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1. BRIEF BACKGROUND HISTORY

In this report , I will explain a certain nice $p^{m}$-torsion object ”
$\mathbb{Z}/p^{m}(r)_{X}"\in$

$D^{b}$ (X) which we call SatO-Tate twist, where $X$ is a regular scheme flat over
Dedekind ring $R$ having semi-stable reduction at primes in $R$ lying over $p$ .
This, do we expect to play the same roles in the theory of ptorsion etale
cohomology group for $X$ as Tate twist $\mu_{l^{m}}^{\otimes r}$ does in $l$-adic theory ( $l$ is invert-
ible in $x$). It is P. Schneider who firstly gave the definition of $\mathbb{Z}/p^{m}(r)_{\mathrm{X}}$

for the regular model $x$ of smooth projective variety $X$ over local field
having good reduction and afterwards it was generalized to semi-sta le
cases by Kanetomo Sato. The prototype of the theory is found in Bloch-
Kato paper [BK1], “padic \’etale cohomology” in IHES. Schneider, however,
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did not pursue any important properties of $Z/pm(r)x$ such as (P): Purity
or (PD): Poincare Duality, although he gave nice attempts for (C): Cycle
class maps for I. Then Sato in [Satl] generalizing Schneider’s definition to
semi-stable cases completely proved properties (P) &(PD). This is actu-
ally big progress in the history of motivic cohomology from the viewpoint
of constructing nice Tate twists for mixed characteristics schemes which
are equipped with reasonable and desirable properties. He also made a
nice application of his theory in [Sat3] to rewrite “Tamagawa Number
Conjecture” by Bloch-Kato in [BK2] for certain motives and especially for
arithmetic surfaces, he reinterprets through the padic cohomology with
SatO-Tate twists coefficients the beautiful conjectural formula by Kato on
values of $L$-functions of them stated in his Hasse principle paper [Ka2].

Then, I took his results to apply them to the proof of class field the-
ory for complete regular local rings in mixed characteristics in [Ma4].
More correctly, I several years ago tried to prove class field theory for
the fractional field of $\mathbb{Z}_{p}[[X_{1}, X_{2}]]$ which corresponds to mixed character-
istics version of my Thesis in [Mai], where I treated class field theory for
the power series ring $\mathrm{F}_{p}[[X_{1}, X_{9}., X_{3}]]$ . But what I encountered there was
the terrible difficulty of dealing with or calculating the local cohomology
$H_{\mathrm{m}}^{i}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\mathbb{Z}_{p}[[X_{1}, X_{2}]], \mathbb{Z}/p)$ for $i>0.$ That is, I was very thirsty for some
good formalism to calculate such local cohomologies, where in the case of
$\mathrm{F}_{p}[[X_{1}, X_{2}, X_{3}]]$ we have the perfect duality with logarithmic Hodge-Witt
sheaves which comes from Grothendieck duality for geometric local rings
defined over fields. So, I was obliged to face with the severe situation that in
mixed characteristics, I had no candidate which replaces with logarithmic
Hodge-Witt sheaves in geometric cases. But afterwards,. I studie$\mathrm{d}$ Tsuji’s
$C_{st}$ paper [Tsu] in Inventionnes and although with a short knowledge of
syntomic complex by Kato, I imagined the very vague form of SatO-Tate
twists, which I defined as the patching of vanishing cycles and syntomic
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complex on the special fibre, like an etale sheaf $\mathcal{F}$ on a scheme $\mathrm{X}$ with
open immersion $Uarrow+X$ and $Z$ $=X\backslash U$ is defined by giving sheaves $7_{1}$ , $7_{2}$

on $U$, $Z$ , respectively together with the patching isomorphism on $Z$ . But
this definition by me is not correct, for it collapses when $p$ is much bigger
than the dimension of $X$ . Moreover, it never tells the precise form of the
original object which should be defined on the model, not on the special
fibre. Then strangely at the same time, Shiho in the conversation at the
computer room in Tohoku university suggested me that Sato was in the
course of establishing such nice objects for general arithmetic schemes. I
was very happy for this and asked Sato of his study, then he immediately
showed me his object and the conjectural duality theorem, which is nothing
but the duality that I was seeking for and longing for and dreaming of! I
call this beautiful duality “Arithmetic Grothendieck Duality”. But at that
time, we concluded that it would be quite hard to prove, although in the
2-dimensional case, Shuji Saito in [Sa] did equivalent calculations. I actu-
ally proved this 2 dimensional case years ago shortly after our discussion in
Sato’s house in Nagoya independently with Saito, and felt sure of the hold-
ing of the general duality. Afterwards, I was busy with studying Ribet’s
paper on Galois representations, so I rather abandoned to prove it together
with my feeling that something new will be necessary for the proof. But
in Lille, I got the message from Sato that he proved duality completely
which made me astonished. I soon after, imagined the proof, which was
far from perfect, but at any rate Sato’s success obliged me to prove it also
by myself. But I struggled for much time, and it was only the last Novem-
ber that I found the complete proof of arithmetic Grothendieck duality for
local rings, but in semi-stable cases, my understanding of the definition of
SatO-Tate twists was completely wrong! I remedied my misunderstanding
by getting correct definitions by Sato, and now I complet$\mathrm{e}\mathrm{d}$ the proof. But
in good reduction cases, the proof that I rediscovered is completely the
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same one as Sato did for varieties over local fields, and further I did a bit
more than him in points that I calculated all wild and fierce ramifications
along the special fibre which is Theorem $\mathrm{B}$ (see Section 3). The basic spirits

is of course Kato’s calculations of Milnor $K$-groups and of padic vanishing
cycles. But one must pay good attention in working in derived categories.
But at any rate, once we have the arithmetic Grothendieck duality, we can
deduce from it various arithmetic applications to complete regular local
rings in mixed characteristics such as class field theory, Hasse principle,
vanishings or explicit representations by Milnor $K$-groups of many local
cohomologies..... Hopefully this report will be an easy introductory guide

to SatO-Tate twists.

2. THE DEFINITION OF SATO-TATE Twist $\mathbb{Z}/p^{m}(r)_{X}$ & ITS GENERAL
FORMALISM

Let $X$ be a regular scheme flat and semi-stable scheme over the integer
ring $\mathcal{O}_{k}$ of $k$ , where $\mathit{5}k$ : $\mathbb{Q}_{p}$] $<$ oo and $F:=\mathcal{O}_{k}/\pi_{k}$ with its uniformizer $\pi_{k}$ .
We begin to give the definiton of SatO-Tate twist $\mathrm{Z}/\mathrm{p}\mathrm{m}(\mathrm{r})\mathrm{x}\in D^{b}(\mathrm{X})$ in the
below. Firstly we briefly recall important preparations.

