X}.$$

Let X (resp. Y) be the interior of \bar{X} (resp. \bar{Y}) (cf. Notations 3.1). Then the map induces an exact sequence

$$1 \to \Pi_Y \to \Pi_X \to \mathbb{Z} \to 1.$$ \hfill (2)

Let \bar{S} be a minimal Seifert surface of K and we set

$$\bar{S} = \bar{S} \cap \bar{X}.$$

It is known if Π_Y is finitely generated, $\bar{S} \overset{\imath}{\to} \bar{Y}$ induces an isomorphism ([5])

$$\Pi_{\bar{S}} \simeq \Pi_Y.$$

Moreover Murasugi has shown if the absolute value of the Alexander polynomial $\Delta_K(t)$ of K at $t = 0$ is equal to 1, then Π_Y is finitely generated.

Fact 3.1. ([4/IV. Proposition 5]) Suppose every closed incompressible surface in X is boundary parallel. Then either

1. X is Seifert fibred,

or

2. X is hyperbolic. Namely there is the maximal order O_F of an algebraic number field F and a torsion free subgroup $\Gamma \subset PSL_2(O_F)$ such that X is diffeomorphic to $\Gamma \backslash \mathbb{H}^3$. Here after fixing an embedding $F \hookrightarrow \mathbb{C}$, Γ is regarded to be a subgroup of $PSL_2(\mathbb{C})$.

Now we assume that the infinite cyclic covering satisfies the following conditions.

Condition 3.1. 1. Π_Y is finitely generated.

2. Either

(a) X is Seifert fibred,

or

(b) there is the maximal order O_F of an algebraic number field F and a torsion free subgroup $\Gamma \subset SL_2(O_F)$ which freely acts on \mathbb{H}^3 so that X is diffeomorphic to $\Gamma \backslash \mathbb{H}^3$. As before after fixing an embedding $F \hookrightarrow \mathbb{C}$, Γ is regarded to be a subgroup of $SL_2(\mathbb{C})$.

Remark 3.2. Professor Fujii kindly informed us that if X is hypebolic, then the Condition 3.1. 2 (b) is always satisfied.
Suppose X satisfies 1 and 2(b) of Condition 3.1. Then we have the canonical representation
\[\Pi_X \simeq \Gamma^\rho_X \ SL_2(\mathbb{C}). \]
We set
\[L = \mathbb{C}^{\oplus 2}, \]
and let α be the standard symplectic form on L. Namely for elements $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ of L, $\alpha(x, y)$ is defined as
\[\alpha(x, y) = \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}. \]
This invariant under the action of Π_X. The result of Neuwirth([5]) implies
\[\Pi_S \simeq \Pi_Y \pi_1(i_0), \]
and it is easy to see
\[L^{\Pi_S} = 0. \]
Hence the conditions in §3.1 are satisfied.

Next suppose that X satisfies 1 and 2(a) of Condition 3.1. Then under a mild condition, one can check its fundamental group has a linear representation
\[\Pi_X \overset{\rho_X}{\longrightarrow} SL_2(\mathbb{C}) \]
such that
\[L^{\Pi_S} = 0. \]
Details will be found in [9].

Remark 3.3. Even if we take the trivial representation, we can define an L-function for a knot complement. Note that this is nothing but the Alexander polynomial, which corresponds to the congruent zeta function of a curve. But contrary to the arithmetic case, as we have seen, we have a priori a two dimensional irreducible linear representation of $\pi_1(X)$. This is one of the main reasons to consider the L-function.

4 Properties of a topological L-function

In the present section, we will list up basic properties of our topological L-function. Proofs of the statements will be found in [9].
4.1 A functional equation
Let $b(\mathcal{L}_S)$ be the dimension of $H^1_p(S, \mathcal{L}_S)$.

Theorem 4.1. (The functional equation)

$$L(X, \mathcal{L}_X)(T) = (-T)^{b(\mathcal{L}_S)}L(X, \mathcal{L}_X)(T^{-1}).$$

Corollary 4.1. Suppose $b(\mathcal{L}_S)$ is odd. Then $L(X, \mathcal{L}_X)(1)$ vanishes and in particular the dimension of $H^1_p(S, \mathcal{L}_S)\hat{\phi}$ is positive.

