A topological L-function for a threefold

Ken-ichi SUGIYAMA *†

January 6, 2004

1 Introduction

In recent days, analogies between the number theory and the theory of three-folds are discussed by many mathematicians([1][6][7]). It will be Mazur who first pointed out analogies between primes and knots in the standard three dimensional sphere. Morishita([7]) has investigated a similarity between the absolute Galois of \mathbb{Q} and a link group. (A link group is defined to be the fundamental group of a complement of a link in the standard three sphere.) Moreover he has interpreted various symbols (eg. Hilbert, Rédei) from a topological point of view. For an example, he has shown one may consider the Hilbert symbol of two primes as their “linking number”.

In this report, we will study a similarity between the number theory and the theory of topological threefold from a viewpoint of a representation theory. Namely an L-function associated to a topological threefold will be discussed. Since our definition of an L-function will be based on one of a local system on a curve defined over a finite field (i.e. the Hasse-Weil’s congruent L-function), we will recall the definition the L-function in the arithmetic case.

2 A brief review of the Hasse-Weil’s congruent L-function

In what follows, for an object Z over a finite field \mathbb{F}_q, its base extension to $\overline{\mathbb{F}}_q$ will be denoted by \overline{Z}. We fix a rational prime l which is prime to q.

Let C be a smooth curve over a finite field \mathbb{F}_q and let $C \rightarrow C^*$ be its compactification. Suppose we are given a \mathbb{Q}_l-smooth sheaf \mathcal{F} on C. Then the q-th Frobenius ϕ_q acts on $H^1(C^*, \overline{j_*\mathcal{F}})$ and the Hasse-Weil L-function is defined to be

$$L(C, \mathcal{F}, T) = \det[1 - \phi_q^* T H^1(C^*, \overline{j_*\mathcal{F}})].$$

It has

* Address: Ken-ichi SUGIYAMA, Department of Mathematics and Informatics, Faculty of Science, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
† e-mail address: sugiyama@math.s.chiba-u.ac.jp
• an functional equation,

• an Euler product.

Suppose \(\mathcal{F} \) is deduced from an abelian fibration. Namely let \(A \to C \) be an abelian fibration whose moduli is not a constant. We set \(\mathcal{F} = R^1 f_* \mathcal{Q}_l \) and

\[
L(A, s) = L(C, \mathcal{F}, q^{-s}).
\]

Then \(L(A, s) \) is an entire function and Artin and Tate ([11]) have given a detailed conjecture for a special value of \(L \)-function, which is a geometric analogue of the Birch and Swinnerton-Dyer conjecture. Their conjecture predicts that the order of \(L(A, s) \) at \(s = 1 \) should be equal to the rank of the Mordell-Weil group of the fibration. They have shown this is equivalent to the finiteness of \(l \)-primary part of the Brauer group of \(A \).

3 A definition of an \(L \)-function of a topological threefold

3.1 The definition

Let \(X \) be the complement of a knot \(K \) in the standard three dimensional sphere. By the Alexander duality, we know \(H_1(X, \mathbb{Z}) \simeq \mathbb{Z} \) and therefore it admits a infinite cyclic covering

\[
Y \xrightarrow{\pi} X.
\]

Let \(S \) be a minimal Seifert surface of \(K \). Then its inverse image \(\pi^{-1}(S) \) is a disjoint union \(\sqcup_{n \in \mathbb{Z}} S_n \) of copies of \(S \) indexed by integers. We assume that the genus of \(S \) is greater than or equal to two and that the fundamental groups of \(S_0 = S \) and \(Y \) are isomorphic. Let \(\mathcal{L}_X \) be a polarized local system on \(X \) and let \(\mathcal{L}_S \) be its restriction to \(S \). The deck transformation of the covering may be considered as a diffeomorphism of \(S \) and it is easy to see it lifts to an isomorphism \(\phi \) of the local system \(\mathcal{L}_S \).

