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On the group structure of Kummer étale K-group
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1. INTRODUCTION

The aim of this note is to propose a generalisation of algebraic
K-groups in logarithmic geometry and to describe its structure as
an Abelian group by usual K-groups for a wide class of logarithmic
schemes.

The note is organised as follows: In Section 2 we review some lan-
guage used in logarithmic geometry. This section contains no origi-
nality. Then we define the Két K-group for general fs log schemes in
Section 3 and state Main Theorem on its structure in Section 4. Lastly,
we give the sketch of its proof in Section 5. |

2. LoG SCHEME AND KUMMER ETALE SITE

In this section we review some notions about logarithmic schemes
and Kummer étale sites. For details, see [Kat89], [Nak97] and [11102].
The readers familiar with terminology in logarithmic geometry are rec-
ommended to skip to the next section.

Let X be a scheme. A pre-log structure on X is a pair (M, a), where

M is a sheaf of monoids on X; and « is a homomorphism from M to
Ox.

Remark. In this note all monoids are assumed to be commutative ones
with units and maps of monoids to preserve the units. When regarding
the structure sheaf &x on a scheme X as a sheaf of monoids, we always
do by means of the multiplication.

A pre-log structure (M, @) is called a log structure if o induces an
isomophism from a~'€% to 6%. A triple (X, M,a) consisting of a
scheme X and a log structure (M, ) on X is called a log scheme. We

usually denote it by (X, M) or X for short, and often denote by X
the underlying scheme of a log scheme X. We regard the sheaf 0%
as a subsheaf of M and set M = M/6%. It is proven that, for each
pre-log structure M, we can construct its associated log structure M?,
as a universal object for morphisms of pre-log structures from M to
log structures.



Note that any scheme X can be considered to be a log scheme via
the natural inclusion &% — &x. This is called the trivial log structure.

A morphism of log schemes are defined naturally, i.e. a pair of a mor-
phism of underlying schemes and a homomorphism of monoid sheaves
satisfying a natural compatibility.

A log scheme X is called Noetherian, quasi-compact, regular and

so on, if its underlying scheme X is so. Similarly we often say, for
example, “f is of finite type” when no confusions occur.
The following are the first typical examples.

Example A.1. Let X be a regular scheme, D C X a divisor with
normal crossings and j : U = X \ D — X the open immersion. Then
the inclusion Mx = j.64 N O6x — Ox with the scheme X becomes
a log scheme. We call it the log scheme associated with (X, D), and
denote it by (X, D) if no confusion occurs. .

Example A.2. Let k be a ring and P a monoid. A natural morphism
of monoids P — k[P] induces a pre-log structure Px — Ox on X =
Spec k[P] with a constant sheaf Px. We often denote by Spec k[P] the
log scheme associated with the pre-log structure.

In general, given a log scheme (Y, N) and a morphism of schemes
f: X — Y, we define f*N to be the log structure associated with
a pre-log structure f'!N — f~'€y — Ox. For a morphism of log
schemes f : (X,M) — (Y,N), we say that f is strict if the natural
morphism f*N — M is an isomorphism.

Example B. Let R be a discrete valuation ring, k its residue field and
7 a uniformizer of R. Put X = Spec R and D = V(7) = Speck. As in
Example A.1, we have a log scheme (X, D), the log structure of which
is described as %N — Ox. When we pull-back the log structure with
respect to the closed immersion 7 : D < X, we have a log structure on
Speck,

i*MX = ﬁBtN —> ﬁD

n 0 (ifn>0)
o= {1 (if n = 0),

where “¢ = ¢*7”. Such a log scheme is called a log point.

Next, we give the definition of fs log scheme. A monoid P is called
integral if the canonical morphism from P to its group envelope P&
is injective, and saturated if it is integral and satisfies the following
condition:

For any p € P®P, if there exists a non-negative integer n such that
p™ € P, p itself belongs to P.

A log scheme X is called fine and saturated (or fs for short) if, étale
locally, it admits a strict morphism of log schemes to Spec Z[P] with
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P a finitely generated and saturated monoid. This strict morphism is
called a (local) chart.

Example. Log schemes appearing in Example A.1 and in Example B
are fs. The log scheme Spec k[P] in Example A.2 is fs if P is finitely
generated and saturated.