4.2 A geometric analogue of Birch and Swinnerton-Dyer conjecture

In the present section, we will work with the holomorphic category.

Let A^* be a smooth projective variety with a morphism

$$A^* \overset{\mu}{\rightarrow} S^*$$

such that its restriction to S

$$A \overset{\mu}{\rightarrow} S$$

is a smooth fibration whose fibres are abelian varieties of dimension g. Moreover we assume μ satisfies the following conditions.

Condition 4.1.

1. A^*/S^* is the Neron model of A/S and has a semistable reduction at each point $s \in \Sigma$.

2. $R^1\mu_*\mathbb{Q}$ is isomorphic to the local system \mathcal{L}_S.

3. $H^0(S^*, R^1\overline{\mu}_{*}\mathcal{O}_{A^*}) = 0$.

Suppose there is a commutative diagram

$$\begin{array}{ccc}
A^* & \xrightarrow{\Phi} & A^* \\
\mu \downarrow & \cong & \mu \\
S^* & \xrightarrow{\phi} & S^* \\
\end{array}$$

Fig. 4.1
such that $\phi(\Sigma) = \Sigma$. Since $L_S = R^1\mu_*Q$, this induces the diagram as Fig. 2.2. We define the Mordell-Weil group $MW_X(A)$ to be

$$MW_X(A) = A(S)^\phi$$

and its rank will be denoted by $r_X(A)$. Since the cycle map induces an imbedding

$$A(S) \otimes Q \hookrightarrow H^1_p(S, L_S),$$

$r_X(A)$ is less than or equal to the order of the topological L-function $L(X, L_X)$ at $T = 1$.

Theorem 4.2. Suppose $H^2(A^*, O_{A^*}) = 0$. Then $r_X(A)$ is equal to the order of the topological L-function $L(X, L_X)$ at $T = 1$.

We define the topological Brauer group $Br_{top}(A^*)$ to be

$$Br_{top}(A^*) = H^2(A^*, O_{A^*}^x).$$

Then the exponential sequence

$$0 \rightarrow \mathbb{Z} \rightarrow O_{A^*} \rightarrow O_{A^*}^x \rightarrow 0$$

implies the exact sequence

$$H^2(A^*, \mathbb{Z}) \rightarrow H^2(A^*, O_{A^*}) \rightarrow Br_{top}(A^*) \rightarrow H^3(A^*, \mathbb{Z}).$$

Since A^* is compact, both $H^2(A^*, \mathbb{Z})$ and $H^3(A^*, \mathbb{Z})$ are finitely generated abelian groups. Hence $Br_{top}(A^*)$ is finitely generated if and only if $H^2(A^*, O_{A^*})$ vanish since the latter is a complex vector space.

Corollary 4.2. Suppose $Br_{top}(A^*)$ is finitely generated. Then the rank of the Mordell-Weil group $r_X(A)$ is equal to the order of the topological L-function $L(X, L_X)$ at $T = 1$.

Note that the corollary above is a geometric analogue of the theorem of Artin and Tate. ([10][11])

4.3 An Euler product and an Euler system

Suppose the map ϕ in Fig. 2.2 satisfies the following condition.

Condition 4.2. There exists a diffeomorphism ϕ_0 of S such that

1. ϕ_0 is homotopic to ϕ,

and

2. every fixed point of ϕ_0^n is non-degenerate and is isolated for any positive integer n.

Because of Condition 4.2(1), Fig. 2.2 may be replaced by:

\[
\begin{array}{ccc}
\mathcal{L}_S & \xrightarrow{\phi_0} & \mathcal{L}_S \\
\downarrow & \Downarrow & \downarrow \\
S & \xrightarrow{\phi_0} & S
\end{array}
\]

Fig. 7.1

We prepare some notations. Let us fix a positive integer \(n \). The set of fixed points of \(\phi_0^n \) will be denoted by \(S^{\phi_0^n} \). We define \(\Phi_0(n) \) to be the orbit space of the action of \(\phi_0 \) on

\[
\{ s \in S | \phi_0^n(s) = s \quad \text{and} \quad \phi_0^m(s) \neq s \quad \text{for} \quad 1 \leq m \leq n-1 \}
\]

and we set

\[
\Phi_0 = \bigsqcup_{n=1}^{\infty} \Phi_0(n).
\]

For an element \(\gamma \) of \(\Phi_0(n) \), we call the integer \(n \) its length and we will denote it by \(l(\gamma) \). Let \(x \in S^{\phi_0^{l(\gamma)}} \) be a representative of \(\gamma \in \Phi_0 \). Then \(\phi_0^{l(\gamma)} \) defines an automorphism of the fibre of \(\mathcal{L}_S \otimes \mathbb{Q} \) at \(x \) and the polynomial

\[
\det[1 - \phi_0^{l(\gamma)} T | (\mathcal{L}_S \otimes \mathbb{Q})_x]
\]

is independent of the choice of \(x \), which will be written as \(P_\gamma(T) \).