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{n}$ $2.1$ (Sato). Let $X$ be as above and $\mathrm{Y}$ be its spe-
cial fibre which is a normal crossing variety over a finite field F. Let $\mathrm{Y}^{0}$ , $\mathrm{Y}^{1}$

be sets of generic points or codimension 1 points of $\mathrm{Y}$ Then there exists $a$

canoinical boundary map

,
be sets of generic points or codimension 1 points of $\mathrm{Y}$ Then there exists $a$

canoinical boundary map

$\oplus W_{m}\Omega^{r}y,\logarrow\partial\oplus W_{m}\Omega^{r-\mathrm{l}}y’,1\mathrm{o}\mathrm{g}$
’

$y\in Y^{0}$ $y’\in Y^{1}$

by which we define

$\nu_{m,Y}^{r}$
$:=\mathrm{K}\mathrm{e}\mathrm{r}$( $\partial$ : $\oplus W_{m}\Omega^{r}y,\logarrow\oplus W_{m}\Omega^{r-\mathrm{l}},$ )

$y,1\mathrm{o}\mathrm{g}$

. (2. $!)$

$y\in Y^{0}$ $y’\in Y^{1}$

4
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Also the natural map $W_{m}\mathcal{O}_{Y}^{*}arrow W_{m}\Omega_{Y,\log}^{1};\underline{a_{1}}$
}$arrow\underline{\underline{d\underline{a_{1}}}a_{1}}$ induces another sheaf

$\lambda_{m,Y}^{r}$ $:=$ Image $(((W_{m}\mathcal{O})_{Y}^{*})^{\otimes r}arrow W_{7n}\Omega_{Y,\log}^{r})$ ; $\underline{a_{1}}\otimes$
$\otimes\underline{a_{r}}\vdasharrow\underline{d\underline{a_{1}}}a_{1}\Lambda$ $\Lambda\underline{d\underline{a_{r}}}a_{r}$

If $\mathrm{Y}$ is smooth, it holds that $\nu_{m,Y}^{r}=\lambda_{m,Y}^{r}=W_{m}\Omega_{Y,\log}^{r}$ , which is the usual
logarithmic Hodge- Witt sheaf of $\mathrm{Y}$

Further, we have the following inclusion relations between Hyodo ’s loga-
rithmic Hodge-Witt sheaves $W_{m}\omega_{Y,\log}^{r}$ for $\mathrm{Y}$ defined by logarithmic stmc-
ture studied by Kato in [Ka5] :

’

$r\cdot thmic$ Hodge-Wilt sheaves $W_{m}\omega_{Y,\log}^{r}$ for $\mathrm{Y}$ defined by logarithmic $stmc-$

ture studied by Kato in [Ka5]:

$\lambda_{m,Y}^{r}\subset W_{m}\omega_{Y,\log}^{r}\subset\acute{l}_{m,Y}r$ .

For the proof, we refer to Sato’s paper [Sat2]. The beautiful perfect
duality is the following:

Theorem 2.2 (HyodO-Sato). Let $\mathrm{Y}$ be a normal crossing variety of di-
mension $N$ over a finite field $F$ Then there exist canoinical perfect dualities :

$H^{i}$ ( $\mathrm{Y}$, $W_{m}\omega_{Y}^{r}$ ) $\cross H^{N-i}(\mathrm{Y}$, I $m\omega YN-r)arrow H^{N}(\mathrm{Y}$, $W_{m}\omega_{Y}^{N})\cong \mathit{2}\mathit{1}/p^{m}$

$H^{i}$ ( $\mathrm{Y}$, $W_{m}\omega_{Y,\log}^{r}$ ) $\cross H^{N+1-i}(\mathrm{Y},$
$W_{\tau n}\omega_{Y,10}^{N-r}$g

$)arrow H^{N+1}(\mathrm{Y}$, $W_{m}\omega_{Y,\log}^{N})\cong \mathbb{Z}/p^{m}$

$H^{i}(\mathrm{Y}, \iota_{m,Y}/^{r})\cross H^{N+1-i}(\mathrm{Y}, \lambda_{m,Y}^{N-r})$ $arrow H^{N+1}(\mathrm{Y}, \nu_{m,Y}^{N})\cong \mathbb{Z}/p^{m}$ ,

there all cohomology groups in these pairings are finite.
Next for a complete normal crossing local ring $A$ of dimension $N$ over

$F$ , such as $A=F[[X_{1}, . , X_{N+1}]]/X_{1}|\cdot$ . $X_{i}(1\leq i\leq N+1)$ , we have the
following perfect dualities :

$H_{\mathrm{m}_{A}}^{i}(A_{)}Wm\omega^{r}A)$ $\cross H^{N-i}(A_{)}Wm\omega^{N-r}A)arrow H_{\mathrm{m}_{A}}^{N}(A_{)}Wm\omega^{N}A)\cong I_{A}$

$H_{1\mathfrak{n}_{A}}^{i}$ ( $A$ , $W_{m}$u$Ar$ ,log) $\cross H^{N+1-i}(A,$ $W_{m}\omega_{A,1\mathrm{o}\mathrm{g}}^{N-r})arrow H_{1\mathfrak{n}_{A}}^{N+1}(A$ , $W_{m}\omega_{A,\log}^{N})\cong \mathbb{Z}/p^{rn}$

$H_{\mathrm{m}_{A}}^{i}$ ( $A$ , $\nu_{m,A}^{r}$ ) $\cross H^{N+1-i}(A,\lambda_{m,A}^{N-r})5arrow H_{\mathrm{m}_{A}}^{N+1}(A,$
$\nu_{m,A}^{N})\cong \mathbb{Z}/p^{m}$ ,
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where $I_{A}$ is the injective hull for $A$ in [Ha] and by abuse $H_{\mathrm{m}_{A}}^{N+1}$

$(A, W_{m}\omega_{A,\log}^{N}):=$

$H_{\mathrm{m}_{A}}^{N+1}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A, W_{m}\omega_{\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A,\log}^{N})$ etc. Also in above pairings, we put the clis-
crete topology on each left hand side and $\mathfrak{m}_{A}$ -adic topology on each right
hancl side.