Let us compare our situation to the arithmetic one. The covering \(Y \xrightarrow{\pi} X \) corresponds to \(\overline{C} \to C \) and the local system \(\mathcal{L}_X \) is an analogy of \(\mathcal{F} \). Let \(\rho_X \) be the representation of \(\pi_1(X) \) associated to \(\mathcal{L}_X \). Since \(\pi^* \mathcal{L}_X \) is the local system for the restriction of \(\rho_X \) to \(\pi_1(Y) \simeq \pi_1(S) \), we may identify it with \(\mathcal{L}_S \). Hence \(\mathcal{L}_S \) is an analogy of \(\tilde{F} \) and \(\tilde{\phi} \) corresponds to the Frobenius.

According to the observation above, we will make the following set up.

Let \(\tilde{X} \) be a compact smooth threefold which may have smooth boundaries. Suppose it has an infinite cyclic covering

\[
\tilde{Y} \xrightarrow{\tilde{\pi}} \tilde{X}
\]

which satisfies the following properties.
1. There is a smoothly embedded connected surface

\[\mathcal{S} \hookrightarrow \mathcal{X} \]

whose genus is greater than or equal to 2 and the boundaries are contained in \(\partial \mathcal{X} \) via \(i \).

2. Let \(\mathcal{T} \) be the inverse image of \(\mathcal{S} \) by \(\pi \), which is a disjoint union of copies of \(\mathcal{S} \) indexed by integers:

\[\mathcal{T} = \bigsqcup_{n \in \mathbb{Z}} \mathcal{S}_n, \quad \mathcal{S} \simeq \mathcal{S}_n. \]

Then the map \(i_0 \) induces an isomorphism

\[\pi_1(\mathcal{S}, s_0) \simeq \pi_1(\mathcal{Y}, i_0(s_0)). \]

We will refer such an infinite cyclic covering to be of a surface type. The following notations will be used.

Notations 3.1.

1. \(X \) (resp. \(S, Y \)) is the interior of \(\overline{X} \) (resp. \(\overline{S}, \overline{Y} \)).

2. \(\Pi_S \) (resp. \(\Pi_Y, \Pi_X \)) is the fundamental group of \(S \) (resp. \(Y, X \)) with respect to the base point \(s_0 \) (resp. \(i_0(s_0), \pi(i_0(s_0)) \)).

3. \(\Pi_{Y/X} \) is the covering transformation group of \(Y \to X \).

Let \(\Phi \) be a deck transformation generating \(\Pi_{Y/X} \). Identifying \(S \) with \(S_0 \) (resp. \(S_1 \)) via \(i_0 \) (resp. \(i_1 \)), \(\Phi \) induces a diffeomorphism \(\phi \) on \(S \) by restriction. Since the genus of \(S \) is greater than or equal to 2, it is diffeomorphic to a quotient of the Poincaré upper half plane \(\mathbb{H}^2 \) by a discrete subgroup \(\Gamma \) of \(PSL_2(\mathbb{R}) \). Adding cusps \(\Sigma \) to the quotient, we get compactification \(S^* \). We will sometimes identify \(S \) with \(S^* \setminus \Sigma \).

Remark 3.1. Note that there is an exact sequence

\[1 \to \Pi_S \to \Pi_X \to \mathbb{Z} \to 1. \]

This is a geometric counterpart of the following situation in arithmetic geometry. Let \(C \) be a smooth curve defined over \(\mathbb{F}_q \) and let \(\overline{C} \) be its base extension to \(\overline{\mathbb{F}}_q \). Then their fundamental groups fit in the exact sequence

\[1 \to \pi_1(\overline{C}) \to \pi_1(C) \to \hat{\mathbb{Z}} \to 1. \]

Let \(F \) be a field of characteristic 0 and let \(L \) be a vector space over \(F \) of dimension \(2g \) with a skew-symmetric nondegenerate pairing \(\alpha \). Suppose we are given a representation

\[\Pi_X \xrightarrow{\rho_X} Aut(L, \alpha) \]

such that

\[L^{\Pi_S} = 0, \quad (1) \]
Let ρ_S be the restriction of ρ_X to Π_S and the local system associated to ρ_X (resp. ρ_S) will be denoted by \mathcal{L}_X (resp. \mathcal{L}_S). Then the diffeomorphism ϕ induces an isomorphism of a polarized local system:

\[
\begin{array}{ccc}
\mathcal{L}_S & \overset{\hat{\phi}}{\sim} & \mathcal{L}_S \\
S & \overset{\phi}{\sim} & S
\end{array}
\]