Let \(V^P \) be the invariant subspace of \(L \otimes \mathbb{Q} \) under the action of \(\pi_1(\Delta_P^*) \). It is easy to see \(\oplus_{P \in \Sigma} V^P \) has an action of \(\hat{\phi} \). Now the Grothendieck-Lefshetz trace formula implies the following theorem.

Theorem 4.3. (Euler product formula) Suppose the map \(\phi \) in Fig. 2.2 satisfies the Condition 4.2. Then

\[
L(X, \mathcal{L}_X) = (\det [1 - \hat{\phi}^* T | \oplus_{P \in \Sigma} V^P])^{-1} \prod_{\gamma \in \Phi_0} P_\gamma(T^{l(\gamma)})^{-1}.
\]

Our L-function has a Euler system, which has been considered by Kolyvagin in the Iwasawa theory of an elliptic curve ([8]). Let \(\phi_0 \) be a diffeomorphism
of S satisfying the Condition 4.2 and let us fix a generator t of $\Pi_{Y/X} \simeq \mathbb{Z}$. Then $\mathbb{Q}[\Pi_{Y/X}]$ may be identified with $P = \mathbb{Q}[t, t^{-1}]$ and defining the action of t by $(\phi^*_0)^{-1}$, the compact supported cohomology group $H^1_c(S, \mathcal{L}_S \otimes \mathbb{Q})$ may be regarded as a P-module. In general, the Fitting ideal of a finitely generated P-module M will be denoted by $\text{Fitt}_P(M)$. The following lemma directly follows from the definition of our L function.

Lemma 4.1.

$$\text{Fitt}_P(H^1_c(S, \mathcal{L}_S \otimes \mathbb{Q})) = (L_c(X, \mathcal{L}_X)), $$

where $L_c(X, \mathcal{L}_X)$ is defined to be

$$L_c(X, \mathcal{L}_X) = \det [1 - \delta^*t|H^1_c(S, \mathcal{L}_S \otimes \mathbb{Q})].$$

For $\gamma \in \Phi_0(n)$, let $O_\gamma \subset S$ be the corresponding orbit of ϕ_0 and let S_γ be its complement. The *corestriction map*

$$H^1_c(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q}) \overset{\text{Core}}{\rightarrow} H^1_c(S, \mathcal{L}_S \otimes \mathbb{Q})$$

is defined to be the Poincaré dual of the restriction map

$$H^1(S, \mathcal{L}_S \otimes \mathbb{Q}) \overset{\text{Res}}{\rightarrow} H^1(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q}).$$

Observe that both of them are homomorphism of P-modules. The Thom-Gysin exact sequence implies

$$0 \rightarrow H^1(S, \mathcal{L}_S \otimes \mathbb{Q}) \overset{\text{Res}}{\rightarrow} H^1(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q}) \rightarrow \bigoplus_{x \in O_\gamma} (\mathcal{L}_S \otimes \mathbb{Q})_x \rightarrow 0,$$

and let

$$0 \rightarrow \bigoplus_{x \in O_\gamma} (\mathcal{L}_S \otimes \mathbb{Q})_x \rightarrow H^1_c(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q}) \overset{\text{Core}}{\rightarrow} H^1_c(S, \mathcal{L}_S \otimes \mathbb{Q}) \rightarrow 0 \quad (3)$$

be its dual sequence. The following lemma follows from the observation:

$$\text{Fitt}_P(\bigoplus_{x \in O_\gamma} (\mathcal{L}_S \otimes \mathbb{Q})_x) = (P_\gamma(t^{l(\gamma)})).$$

Lemma 4.2.

$$\text{Fitt}_P(H^1_c(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q})) = (L_c(X, \mathcal{L}_X) \cdot P_\gamma(t^{l(\gamma)})).$$

In general for an N-tuples of distinct elements $\{\gamma_1, \cdots, \gamma_N\}$ of Φ_0, we set

$$S_\gamma = S \setminus (O_{\gamma_1} \cup \cdots \cup O_{\gamma_N}). \quad (4)$$

The induction on N shows the following proposition.