We refer for the proof also to Hyodo’s paper [Hyol], [Hyol] and [Sat2].
The following result by Bloch-HyodO-Kato is also important in later argu-
ments:

Theorem 2.3 (Bloch-HyodO-Kato, Sato). Let $X$ be a regular proper flat
scheme over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\mathcal{O}_{k}$ having semi-stable reduction. Consider the diagram:
$X\mathrm{c}arrow jx$ $+^{i}arrow \mathrm{Y}$ , where $X$ , $\mathrm{Y}$ denote the generic and special fibres over
$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}$ , respectively and put $M_{m,X}^{r}:=j^{*}F"$) $*l$ $p^{m}\otimes r$ , which is the p-adic
vanishing cycles by Kato. Then, there exist KatO-filtration $U^{\iota}M_{m,X}^{r}\supset$

$V^{i}M_{m,X}^{r}\supset U^{i+1}M_{m,X}^{r}$ with $U^{0}M_{m,X}^{r}=M_{m,X}^{r}$ . Sato also defined a certain

filtration $M_{m,X}^{r}\supset FM_{m,X}^{r}\supset U^{1}M_{m,X}^{r}$ in [Satl]. Then each graded quotient
is calculated as follows:

$Gr_{0}^{0}:=U^{0}M_{1,X}^{r}/V^{0}M_{1,X}^{r}\cong\omega_{Y}^{r}$,log’ $Gr1$ . $=V^{0}M_{1,X}^{r}/U^{1}M_{1,X}^{r}\cong\omega_{Y,1\mathrm{o}\mathrm{g}}^{r-\mathrm{l}}$,

$M_{m,X}^{r}/FM_{m,Xm,Y}^{r}\cong\nu^{r-1}$ , $FM_{m,X}^{r}$ 1 $U^{1}M_{m}^{r}$

, $x\cong\lambda_{m,Y}^{r}$ .

For $p\{i>0,$ $grs$ of KatO-filtrations are as follows:
$Gr_{0}^{i}:=U^{i}M_{1,X}^{r}/V^{i}\#_{1,X}^{r}\cong;\omega_{Y}^{r}/B\omega_{Y}^{r}$, $Gr_{1}^{i}:=V" M_{1}^{r}$,$X$ 1 $U^{i+1}\#_{1,X}^{r}\cong\omega_{Y}^{r}/Z\omega_{Y}^{r}$

and also for $p|i$ , we have

$Gr_{0}^{i}:=U^{i}M_{1,X}^{r}/V^{i}M_{1,X}^{r}\cong\omega_{Y}^{r}/Z\omega_{Y}^{r}$ , $Gr_{1}^{i}:=V^{i}M_{1,X}^{r}/U^{i+1}M_{1,X}^{r}\cong\omega_{Y}^{r}/Z\omega_{Y}^{r}$ ,

where $Z$ denotes $d$-closed for$rm$ and $B=d\omega$ denotes the perfect forms.

For $p$ { $i>0,$ $grs$ of $Kato-filtra\theta ions$ are as $fol$lows:

$Gr_{0}^{i}$ $:=U^{i}M_{1,X}^{r}/V^{i}M_{1,X}^{r}\cong\omega_{Y}^{r}/B\omega_{Y}^{r}$ , $Gr_{1}^{i}$ $:=V^{i}M_{1,X}^{r}/U^{i+1}M_{1,X}^{r}\cong\omega_{Y}^{r}/Z\omega_{Y}^{r}$

and also for $p$ $|i$ , we have

$Gr_{0}^{i}$ $:=U^{i}M_{1,X}^{r}/V^{i}M_{1,X}^{r}\cong\omega_{Y}^{r}/Z\omega_{Y}^{r}$, $Gr_{1}^{i}$ $:=V^{i}M_{1,X}^{r}/U^{i+1}M_{1,X}^{r}\cong\omega_{Y}^{r}/Z\omega_{Y}^{r}$ ,

where $Z$ denotes $d$-closed form and $B=d\omega$ denotes the perfect foms.

For the proof we refer to [Kal], [BK1], [Hyol], [Hy02] and [Satl], [Sat2].
Now we will define our main games, which is SatO-Tate twists. Recall

that for $\mathcal{F}^{\cdot}$ , $\mathcal{G}^{\cdot}\in D^{b}$ (X) and $f:2^{\cdot}6arrow \mathcal{G}^{\cdot}$
, Cone(F $arrow$ $\mathcal{G}i\cdot$ ) $:=\dot{P}\oplus \mathcal{G}^{i-1}$that for $\mathcal{F}^{\cdot}$ , $\mathcal{G}^{\cdot}\in D^{b}(\mathrm{f})$ and $f$ :

$\mathcal{F}^{\cdot}6arrow \mathcal{G}^{\cdot}$
, COne $(F^{\cdot}arrow \mathcal{G}^{\cdot})$ : $=\dot{P}\oplus \mathcal{G}^{i-1}$
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with $d^{i}(a, b)=(d(a), -f(a)+d(b))$ . Also for $\mathrm{r}\cdot$ , $\tau_{\leq r}F^{\cdot}$ is defined as its
degree $i$ part is $\mathrm{r}^{i}$ for $i<r,$ degree $r$ part is $\mathrm{K}\mathrm{e}\mathrm{r}(\mathrm{d}\mathrm{r})$ and degree $i$ part is
0 for $i>r.$ Here is the definition:

Definition 1 (Sato-Tate twists). Let $X$ be a regular flat scheme over
$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}R$ where $R$ is the Dedekind ring in mixed characteristics having semi-
stable reduction at each prime $\mathfrak{p}$ lying over $p$ . Then we have the diagram
$X:=$ $1$ $\backslash \mathrm{Y}\epsilonarrow Xj\succ^{i}\mathrm{Y}$, where $\mathrm{Y}$ is the union of all special fibres at prime
$\mathfrak{p}$ lying over $p$ (namely all irreducible components of $\mathrm{Y}$ are in characteristic
$p)$ . Then the SatO-Tate twist $\mathrm{Z}/\mathrm{p}\mathrm{m}(\mathrm{r})\mathrm{x}$ for I is given as the following
object :

$\mathbb{Z}/p^{m}(r)x:=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{e}(\tau\leq r\mathbb{R}j_{*}\mu_{p^{m}}arrow i_{*}\nu_{m,Y}^{r-1}[-r])\in D^{b}(\mathrm{X})$ ,$\otimes r$ tame’

where we consider the single sheaf $i_{*}\nu_{7n,Y}^{r-1}$ $[-r]$ as the complex sitting in
degree 7 and $\nu_{m,Y}^{r-1}$ is the modified logarithmic Hodge-Witt sheaf by Sato in
Definition 2.1 and tame’ denotes the map coming from $M_{m,X}^{r}/FM_{m,X}^{r}\cong$

$\nu_{m,Y}^{r-1}$ in Theorem 2.3.