Fig. 2.2

Let j be the open immersion of S into S^* and let i be the inclusion of Σ into S^*. Then $\hat{\phi}$ acts on $H^1(S^*, j_* \mathcal{L}_S)$, which is a geometric analogue of the Frobenius action. For a point P in Σ, let Δ_P be a small disc centered at P and we set $\Delta_P^* = \Delta_P \setminus \{P\}$. The parabolic cohomology H^1_P is defined to be

\[H^1_P(S, \mathcal{L}_S) = \text{Ker}[H^1(S, \mathcal{L}_S) \to \oplus_{P \in \Sigma} H^1(\Delta_P^*, \mathcal{C}s)].\]

One can easily see that $H^1_P(S, \mathcal{L}_S)$ admits an action of $\hat{\phi}$ and it is isomorphic to $H^1(S^*, j_* \mathcal{L}_S)$ as a $F[\hat{\phi}]$-module. Also the nondegenerate skew-symmetric pairing α and the Poincaré duality induce a perfect pairing on $H^1_P(S, \mathcal{L}_S)$, which is invariant under the action of $\hat{\phi}$. Hence $H^1_P(S, \mathcal{L}_S)$ is a semisimple $F[\hat{\phi}]$-module and it is isomorphic to its dual as a $F[\hat{\phi}]$-module.

Now we define the topological L-function $L(X, \mathcal{L}_X)$ for the local system \mathcal{L}_X to be

\[L(X, \mathcal{L}_X) = \det[1 - \hat{\phi}^* T| H^1_P(S, \mathcal{L}_S)].\]

Here T is an indeterminate.

Let $M_\phi(S)$ be the mapping torus of ϕ and let $M_\phi(\mathcal{L}_S)$ be the local system on X which is obtained by the same way as "mapping torus" from the isomorphism $\hat{\phi}^* \mathcal{L}_S \cong \mathcal{L}_S$. Note that by the definition we have

\[L(X, \mathcal{L}_X) = L(M_\phi(S), M_\phi(\mathcal{L}_S)).\]

3.2 Examples

Let K be a knot embedded in the standard three dimensional sphere S^3 and let N_K be its tubular neighborhood. Let \bar{X} be the closure of the complement of
N_K in S^3. Then $H_1(\bar{X}, \mathbb{Z})$ is isomorphic to \mathbb{Z} by the Alexander duality and \bar{X} admits an infinite cyclic covering

$$\bar{Y} \rightarrow \bar{X}.$$

Let X (resp. Y) be the interior of \bar{X} (resp. \bar{Y}) (cf. Notations 3.1). Then the map induces an exact sequence

$$1 \rightarrow \Pi_Y \rightarrow \Pi_X \rightarrow \mathbb{Z} \rightarrow 1. \quad (2)$$

Let \hat{S} be a minimal Seifert surface of K and we set

$$\bar{S} = \hat{S} \cap \bar{X}.$$

It is known if Π_Y is finitely generated, $S \rightarrow Y$ induces an isomorphism ([5])

$$\Pi_S \simeq \Pi_Y.$$

Moreover Murasugi has shown if the absolute value of the Alexander polynomial $\Delta_K(t)$ of K at $t = 0$ is equal to 1, then Π_Y is finitely generated.

Fact 3.1. ([4/IV. Proposition 5]) Suppose every closed incompressible surface in X is boundary parallel. Then either

1. X is Seifert fibred,

or

2. X is hyperbolic. Namely there is the maximal order O_F of an algebraic number field F and a torsion free subgroup $\Gamma \subset PSL_2(O_F)$ such that X is diffeomorphic to $\Gamma \backslash H^3$. Here after fixing an embedding $F \rightarrow C$, Γ is regarded to be a subgroup of $PSL_2(C)$.

Now we assume that the infinite cyclic covering satisfies the following conditions.