Proposition 4.1.

$$\text{Fitt}_P(H^1_c(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q})) = (L_c(X, \mathcal{L}_X) \cdot \prod_{i=1}^{N} P_\gamma(t^{l(\gamma_i)})).$$
Definition 4.1. (An Euler system of a topological L-function) Let γ be the empty set or an N-tuples of distinct elements of Φ_0. Suppose a finitely generated P-modules V_γ is given for such γ. If $\{V_\gamma\}$ satisfy the following conditions, they will be referred as Euler system of the topological L-function.

1.

\[\text{Fitt}_P(V_\phi) = (L_c(X, L_X)). \]

2. Suppose

\[\gamma' = \gamma \cup \{\gamma_{N+1}\}, \quad \gamma_{N+1} \notin \gamma. \]

Then there is a surjection as P-modules

\[V_{\gamma'} \rightarrow V_{\gamma} \]

and their Fitting ideals satisfy the relation

\[\text{Fitt}_P(V_{\gamma'}) = \text{Fitt}_P(V_{\gamma}) \cdot (P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})})). \]

We set

\[V_\phi = H_c^1(S, L_S \otimes Q) \]

and for an N-tuples of distinct elements γ of Φ_0 we define

\[V_{\gamma} = H_c^1(S_\gamma, L_S \otimes Q). \]

Then $\{V_\gamma\}_\gamma$ is an Euler system by Proposition 4.1.

Next we will show how Kolyvagin’s Euler system appears in our geometric situation. We assume any two of $\{P_\gamma(t^{l(\gamma)})\}_{\gamma \in \Phi_0}$ are relatively prime. Let γ and γ' be as 2. of Definition 4.1. The same arguments of to obtain (3) shows

\[0 \rightarrow \oplus_{x \in O_{\gamma_{N+1}}} (L_S \otimes Q)_x \rightarrow H_c^1(S_{\gamma'}, L_S \otimes Q) \xrightarrow{Cor} H_c^1(S_\gamma, L_S \otimes Q) \rightarrow 0. \]

Note that $P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})})$ annihilates $\oplus_{x \in O_{\gamma_{N+1}}} (L_S \otimes Q)_x$ and by the assumption its multiplication on $H_c^1(S_\gamma, L_S \otimes Q)$ is an isomorphism. These observations imply the following lemma.

Lemma 4.3. Let us fix $x_\gamma \in H_c^1(S_\gamma, L_S \otimes Q)$. If we take $y_{\gamma'} \in H^1_c(S_{\gamma'}, L_S \otimes Q)$ so that

\[Cor(y_{\gamma'}) = x_\gamma. \]

Then we have

\[Cor(P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})})y_{\gamma'}) = P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})})x_\gamma. \]

Moreover $P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})})y_{\gamma'}$ is independent of the choice of $y_{\gamma'}$.

Now we fix a non-zero element c_f of $H^1_c(S, \mathcal{L}_S \otimes \mathbb{Q})$. For an N-tuples of distinct elements γ of Φ_0 we will inductively define an element c_{γ} of $H^1_c(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q})$. Let $\gamma' = \gamma \cup \{\gamma_{N+1}\}$ be as before. We take any $d_{\gamma'} \in H^1_c(S_{\gamma'}, \mathcal{L}_S \otimes \mathbb{Q})$ to be

$$\text{Cor}(d_{\gamma'}) = c_{\gamma},$$

and we set

$$c_{\gamma'} = P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})})d_{\gamma'}.$$

Then the system $\{c_{\gamma}\}_\gamma$ is well-defined by Lemma 4.3 and they satisfy

$$\text{Cor}(c_{\gamma'}) = P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})})c_{\gamma},$$

which is the same relation as Kolyvagin's Euler system ([8]). One may realize an Euler system is an another appearence of Euler product.