Remark 1. If I is proper smooth over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\mathcal{O}_{k}$ which is the $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}$ of an
integer ring of a local field $k$ $\mathrm{s}.\mathrm{t}.[k:\mathbb{Q}_{p}]<\infty$ , the SatO-Tate twist $\mathrm{Z}/\mathrm{p}\mathrm{m}(\mathrm{r})\mathrm{x}$

for I becomes simply as

$\mathbb{Z}/p^{m}(r)_{X}:=$ Cone($\tau_{\leq r}\mathbb{R}j_{*}\mu_{p^{m}}^{\otimes r}arrow i_{*}tame$ I4 $m\Omega Y,1\mathrm{o}\mathrm{g}r-1[-r]$ ) $\in D^{b}(X)$ ,

where $W_{m}\Omega_{Y1\mathrm{o}\mathrm{g}}^{r-\mathrm{l}}$

,
is the logarithmic Hodge-Witt sheaf of $\mathrm{Y}$ and tame de-

notes tame symbol in Milnor \^i-theory.

Here we see some important properties of them.

Theorem 2.4 (General Formalisms of $\mathrm{Z}/\mathrm{p}\mathrm{m}(\mathrm{r})\mathrm{x}$ , Sato, Kurihara)

Let $X$ be a regular flat scheme over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\mathcal{O}_{k}$ with $[k:\mathbb{Q}_{p}]<$ oo and $\mathcal{O}_{k}$ is
its valuation ring having semi-stable reduction. Let $X\simeq^{j}*x$ $\in^{i}arrow \mathrm{Y}$ be as in

7



136

Definition 1. Then, the following 3 properties hold:

1. $j^{-1}\mathbb{Z}/p^{m}$ $(r)_{X}\cong\mu_{p^{m}}^{\otimes r}$

2. $\mathbb{R}^{i}i^{!}\mathbb{Z}/p^{m}(r)x=0$ $(i<r+1)$

$\mathbb{R}^{r+1}i^{!}\mathbb{Z}/p^{m}(r)_{X}\cong \mathrm{I}_{m}\Omega_{Y,1\mathrm{o}\mathrm{g}}^{r-\mathrm{l}}$

$\mathbb{R}^{i}i^{!}\mathbb{Z}/p^{m}(r)_{X}\cong i^{-1}\mathbb{R}^{i-1}j_{*}\mu_{p^{m}}^{\otimes r}$ $(i>r+1)$

3. $i^{-1}\mathbb{Z}/p^{m}(r)_{X}\cong S_{m,X}(r)$ if I has good reduction and $r<p-1,$

$\mathbb{R}^{i}i’.\mathbb{Z}/p^{m}(r)x\cong i^{-1}\mathbb{R}^{\iota-1}j_{*}\mu_{p^{m}}^{\otimes r}$ $(i>r+1)$

3. $i^{-1}\mathbb{Z}/p^{m}(r)_{\mathrm{X}}\cong S_{m,X}(r)$ if $x$ has good reduction and $r<p$ -1,

where $S_{m,X}(r)$ denotes Kato’s syntomic complex.

I learned from Sato that even if $\mathrm{Y}$ has semi-stable reduction, but not
good reduction, then the isomorphism in 3. collapses even for $r<p-1.$
These properties are often quite useful, for in Section 3 we heavily use these
properties in proving main theorems. I must also mention that I need deep
results by Kurihara for 3. in the above in the good reduction case, which
was taught by Sato. In the next Section 3, we will see that SatO-Tate twists
are quite nice in cohomological behaviours.

3. MAIN THEOREMS AND THE SKETCH OF Proofs

Before stating our main results, we will review Sato’s beautiful arith-
metic dualities for arithmetic schemes over integer ring $\mathcal{O}_{k}$ of local field
$k([k:\mathbb{Q}_{p}]<\infty)$ .
Theorem(Arithmetic Duality; SatO(2002)). Let $k$ be a local field
$s.t$ . $[k:\mathbb{Q}_{p}]<$ oo and let $X$ be the regular scheme of Krull dimension $N$

proper flat over the integer ring $\mathcal{O}_{k}$ of $k$ having semi-stable reduction.
Applying Definition 1 for $X$ , where $X$ , $\mathrm{Y}$ there replace with generic and
special fibres of $x$ , respectively, we obtain SatO-Tate twist $\mathbb{Z}/p^{m}(r)_{X}$ for
$r\geq 0.$ Then the canonical trace isomorphism

?kace: $\mathbb{H}_{Y}^{2N+1}(X, \mathbb{Z}/p^{m}(N)_{X})\cong \mathbb{Z}/p^{m}8$
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exists and moreover, it holds the following perfect pairing:

$\mathbb{H}_{Y}^{i}(X, \mathbb{Z}/p^{m}(r)_{\mathrm{X}})\cross \mathbb{H}^{2N+1-i}(X, \mathbb{Z}fp^{m}(N-r)_{X})arrow \mathbb{H}_{Y}^{2N+}\cup 1(X,\mathbb{Z}fp^{m}(N)_{X})$

trace
$\cong$ $\mathbb{Z}/p^{m}$

between finite groups.

This is big success actually, especially in that it proves that SatO-Tate
twists are actually nice objects so that they give Poincare-duality even for
” model” $X$ of varieties over local fields. It is widely known that to do some
calculations in the model level is often quite difficult and to have perfect
duality with finite coefficients is very frequently impossible. For example,

the success of the famous -adic Hodge theory by KatO-HyodO-Kurihara-
Tsuji comes ffom deep calculations of cohomologies of syntomic complexes

on “models”, which is the core of the proof of $C_{\mathrm{s}\mathrm{t}}$ conjecture. The above
duality by Sato assures us at least in the cohomological viewpoint that
SatO-Tate twists in mixed characteristics work satisfactorily and perfectly
comparably to usual Tate-twists in $l$-adic theory. Also it is important that
Sato still needs deep calculations of $p$-adic vanishing cycles by Kato in his
proof of the above theorem.