Condition 3.1. 1. Π_Y is finitely generated.

2. Either

(a) X is Seifert fibred,

or

(b) there is the maximal order O_F of an algebraic number field F and a torsion free subgroup $\Gamma \subset SL_2(O_F)$ which freely acts on H^3 so that X is diffeomorphic to $\Gamma \backslash H^3$. As before after fixing an embedding $F \rightarrow C$, Γ is regarded to be a subgroup of $SL_2(C)$.

Remark 3.2. Professor Fujii kindly informed us that if X is hyperbolic, then the Condition 3.1. 2 (b) is always satisfied.
Suppose X satisfies 1 and 2(b) of Condition 3.1. Then we have the canonical representation
\[\Pi_X \simeq \Gamma \rho_X^* SL_2(\mathbb{C}). \]
We set
\[L = \mathbb{C}^{\oplus 2}, \]
and let α be the standard symplectic form on L. Namely for elements $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ of L, $\alpha(x,y)$ is defined as
\[\alpha(x,y) = \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}. \]
This invariant under the action of Π_X. The result of Neuwirth([5]) implies
\[\Pi_S \simeq \Pi_Y \pi_1(i_{\mathbb{O}}), \]
and it is easy to see
\[L^{\Pi_S} = 0. \]
Hence the conditions in §3.1 are satisfied.

Next suppose that X satisfies 1 and 2(a) of Condition 3.1. Then under a mild condition, one can check its fundamental group has a linear representation
\[\Pi_X \rho_X \simeq SL_2(\mathbb{C}) \]
such that
\[L^{\Pi_S} = 0. \]
Details will be found in [9].

Remark 3.3. Even if we take the trivial representation, we can define an L-function for a knot complement. Note that this is nothing but the Alexander polynomial, which corresponds to the congruent zeta function of a curve. But contrary to the arithmetic case, as we have seen, we have a priori a two-dimensional irreducible linear representation of $\pi_1(X)$. This is one of the main reasons to consider the L-function.

4 Properties of a topological L-function

In the present section, we will list up basic properties of our topological L-function. Proofs of the statements will be found in [9].
4.1 A functional equation

Let $b(\mathcal{L}_S)$ be the dimension of $H^1_P(S, \mathcal{L}_S)$.

Theorem 4.1. *(The functional equation)*

$$L(X, \mathcal{L}_X)(T) = (-T)^{b(\mathcal{L}_S)}L(X, \mathcal{L}_X)(T^{-1}).$$

Corollary 4.1. Suppose $b(\mathcal{L}_S)$ is odd. Then $L(X, \mathcal{L}_X)(1)$ vanishes and in particular the dimension of $H^1_P(S, \mathcal{L}_S)\phi$ is positive.

4.2 A geometric analogue of Birch and Swinnerton-Dyer conjecture

In the present section, we will work with the holomorphic category.

Let A^* be a smooth projective variety with a morphism

$$A^* \xrightarrow{\bar{\mu}} S^*$$

such that its restriction to S

$$A \xrightarrow{\mu} S$$

is a smooth fibration whose fibres are abelian varieties of dimension g. Moreover we assume $\bar{\mu}$ satisfies the following conditions.

Condition 4.1.

1. A^*/S^* is the Neron model of A/S and has a semistable reduction at each point $s \in \Sigma$.

2. $R^1\mu_* \mathbb{Q}$ is isomorphic to the local system \mathcal{L}_S.

3. $H^0(S^*, R^1\bar{\mu}_* \mathcal{O}_A^*) = 0$.

Suppose there is a commutative diagram

$$
\begin{array}{ccc}
A^* & \xrightarrow{\Phi} & A^* \\
\downarrow \bar{\mu} & \cong & \downarrow \bar{\mu} \\
S^* & \xrightarrow{\phi} & S^* \\
\end{array}
$$

Fig. 4.1
such that $\phi(\Sigma) = \Sigma$. Since $L_S = R^1 \mu_* Q$, this induces the diagram as Fig. 2.2. We define the Mordell-Weil group $MW_X(A)$ to be

$$MW_X(A) = A(S)^{\phi}$$

and its rank will be denoted by $r_X(A)$. Since the cycle map induces an imbedding

$$A(S) \otimes Q \hookrightarrow H^1_F(S, L_S),$$

$r_X(A)$ is less than or equal to the order of the topological L-function $L(X, L_X)$ at $T = 1$.