4.4 The Franz-Reidemeister torsion and a special value

We will briefly recall the theory of densities and the Franz-Reidemeister torsion ([2] [3] [9]). Throughout the subsection, let F be equal to \mathbb{R} or \mathbb{C}. Let V be a vector space over F of dimension $r > 0$ and let $\{v_1, \cdots, v_r\}$ be its basis. We set

$$(\Lambda^r V)^x = \{a \cdot v_1 \wedge \cdots \wedge v_r | a \in F^x\}$$

and

$$|\wedge^r V| = (\Lambda^r V)^x/\{\pm 1\}.$$

Then $|\Lambda^r V|$ is isomorphic to $F^x/\{\pm 1\}$ and will be mentioned as the space of densities on V. Let

$$(\Lambda^r V)^x \xrightarrow{\pi} |\Lambda^r V|$$

be the canonical projection and the image $\pi(f)$ of $f \in (\Lambda^r V)^x$ will be denoted by $|f|$. For the 0 dimensional vector space 0, we define

$$\Lambda^0 0 = F, \quad (\Lambda^0 0)^x = F^x$$

and

$$|\Lambda^0 0| = F^x/\{\pm 1\}.$$

Moreover for $f \in \Lambda^0 0 = F^x$, its image in $|\Lambda^0 0| = F^x/\{\pm 1\}$ will be denoted by $|f|$. If F is \mathbb{R}, the canonical projection

$$(\Lambda^0 0)^x \xrightarrow{\pi} |\Lambda^0 0| \simeq \mathbb{R}_{>0}$$

is nothing but the map of taking absolute value. In the followings, we always assume the 0 dimensional vector space 0 has the density $1 \in |\Lambda^0 0| = F^x/\{\pm 1\}$. Also we always assume every complex is bounded and consists of finite dimensional vector spaces over F.

Definition 4.2. If a complex

\[C' = [C^0 \to \cdots \to C^n] \]

has a density on each \(C^i \) and \(H^i \), we say the complex \(C' \) is given a density.

Remark 4.1. When \(C^i = H^i \), we assume \(H^i \) is given the same density as \(C^i \).

For a complex with a density

\[C' = [C^0 \to \cdots \to C^n], \]

we can associate an element \(\tau_{FR}(C') \) of \(F^\times/\{\pm 1\} \), which is called as the Franz-Reidemeister torsion (the FR-torsion for simplicity). Let \(|C^i| \) (resp. \(|H^i| \)) be the density on \(C^i \) (resp. \(H^i \)). Then one may intuitively think of \(\tau_{FR}(C') \) as

\[
\tau_{FR}(C') = \prod_{i=1}^{n} \left(\frac{|C^i|}{|H^i|} \right)^{(-1)^i}.
\]

Let us take a finite triangulation of \(S \) which is preserved by \(\phi \). Then by a parallel transformation of the symplectic form \(\alpha \), we obtain a complex with a density \(C_{\phi}' \) such that its cohomology groups are isomorphic to \(H^i(M_{\phi}(S), M_{\phi}(\mathcal{L}_S)) \). Using the previous observation:

\[
L(X, \mathcal{L}_X) = L(M_{\phi}(S), M_{\phi}(\mathcal{L}_S)),
\]

we can show the following theorem.

Theorem 4.4. Suppose \(\hat{\phi}^* - 1 \) is isomorphic on \(H^1_{\hat{\phi}}(S, \mathcal{L}_S) \). Then we have

\[
|L(X, \mathcal{L}_X)(1)| = \tau_{FR}(C_{\phi}).
\]

Remark 4.2. In general, we can show the following statement:

Let \(r \) be the dimension of \(\text{Ker} [\hat{\phi}^* - 1|H^1_{\hat{\phi}}] \). Then we have

\[
\lim_{T \to 1} |(T - 1)^{-r}L(X, \mathcal{L}_X)(T)| = R((H^1_{\hat{\phi}})^*) \cdot \tau_{FR}(C_{\phi}).
\]

Here \(R((H^1_{\hat{\phi}})^*) \) is the regulator of the local system. Note that this is quite similar to the formula which is predicted by the Birch and Swinnerton-Dyer conjecture.

References

Address : Department of Mathematics and Informatics
Faculty of Science
Chiba University
1-33 Yayoi-cho Inage-ku
Chiba 263-8522, Japan
e-mail address : sugiyama@math.s.chiba-u.ac.jp