Now, it is my turn. The important fact is that Sato’s arithmetic du-
alities are actually possible and inheritable also to local rings in mixed
characteristics. Now we shall state our main theorems for local rings:
Theorem A(Arithmetic Grothendieck Duality; P. Matsumi), Let
$k$ be a local field with $[k:\mathbb{Q}_{p}]<$ oo and $\mathcal{O}_{k}$ be its integer ring. Let
$A$ be the complete regular local ring over $\mathcal{O}_{k}$ of Krull dimension $N$

having semi-stable reduction(A is, for example, $\mathcal{O}_{k}[[X_{1}, . -, ,X_{N-1}]]$ or
$\mathcal{O}_{k}[[X_{1}, \sigma , . ,X_{N}]]/(X_{1} X_{i}-\pi_{k}))$ . We apply De$f$inition 1 $f$or $X$ : $=$

$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A$ , where $X$, $\mathrm{Y}$ there replace as $X:= \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A[\frac{1}{\pi_{k}}]$ , $\mathrm{Y}:=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A/\pi_{k}$ ,
9
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characteristics. Now, we shall state our main theorems for local rings:ラ

Theorem A(Arithmetic Grothendieck Duality; $\mathrm{P}$, Matsumi), Let
$k$ be a local field with $[k$ : $\mathbb{Q}_{p}]$ $<\infty$ and $\mathcal{O}_{k}$ be its integer ring. Let
$A$ be the complete regular local ring over $\mathcal{O}_{k}$ of Krull dimension $N$

having semi-stabl $e$ reduction(A is, $f$or exampl$e$ , $\mathcal{O}_{k}[[X_{1},$ $\subseteq-\cap’ X_{N-1}]]$ or
$\mathcal{O}_{k}[[X_{1},$

$\sigma$ $\supset\Gamma$ , $X_{N}]]/(X_{1}$ $X_{i}-$ \pi k) $)$ . We appl$y$ De$f$inition 1 $f$or $\mathrm{X}$ : $=$

$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A$ , where $X$, $\mathrm{Y}$ there replace as $X$ : $= \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A[\frac{1}{\pi_{k}}]$ , $\mathrm{Y}$ : $=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A/\pi k$ ,
9
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respectively. Then, the canonical trace isomorphism

$\mathrm{T}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}:\mathbb{H}_{\mathfrak{m}_{A}}^{2N+1}(X, \mathbb{Z}/p^{m}(N)_{X})\cong \mathbb{Z}/p^{m}$

exists and moreover, it holds the following perfect pairing :

$\mathbb{H}_{\mathrm{m}_{A}}^{i}(X, \mathbb{Z}/p^{m}(r)_{X})\cross \mathbb{H}^{2N+1-i}(X, \mathbb{Z}/p^{m}(N-r)_{X})\cuparrow r\mathbb{H}_{\mathrm{m}_{A}}^{2N+1}(X,\mathbb{Z}/p^{m}(N)_{X})$

trace
$\cong$ $\mathbb{Z}/p^{m}$ ,

where we put the discrete topology on the L.H.S. ancl $\mathrm{m}_{A}$-adic topology
on the L.H.S.
Theorem $\mathrm{B}$ (Poincare Duality; P. Matsumi), Let $A$ be as above and
$\mathrm{I}:=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}$ A. For the generic fibre $X= \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A[\frac{1}{\pi_{k}}]$ of $\mathrm{X}$ , we set $Xarrow+j$ E.
Then, we have the perfed pairing:

$\mathbb{H}_{\mathrm{m}_{A}}^{i}$ $(X, j_{!}j^{-1}\mathbb{Z}/p^{m}(r)_{X})\cross \mathrm{H}_{\mathrm{e}\mathrm{t}}^{2N+1-i}(X, \mu_{p^{m}})\otimes(N-r)$ $arrow \mathbb{H}_{\mathrm{m}_{A}}^{2N+1}(X\cup, j_{!}j^{-1}\mathbb{Z}/p^{m}(N)_{X})$

trace
$arrow \mathbb{H}_{\mathrm{m}_{A}}^{2N+1}$ ( $x$ , $\mathbb{Z}/p^{m}(N)x$ ) $\cong$

$\mathbb{Z}/p^{rn}$ ,

where we put natural topologies on both hands coming from Theorem
$A$ .

exists and moreover, it holds the following perfed pairing:

$\mathbb{H}_{\mathrm{m}_{A}}^{i}$ ( $\mathrm{X}$ , $\mathbb{Z}/p^{m}(r)x$ ) $\cross \mathbb{H}^{2N+1-i}(\mathrm{X},$ $\mathbb{Z}/p^{m}(N-r)_{X})arrow\cup \mathbb{H}_{\mathrm{m}_{A}}^{2N+1}(\mathrm{X},\mathbb{Z}/p^{m}(N)_{X})$

$\cong$ $\mathbb{Z}/p^{m}$ ,

where We put $t$he discrete topology on the L.H.S. and $\mathrm{m}_{A}$-adic topology

on the R.H.S.
Theorem $\mathrm{B}$ (Poincare Duality; P. Matsumi), Let $A$ be as above and
$\mathrm{f}:=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}$ A. For the generic fibre $X= \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A[\frac{1}{\pi_{k}}]$ $\mathrm{o}f$ $x$, we set $Xarrow+j$ x.
Then, we have the perfect pairing:

$\mathbb{H}_{\mathrm{m}_{A}}^{i}$ ( $\mathrm{X}$ , $j_{!}j^{-1}\mathbb{Z}/p^{m}(r)x$ ) $\cross \mathrm{H}_{\mathrm{e}\mathrm{t}}^{2N+1-i}(X,$ $\mu_{p^{m}}^{\otimes(N-r)})arrow\cup \mathbb{H}_{\mathrm{m}_{A}}^{2N+1}(\mathrm{X}$ , $j_{!}j^{-1}\mathbb{Z}/p^{m}(N)_{X})$

$arrow \mathbb{H}_{\mathrm{m}_{A}}^{2N+1}$ ( $x$ , $\mathbb{Z}/p^{m}(N)_{X}$) $-\cdot---\cong \mathbb{Z}/p^{rn}$ ,

where we put natural topologies on both hands coming from Theorem
$A$ .