Theorem 4.2. Suppose $H^2(A^*, O_{A^*}) = 0$. Then $r_X(A)$ is equal to the order of the topological L-function $L(X, L_X)$ at $T = 1$.

We define the topological Brauer group $Br_{top}(A^*)$ to be

$$Br_{top}(A^*) = H^2(A^*, O_{A^*}^*).$$

Then the exponential sequence

$$0 \to Z \to O_{A^*} \to O_{A^*}^* \to 0$$

implies the exact sequence

$$H^2(A^*, Z) \to H^2(A^*, O_{A^*}) \to Br_{top}(A^*) \to H^3(A^*, Z).$$

Since A^* is compact, both $H^2(A^*, Z)$ and $H^3(A^*, Z)$ are finitely generated abelian groups. Hence $Br_{top}(A^*)$ is finitely generated if and only if $H^2(A^*, O_{A^*})$ vanish since the latter is a complex vector space.

Corollary 4.2. Suppose $Br_{top}(A^*)$ is finitely generated. Then the rank of the Mordell-Weil group $r_X(A)$ is equal to the order of the topological L-function $L(X, L_X)$ at $T = 1$.

Note that the corollary above is a geometric analogue of the theorem of Artin and Tate. ([10][11])

4.3 An Euler product and an Euler system

Suppose the map ϕ in Fig. 2.2 satisfies the following condition.

Condition 4.2. There exists a diffeomorphism ϕ_0 of S such that

1. ϕ_0 is homotopic to ϕ,

and

2. every fixed point of ϕ_0^n is non-degenerate and is isolated for any positive integer n.
Because of Condition 4.2(1), Fig. 2.2 may be replaced by:

\[\phi_0 \]
\[\mathcal{L}_S \rightarrow \mathcal{L}_S \]
\[\phi_0 \]
\[\mathcal{L}_S \rightarrow \mathcal{L}_S \]
\[S \rightarrow S \]

Fig. 7.1

We prepare some notations. Let us fix a positive integer \(n \). The set of fixed points of \(\phi_0^n \) will be denoted by \(S^{\phi_0^n} \). We define \(\Phi_0(n) \) to be the orbit space of the action of \(\phi_0 \) on

\[\{ s \in S | \phi_0^n(s) = s \quad \text{and} \quad \phi_0^m(s) \neq s \quad \text{for} \quad 1 \leq m \leq n - 1 \} \]

and we set

\[\Phi_0 = \bigcup_{n=1}^{\infty} \Phi_0(n). \]

For an element \(\gamma \) of \(\Phi_0(n) \), we call the integer \(n \) its \textit{length} and we will denote it by \(l(\gamma) \). Let \(x \in S^{\phi_0^{l(\gamma)}} \) be a representative of \(\gamma \in \Phi_0 \). Then \(\phi_0^{l(\gamma)} \) defines an automorphism of the fibre of \(\mathcal{L}_S \otimes \mathbb{Q} \) at \(x \) and the polynomial

\[\det[1 - \hat{\phi}_0^{l(\gamma)} T | (\mathcal{L}_S \otimes \mathbb{Q})_x] \]

is independent of the choice of \(x \), which will be written as \(P_{\gamma}(T) \).

Let \(V^P \) is the invariant subspace of \(L \otimes \mathbb{Q} \) under the action of \(\pi_1(\Delta_P^\ast) \). It is easy to see \(\bigoplus_{P \in \Sigma} V^P \) has an action of \(\hat{\phi} \). Now the Grothendieck-Lefshetz trace formula implies the following theorem.

\textbf{Theorem 4.3.} \textit{(Euler product formula)} Suppose the map \(\phi \) in Fig. 2.2 satisfies the Condition 4.2. Then

\[L(X, L_X) = (\det[1 - \hat{\phi}^* T | \bigoplus_{P \in \Sigma} V^P])^{-1} \prod_{\gamma \in \Phi_0} P_{\gamma}(T^{n(\gamma)})^{-1}. \]

Our L-function has a \textit{Euler system}, which has been considered by Kolyvagin in the Iwasawa theory of an elliptic curve ([8]). Let \(\phi_0 \) be a diffeomorphism.
of S satisfying the Condition 4.2 and let us fix a generator t of $\Pi_{Y/X} \simeq \mathbb{Z}$. Then $Q[\Pi_{Y/X}]$ may be identified with $P = Q[t, t^{-1}]$ and defining the action of t by $(\phi_{0}^{*})^{-1}$, the compact supported cohomology group $H_{c}^{1}(S, L_{S} \otimes Q)$ may be regarded as a P-module. In general, the Fitting ideal of a finitely generated P-module M will be denoted by $\text{Fitt}_{P}(M)$. The following lemma directly follows from the definition of our L function.

Lemma 4.1.

$$\text{Fitt}_{P}(H_{c}^{1}(S, L_{S} \otimes Q)) = (L_{c}(X, L_{X})),$$

where $L_{c}(X, L_{X})$ is defined to be

$$L_{c}(X, L_{X}) = \det[1 - \delta^{*} t|H_{c}^{1}(S, L_{S} \otimes Q)].$$

For $\gamma \in \Phi_{0}(n)$, let $O_{\gamma} \subset S$ be the corresponding orbit of ϕ_{0} and let S_{γ} be its complement. The corestriction map

$$H_{c}^{1}(S_{\gamma}, L_{S} \otimes Q) \xrightarrow{\text{Cor}} H_{c}^{1}(S, L_{S} \otimes Q)$$

is defined to be the Poincaré dual of the restriction map

$$H^{1}(S, L_{S} \otimes Q) \xrightarrow{\text{Res}} H^{1}(S_{\gamma}, L_{S} \otimes Q).$$

Observe that both of them are homomorphism of P-modules. The Thom-Gysin exact sequence implies

$$0 \rightarrow H^{1}(S, L_{S} \otimes Q) \xrightarrow{\text{Res}} H^{1}(S_{\gamma}, L_{S} \otimes Q) \rightarrow \oplus_{x \in O_{\gamma}}(L_{S} \otimes Q)_{x} \rightarrow 0,$$

and let

$$0 \rightarrow \oplus_{x \in O_{\gamma}}(L_{S} \otimes Q)_{x} \rightarrow H_{1}^{1}(S_{\gamma}, L_{S} \otimes Q) \xrightarrow{\text{Cor}} H_{c}^{1}(S, L_{S} \otimes Q) \rightarrow 0 \quad (3)$$

be its dual sequence. The following lemma follows from the observation:

$$\text{Fitt}_{P}((\oplus_{x \in O_{\gamma}}(L_{S} \otimes Q)_{x}) = (P_{\gamma}(t^{l(\gamma)})).$$

Lemma 4.2.

$$\text{Fitt}_{P}(H_{c}^{1}(S_{\gamma}, L_{S} \otimes Q)) = (L_{c}(X, L_{X}) \cdot P_{\gamma}(t^{l(\gamma)})).$$

In general for an N-tuples of distinct elements $\{\gamma_{1}, \cdots, \gamma_{N}\}$ of Φ_{0}, we set

$$S_{\gamma} = S \setminus (O_{\gamma_{1}} \cup \cdots \cup O_{\gamma_{N}}). \quad (4)$$

The induction on N shows the following proposition.

Proposition 4.1.

$$\text{Fitt}_{P}(H_{c}^{1}(S_{\gamma}, L_{S} \otimes Q)) = (L_{c}(X, L_{X}) \cdot \prod_{i=1}^{N} P_{\gamma_{i}}(t^{l(\gamma_{i})})).$$
Definition 4.1. (An Euler system of a topological L-function) Let \(\gamma \) be the empty set or an \(N \)-tuples of distinct elements of \(\Phi_0 \). Suppose a finitely generated \(P \)-modules \(V_\gamma \) is given for such \(\gamma \). If \(\{V_\gamma\}_\gamma \) satisfy the following conditions, they will be referred as Euler system of the topological L-function.