These are main results of me in the last year for mixed characteristics
local rings, which spiritually comes from the first success of Kanetomo
Sato in [Satl] in proving his arithmetic dualities for arithmetic schemes
mentioned above. We will sketch proofs of Theorems $\mathrm{A}$ , B.
Sketch of proofs. For Theorem $\mathrm{A}$ , we use the spectral sequence

$\mathrm{E}_{1}^{s,t}$ $:=\mathbb{H}_{\mathrm{m}_{A}}^{t}$ ( $\mathrm{X}$ , $\mathcal{H}^{s}(\mathbb{Z}/p^{m}(r)_{X}))\Rightarrow \mathbb{H}_{\mathrm{m}_{A}}^{s+t}$(X, $\mathbb{Z}/p^{m}(r)x)$ .
10
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The key device to calculate each $\mathrm{E}_{1}^{s,t}$-term is to use the following important
isomorphisms with Kato’s $p$-adic vanishing cycles:

$\mathcal{H}^{s}(\mathbb{Z}/p^{m}(r)_{X})\cong \mathbb{R}^{s}j_{*}\mu_{p^{m}}^{\otimes r}$ for $s<r,$

$77^{s}(\mathbb{Z}/p^{m}(r)_{X})=0$ for $s>r,$

$/\mathcal{H}^{r}(\mathbb{Z}/p^{m}(r)_{\mathrm{X}})\cong U^{0}\mathbb{R}^{r}j_{*}\mu_{p^{m}}^{\otimes r}$ ,

where $U^{0}\mathbb{R}^{r}j_{*}\mu_{p^{m}}^{\otimes r}$ is in Theorem 2.3. Once we have these isomorphisms we
can use Kato’s calculations of -adic vanishing cycles which relate them
with differential forms of the special fibre $\mathrm{Y}$ We see this principle in the
typical proof of Theorem $\mathrm{B}$ , for which I will give more details from now.
That is, we will prove Theorem $\mathrm{B}$ assuming Theorem A. For this, we will
use localization sequences in the derived category. Namely, from the two
distinguished triangles

7! $7^{-1}\mathbb{Z}/p^{m}(r)_{X}arrow \mathbb{Z}/p^{m}(r)_{X}arrow i_{*}i^{-1}\mathrm{w}\mathrm{i}11^{m}(r$) $)_{X}$ $arrow j_{!}j^{-1}\mathbb{Z}/p^{m}(r)x[1]$ ,

$i_{*}\mathbb{R}i^{!}\mathbb{Z}/p^{m}(N-r)xarrow \mathbb{Z}/p^{m}(N-r)xarrow \mathbb{R}j_{*}j^{-1}\mathbb{Z}/p\mathrm{m}(N-r)xarrow$

$i_{*}\mathbb{R}i^{!}\mathbb{Z}/p^{m}(N-r)$ x [1] ,

we deduce two long exact sequences

$\mathbb{H}_{\mathrm{m}_{A}}^{i-1}(X, i_{*}i^{-1}\mathbb{Z}/p^{m}(r)_{X})arrow \mathbb{H}_{\mathrm{m}_{A}}^{i}(X, j_{!}j^{-1}\mathbb{Z}/p^{?n}\mathrm{r})\mathrm{x})$ $arrow \mathbb{H}_{\mathrm{m}_{A}}^{i}(X, \mathbb{Z}/p^{m}(r)_{X})arrow$?

$\mathbb{H}^{2N+1-i}$ (X, $\mathbb{Z}/p^{m}(N-r)_{X}$) $arrow \mathrm{H}_{\mathrm{e}_{\lrcorner}\mathrm{t}}^{2N+1-i}(X, \mu_{p^{m}}^{\otimes(N-r)})$ $arrow$

$\mathbb{H}^{2N+2-i}(\mathrm{Y}, \mathbb{R}i^{!}\mathbb{Z}fp^{m}(N-r)_{X})arrow$$\mathbb{H}^{2N+2-i}$ ( $\mathrm{Y}$, $\mathbb{R}i^{!}\mathbb{Z}/p^{m}(N-r)_{X})arrow$

From these, we see that it suffices to establish the perfectness of the pairing

$\mathrm{I}\mathrm{M}_{\mathrm{m}_{Y}}^{i-1}.(\mathrm{Y},i^{-1}\mathbb{Z}/p^{m}(r)_{X})\cross \mathbb{H}^{2N+2-i}(\mathrm{Y}, \mathbb{R}i^{!}\mathbb{Z}/p^{m}(N-r)_{X})arrow \mathbb{Z}/p^{m}$

(3.1)
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For this, we again consider the spectral sequence

$\mathrm{E}_{1}^{s,t}:=\mathbb{H}_{\mathrm{m}_{Y}}^{t}$ ( $\mathrm{Y}$, it’(i $-1\mathbb{Z}/p^{m}\mathrm{r}$) $\mathrm{x}$ ) $)$ $\Rightarrow \mathbb{H}_{\mathrm{m}_{1’}}^{s+t}(\mathrm{Y}, i^{-1}\mathbb{Z}/p^{m}(r)_{X})$

$\mathrm{E}_{1}^{s,t}:=\mathbb{H}^{t}$ ( $\mathrm{Y},$ $7\{^{s}$ ( $\mathbb{R}i^{!}\mathbb{Z}/p^{m}$ ($N-$ r)x)) $\Rightarrow \mathbb{H}^{s+t}$ ( $\mathrm{Y},$ $\mathbb{R}i^{!}\mathbb{Z}/p^{m}(N-$ r)x)

As seen above we have

$?t^{s}(i^{-1}\mathbb{Z}/p^{m}(r)_{X})$ $\cong i^{-1}\mathbb{R}^{s}j_{*}\mu_{p^{m}}^{\otimes r}$ for $s<r$

$\mathcal{H}^{s}(i^{-1}\mathbb{Z}/p^{m}(r)_{X})=0$ for $s>r$

$\mathcal{H}^{r}(i^{-1}\mathbb{Z}/p^{m}(r)_{X})\cong i^{-1}U^{0}\mathbb{R}^{r}j_{*}\mu_{p^{m}}^{\otimes r}$.

and by Theorem 2.4, we have

$?\mathrm{t}^{s}$ ( $\mathbb{R}\mathrm{i}^{!}7/p^{m}$ ($N-$ r)x) $=0$ for $s<N-r+1$
$Fl^{N}$ $-r+1(\mathbb{R}i^{!}\mathbb{Z}fp^{m}(N-r)_{X})\cong W_{m}\Omega_{Y,1\mathrm{o}\mathrm{g}}^{N-r-1}$