1.
 \[
 \text{Fitt}_P(V_\phi) = (L_c(X, \mathcal{L}_X)).
 \]

2. Suppose
 \[
 \gamma' = \gamma \cup \{\gamma_{N+1}\}, \quad \gamma_{N+1} \notin \gamma.
 \]
 Then there is a surjection as \(P \)-modules
 \[
 V_{\gamma'} \to V_\gamma
 \]
 and their Fitting ideals satisfy the relation
 \[
 \text{Fitt}_P(V_{\gamma'}) = \text{Fitt}_P(V_\gamma) \cdot (P_{\gamma N+1}(t^{l(\gamma_{N+1})})).
 \]

We set
\[
V_\phi = H_c^1(S, \mathcal{L}_S \otimes \mathbb{Q})
\]
and for an \(N \)-tuples of distinct elements \(\gamma \) of \(\Phi_0 \) we define
\[
V_\gamma = H_c^1(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q}).
\]

Then \(\{V_\gamma\}_\gamma \) is an Euler system by Proposition 4.1.

Next we will show how Kolyvagin's Euler system appears in our geometric situation. We assume any two of \(\{P_\gamma(t^{l(\gamma)})\}_{\gamma \in \Phi_0} \) are relatively prime. Let \(\gamma \) and \(\gamma' \) be as 2. of Definition 4.1. The same arguments of to obtain (3) shows
\[
0 \to \oplus_{x \in O_{\gamma_{N+1}}} (\mathcal{L}_S \otimes \mathbb{Q})_x \to H_c^1(S_{\gamma'}, \mathcal{L}_S \otimes \mathbb{Q}) \xrightarrow{Cor} H_c^1(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q}) \to 0.
\]

Note that \(P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})}) \) annihilates \(\oplus_{x \in O_{\gamma_{N+1}}} (\mathcal{L}_S \otimes \mathbb{Q})_x \) and by the assumption its multiplication on \(H_c^1(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q}) \) is an isomorphism. These observations imply the following lemma.

Lemma 4.3. Let us fix \(x_\gamma \in H_c^1(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q}) \). If we take \(y_{\gamma'} \in H_c^1(S_{\gamma'}, \mathcal{L}_S \otimes \mathbb{Q}) \) so that
\[
\text{Cor}(y_{\gamma'}) = x_\gamma.
\]
Then we have
\[
\text{Cor}(P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})})y_{\gamma'}) = P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})})x_\gamma.
\]

Moreover \(P_{\gamma_{N+1}}(t^{l(\gamma_{N+1})})y_{\gamma'} \) is independent of the choice of \(y_{\gamma'} \).
Now we fix a non-zero element c_ϕ of $H_2^1(S, \mathcal{L}_S \otimes \mathbb{Q})$. For an N-tuples of distinct elements γ of Φ_0 we will inductively define an element c_γ of $H_2^1(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q})$. Let $\gamma' = \gamma \cup \{\gamma_{N+1}\}$ be as before. We take any $d_\gamma \in H_2^1(S_\gamma, \mathcal{L}_S \otimes \mathbb{Q})$ to be

$$Cor(d_\gamma) = c_\gamma,$$

and we set

$$c_{\gamma'} = P_{\gamma_{N+1}}(t^{d(\gamma_{N+1})})d_\gamma.$$

Then the system $\{c_\gamma\}_\gamma$ is well-defined by Lemma 4.3 and they satisfy

$$Cor(c_{\gamma'}) = P_{\gamma_{N+1}}(t^{d(\gamma_{N+1})})c_\gamma,$$

which is the same relation as Kolyvagin's Euler system ([8]). One may realize an Euler system is an another appearence of Euler product.

4.4 The Franz-Reidemeister torsion and a special value

We will briefly recall the theory of densities and the Franz-Reidemeister torsion ([2] [3] [9]). Throughout the subsection, let F be equal to \mathbb{R} or \mathbb{C}. Let V be a vector space over F of dimension $r > 0$ and let $\{v_1, \cdots, v_r\}$ be its basis. We set

$$(\Lambda^r V)^x = \{a \cdot v_1 \wedge \cdots \wedge v_r | a \in F^x\}$$

and

$$|\Lambda^r V| = (\Lambda^r V)^x / \{\pm 1\}.$$ Then $|\Lambda^r V|$ is isomorphic to $F^x / \{\pm 1\}$ and will be mentioned as the space of densities on V. Let

$$(\Lambda^r V)^x \overset{\pi}{\rightarrow} |\Lambda^r V|$$

be the canonical projection and the image $\pi(f)$ of $f \in (\Lambda^r V)^x$ will be denoted by $|f|$. For the 0 dimensional vector space 0, we define

$$\Lambda^0 0 = F, \quad (\Lambda^0 0)^x = F^x$$

and

$$|\Lambda^0 0| = F^x / \{\pm 1\}.$$ Moreover for $f \in \Lambda^0 0 = F^x$, its image in $|\Lambda^0 0| = F^x / \{\pm 1\}$ will be denoted by $|f|$. If F is \mathbb{R}, the canonical projection

$$(\Lambda^0 0)^x = \mathbb{R}^x \overset{\pi}{\rightarrow} |\Lambda^0 0| \simeq \mathbb{R}_{>0}$$

is nothing but the map of taking absolute value. In the followings, we always assume the 0 dimension vector space 0 has the density 1 $\in |\Lambda^0 0| = F^x / \{\pm 1\}$. Also we always assume every complex is bounded and consists of finite dimensional vector spaces over F.
Definition 4.2. If a complex
\[C' = [C^0 \rightarrow \cdots \rightarrow C^n] \]
has a density on each \(C^i \) and \(H^i \), we say the complex \(C' \) is given a density.

Remark 4.1. When \(C^i = H^i \), we assume \(H^i \) is given the same density as \(C^i \).

For a complex with a density
\[C' = [C^0 \rightarrow \cdots \rightarrow C^n], \]
we can associate an element \(\tau_{FR}(C') \) of \(F^x/\{\pm 1\} \), which is called as the Franz-Reidemeister torsion (the FR-torsion for simplicity). Let \(|C^i|\) (resp. \(|H^i|\)) be the density on \(C^i \) (resp. \(H^i \)). Then one may intuitively think of \(\tau_{FR}(C') \) as
\[\tau_{FR}(C') = \prod_{i=1}^{n} \left(\frac{|C^i|}{|H^i|} \right)^{(-1)^i}. \]

Let us take a finite triangulation of \(S \) which is preserved by \(\phi \). Then by a pararell transformation of the symplectic form \(\alpha \), we obtain a complex with a density \(C_\phi' \) such that its cohomology groups are isomorphic to \(H^* (M_\phi(S), M_{\overline{\phi}}(\mathcal{L}_S)) \). Using the previous observation:
\[L(X, \mathcal{L}_X) = L(M_\phi(S), M_{\overline{\phi}}(\mathcal{L}_S)), \]
we can show the following theorem.

Theorem 4.4. Suppose \(\hat{\phi}^* - 1 \) is isomorphic on \(H^1_P(S, \mathcal{L}_S) \). Then we have
\[|L(X, \mathcal{L}_X)(1)| = \tau_{FR}(C_\phi). \]

Remark 4.2. In general, we can show the following statement:
Let \(r \) be the dimension of \(\ker [(\hat{\phi}^* - 1)|H^1_P] \). Then we have
\[\lim_{T \to 1} |(T - 1)^{-r} L(X, \mathcal{L}_X)(T)| = R((H^1_P)) \cdot \tau_{FR}(C_\phi). \]

Here \(R((H^1_P)) \) is the regulator of the local system. Note that this is quite similar to the formula which is predicted by the Birch and Swinnerton-Dyer conjecture.

References

Address : Department of Mathematics and Informatics
Faculty of Science
Chiba University
1-33 Yayoi-cho Inage-ku
Chiba 263-8522, Japan
e-mail address : sugiyama@math.s.chiba-u.ac.jp