$\mathcal{H}^{s}$ ( $\mathbb{R}i^{!}\mathbb{Z}/p^{m}$ ($N-$ r)x) $)\cong i^{-1}\mathbb{R}^{s-1}j_{*}\mu_{p^{m}}^{\otimes N-r}$ for $s>N-r+$ $1$

From these the aiming pairing (3.1) is rewritten, for example, as

$\mathbb{H}_{\mathrm{m}_{Y}}^{i-}\mathrm{J}^{-s}(\mathrm{Y},i^{-1}\mathbb{R}^{s}j_{*}\mu_{p^{m}}^{\otimes r})\cross \mathbb{H}^{2N+2}$$-i-s(\mathrm{Y}, i^{-1}\mathbb{R}s-1j_{*}\mu_{p^{m}}^{\otimes N-r})$ $arrow \mathbb{Z}/p^{m}-$

Further herein we replace $s|arrow r-s$ in L.H.S. and $s-+(N-r+2)+s$ in
$\mathrm{R}.\mathrm{H}$ .S. obtaining

$j$-1-r$+s(\mathrm{Y}, i^{-1r-s}1j_{*}\mu_{p^{m}}^{\otimes r})\cross$ $H^{N+r}-i-s$ ( $\mathrm{Y}$, $i^{-}$ llqN$-r+s+1j_{*}$ jp\otimes N-r) $arrow \mathbb{Z}/p^{m}-$

$\mathrm{E}_{1}^{s,t}$ $:=\mathbb{H}^{t}$ (Y, $7\{^{s}(\mathbb{R}i^{!}\mathbb{Z}/p^{m}(N-r)_{X}))\Rightarrow \mathbb{H}^{s+t}(\mathrm{Y},$ $\mathbb{R}i^{!}\mathbb{Z}/p^{m}(N-r)$x)

As seen above, we have

$\mathcal{H}^{s}$ ( $i^{-1}\mathbb{Z}/p^{m}(r)x)\cong i^{-1}\mathbb{R}^{s}j_{*}\mu_{p^{m}}^{\otimes r}$ for $s<r$

$\mathcal{H}^{s}$ ($i^{-1}\mathbb{Z}/p^{m}(r)x)=0$ for $s>r$

$\mathcal{H}^{r}(i^{-1}\mathbb{Z}/p^{m}(r)x)\cong i^{-1}U^{0}\mathbb{R}^{r}j_{*}\mu_{p^{m}}^{\otimes r}$.

and by Theorem 2.4, we have

$\mathcal{H}^{s}$ ($\mathbb{R}i^{!}\mathbb{Z}/p^{m}(N-r)x)=0$ for $s<N-r+1$
$\mathcal{H}^{N-r+1}$ ( $\mathbb{R}i^{!}\mathbb{Z}/p^{m}(N-r)x)\cong W_{m}\Omega_{Y,1\mathrm{o}\mathrm{g}}^{N-r-1}$

$\mathcal{H}^{s}(\mathbb{R}i’.\mathbb{Z}/p^{m}(N-r)*\cdot)\cong i^{-1}\mathbb{R}^{s-1}j_{*}\mu_{p^{m}}^{\otimes \mathit{1}\mathrm{V}-r}$ for $s>N$ $-r+1$

Rom these the aiming pairing (3.1) iS rewritten, for example, as

$\mathbb{H}_{\mathrm{m}_{Y}}^{i-1-s}$ ( $\mathrm{Y}$, $i^{-1}\mathbb{R}^{s}j_{*}\mu_{p^{m}}^{\otimes r}$ ) $\cross \mathbb{H}^{2N+2-i-s}$ (Y, $i^{-1}\mathbb{R}^{s-1}j_{*}\mu_{p^{m}}^{\otimes N-r})arrow \mathbb{Z}/p^{m}$

Further herein we replace $s|arrow r-s$ in L.H.S. and $s-+(N-r+2)+s$ in
$\mathrm{R}.\mathrm{H}$ . S. obtaining

$\ovalbox{\tt\small REJECT}_{Y}^{-1-r+s}$

.
(Y, $i^{-1}\mathbb{R}^{r-s}j_{*}\mu_{p^{m}}^{\otimes r}$) $\cross \mathbb{H}^{N+r-i-s}(\mathrm{Y},$ $i^{-1}\mathbb{R}^{N-r+s+1}j_{*}\mu_{p^{m}}^{\otimes N-r})arrow \mathbb{Z}/p^{m}$

After passing to $m=1,$ gathering these pairings and cutting them piece by
piece in a suitable way with the help of Bloch-HyodO-Kato Theorem 2.3, the
desired perfectness of (3.1) is reduced to the powerful duality Theorem 2.2
by HyodO-Sato paying attention to the fact that $(i-1-r+s)+(N+r-$
$i-s)=N-1$ , $(r-s-\mathrm{I})+(N-r+s+1-1)=N-1.$ The precise

calculation is found in [Ma4],
12
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4. ARITHMETIC APPLICATIONS

In this section, we will deduce various interesting arithmetic applications
to complete regular local rings in mixed characteristics from Theorems $\mathrm{A}$ ,
$\mathrm{B}$ in Section 3.

Theorem 4.1 (Class Field Theory). Let $A$ be a complete regular local
ring in mixed characteristics of Krull dimension $N$ with finite residue field
having semi-stable reduction over its coefficient ring and denote by $K$ its

fractional field. The idele class group $C_{K}:=.k\mathrm{m}{}_{\mathrm{I}}\mathrm{H}_{\mathrm{m}_{A}}^{N}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A, \mathcal{K}_{N}^{\mathrm{M}}(\mathcal{O}_{A},\mathrm{I}))$

is endowed with the inverse limit topology induced from the discrete topology
on each $\mathrm{H}_{\mathrm{m}_{A}}^{N}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A, \mathcal{K}_{N}^{\mathrm{M}}(\mathcal{O}_{A}, \mathrm{I}))$ , where I runs over all ideal sheaves of
$\mathcal{O}_{A}$ , and $\mathcal{K}_{N}^{\mathrm{M}}$ ( $\mathcal{O}_{A}$ , I) is a certain Milnor $K$ -theoretic sheaf in the Nisnevitch
topology. Then, $C_{K}$ satisfies the following dual reciprocity isomorphism:

$\rho_{K}^{*}$ : $\mathrm{H}_{\mathrm{G}\mathrm{a}1}^{1}$ ( $K$, $\mathbb{Q}_{p}/\mathbb{Z}_{p})\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{c}}(C_{K},$ $\mathbb{Q}_{p}/\mathbb{Z}_{p}$ ),

where $p$ is the characteristic of the residue field of $A$ and $\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{c}}$ is the set

of all continuous characters of finite order.

We omit details of the proof mentioning just the following simple dia-
gram:

$0arrow \mathrm{H}_{\mathrm{G}\mathrm{a}1}^{1}(X, I!fp)arrow$ $\mathrm{H}_{\mathrm{G}\mathrm{a}1}^{1}(K, \mathbb{Z}/p)arrow$

$\bigoplus_{\mathfrak{p}\in X^{(1)}}\mathrm{H}_{\mathfrak{p}}^{2}(X, \mathbb{Z}/p)$

$arrow 0$

$\downarrow_{\mathrm{T}\mathrm{h}\mathrm{m}.B}^{\cong}$ $\downarrow\rho_{K}^{*}/p$ $\downarrow_{Kato}^{\cong}$ $\downarrow$

$0arrow \mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{C}}(\mathrm{C}_{X}, \mathrm{Z}/\mathrm{p})arrow$Horn
$(C_{K}, \mathrm{Z}/\mathrm{p})arrow\bigoplus_{\mathfrak{p}\in X^{(1)}}\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{c}}(F^{0}C_{K_{\mathfrak{p}}}, \mathbb{Z}/p)arrow 0,$

where $X= \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}A[\frac{1}{\pi_{k}}]$ , $X^{(1)}$ denotes the set of all height one primes in $X$

and the top row is exact, where the final 0 comes from the absolute purity
$\mathrm{H}_{\mathrm{m}}^{3}(X, \mathbb{Z}\prime p)\cong 0$ for each height 2 prime $\mathrm{m}$ and the bottom row is exact
at $\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{c}}(C_{X}, \mathrm{Z}/\mathrm{p})$ and $\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{c}}(C_{K}, \mathbb{Z}[p)$ and finally in the extremely left
vertical isomorphism, we used Theorem $\mathrm{B}$ in Section 3 with $i=2N$, $r=N$

together with the isomorphism $\mathbb{H}_{\mathrm{m}_{A}}^{2N}$ (1X3’ $j_{!}j^{-1}\mathbb{Z}/p(N)_{X}$ ) $\cong C$X/p. It is easy
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to deduce from this diagram the desired isomorphism of $\rho_{K}^{*}/p$ . The precise
calculation is found in [Ma4].

Corollary 4.2. Let $A$ , $K$ be as above. Then for an arbitar$ry$ finite abelain
extension $L/K$ such that the integral closure $B$ of $A$ in $L$ is also semi-stable
over its coefficient ring, under the Gersten-Quillen conjecture for $A$ and $B$

and the Bloch-Milnor-Kato conjecture for $K$ and $L$ , it holds the following
reciprocity isomorphism:

$\rho_{K}$ : $C_{K}/\mathrm{N}o\mathrm{r}\mathrm{m}(C_{L})$
$\cong$ Gal(L/$K$).

Roughly, the assumption of the Bloch-Milnor-Kato conjecture is used
in $l$-parts in interpreting local cohomologies by Milnor $K$ group or in
connecting local cohomologies to the idele class group $C_{K}$ and on the other
hand the Gersten conjecture is necessary also in $l$-parts in comparing idele
class group $C_{K}$ and those of various complete valuation fields obtained by
completion at each height one prime of $A$ . These are explained in the
section by Sato in [Ma3]

Another interesting application is the following:

Theorem 4.3 (Hasse Principle). Let $A$ be a 3-dimensional complete reg-
ular local ring in mixed characteristics with finite residue field having semi-
stable reduction over its coefficient $\mathit{7}\dot{v}ng$ and denote by $K$ its fractional
field. Then for arbitrary integr $m>1,$ the following KatO-complex for $A$

is exact:

$0arrow \mathrm{H}3\mathrm{a}1$ ( $K$, $\mu_{m}^{\otimes 3})arrow$i $\oplus \mathrm{H}_{\mathrm{G}\mathrm{a}1}^{3}(\kappa(\mathfrak{p})$ , $\mu_{m}^{\otimes 2})arrow\oplus \mathrm{H}_{\mathrm{G}\mathrm{a}1}^{2}(\kappa(\mathfrak{m})$ , $\mu_{m})^{addi}arrow^{tim}\mathbb{Z}/m$ $arrow 0,$

$\mathfrak{p}$ : htl $\mathrm{m}$:ht2

where for $\mathrm{c}\mathrm{h}(k)^{N}m’=m,$ we replace $\mu_{m}^{\otimes i}$ with $W_{N}\Omega_{k,\log}^{i}[-i]\oplus\mu_{m}^{\otimes}\mathrm{j}$ .

This is the mixed characteristics analogy of [Ma2]. The proof goes com-
pletely in the same way as in [Ma2] just replacing $X$ and $\mu_{p^{m}}^{\otimes 3}$ there with
$X:=$ Spec and SatO-Tate twist $\mathbb{Z}/p^{m}(3)_{X}14$ ’ respectively.
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Apology. I must apology to all audience for the following. In the con-
ference, I stated at the end of my talk that Takagi’s class field theory for
number fields could be deduced easily from global arithmetic duality by
reducing all cases to the case of $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}$ Z. But this was completely redicu-
lous and wrong statements. Professor Takeshi Saito immediately showed
the sign of suggesting my mistakes in his face, but I devoted myself to
rushing my stupid opinions. Here, I heartily apology to all audience there
including professor Takeshi Saito for my poor understanding and terribly
wrong statements.

Acknowledgement. It is Kanetomo Sato who firstly proved all what
is written in this report. I learned from him how to prove the arithmetic
Grothendieck duality genarally. I.e., I actually learned from him through
mental world of the proof. For this, I heartily thank doctor Kanetomo Sato
together with his wife Mariko Sato. Also I would like to thank professors
Yasuo Morita, Masato Kurihara and Yuichiro Taguchi for giving me the
opportunity of my talk in the conference at RIMS and professor Akio Tam-
agawa for his encouragement. It is my joy to thank professor Kazuya Kato
whose calculations of Milnor $K$-groups of complete discrete valuation rings

made the results exist. Finally, here, I will and also let’s chant “Nan-Myou
Houren-Geikyou” for Nichiren Dai-Syounin, our sole Saint in Mappo era.
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