Remark. Both in the category of log schemes and in the category of
fs log schemes, there exist fibre products, but the two concepts do not
coincide in general (cf. Example C below).

A morphism of monoids 4 : Q — P is called Kummer if A is injective
and for all p € P there exists a non-negative integer n such that p" €
h(Q). For a morphism of fs log schemes f : X — Y, one says that
[ is Kummer if, for any £ € X, a natural morphism of monoids f} :
M Y@ M xz 1s Kummer. Fmally, the morphism f is Kummer étale
(or shortly Két) if it is log étale and Kummer. Here log étaleness is
defined in terms of local infinitesimal liftings as in the classical case
(See, for details, [Kat89]).

It is proven that if f : X — Y is a morphism of schemes, regarded
also as a morphism of log schemes with trivial log structures, then f is
log étale if and only if f is classically étale.

It is also well-known that f is Kummer étale if and only if, étale
locally on X and Y, we can construct the diagram

X A Y’ — Spec Z[P]

X l l Spec Z[h]

Y — Spec Z[Q]a

where P and @ are finitely generated and saturated, the right square
Cartesian, all horizontal arrows strict, f' (classically) étale, and h :
Q) — P is a Kummer map such that the order of Coker h®P is invertible
on X (Note that Coker h8 is finite).

Kummer étale morphism is a generalisation of tamely ramified mor-
phism in classical algebraic geometry, as the next example also suggests.

Example C. In Example A.2, suppose further that k is a separably
closed field and that P = N. Then Spec k[N] is isomorphic to (X, D) =
(Speck(t],V(t)) in the sense of Example A.1. Take a non-negative
integer n prime to the characteristic of k. Then a natural rnorphlsm of
fs log schemes ‘

(Xn, Dn) = (Specklt=], V(t=)) — (X, D)

is Kummer étale. Moreover we see that, in the category of fs log
schemes, it is a Galois cover with Galois group u, via its action on



(Xn, Dy):
o — Aut (X, D)/(X, D))
¢n > Spec (t% — Cnt%).
Indeed, as is easily checked, we have
Xn Xx Xn & Speck[P],

where the monoid P is a push-out of the diagram N & N 5 N in the
category of monoids. It is not an fs log scheme for n > 2, and the fibre
product X, x%& X, in the category of fs log schemes is proven to be
isomorphic to Spec k[N @ Z/nZ] (Notice that its underlying scheme is
the normalisation of X, xx X,), or more canonically, isomorphic to
the disjoint union of X, indexed by u,.

By a base change with respect to D < X, we have another important
example of Kummer étale morphisms

(Spec k[t%] /(t), some log str.) — (log point).
Similarly, this is a Galois cover with Galois group .

Now we are ready to construct a Kummer etale site. Let X be an fs
log scheme. The Kummer étale site of X, denoted by Xxe:, is defined
as follows:

The underlying category is that of fs log schemes Kummer étale over
X. A family of morphisms {¢; : U; — U}ic; is defined to be a covering
if and only if U = Uze 1 9i(U;) set-theoretically.

We denote by XKet the associated topos.

3. KUMMER ETALE K-GROUP

In this section we define the Kummer étale K-group, the main theme
of this note. The idea is very simple and natural: First construct a
structure sheaf on the Kummer étale site, and then define the K-group
of vector bundles over the ringed topos. .

Let X be an fs log scheme. We define a ring object Ox,,, in Xk as
follows: For an fs log scheme X’ Kummer étale over X, O, (X') =

o d o.).

This object, which is a prior: a presheaf, in fact becomes a sheaf of
rings ([Hag03]). So we obtain a ringed topos (Xget, Ox,..) naturally
assocw,ted with an fs log scheme X. We also denote it by (X, Ox) or
XKet if no confusion occurs. Note that we have a canonical morphism

ex of ringed topoi from XKet to Xzar (Subscript X is often omitted).

We have the natural notion of £, _ -modules and define Mod(Xket)
to be the category of £, ,-modules on the ringed topos (X, &x). The
following definitions are also very natural:
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Definition. Let X be an fs log scheme and # an Ox,_-module. We
say that # is a Két vector bundle if it is isomorphic to the direct sum
of Ox,. Kummer étale locally. We call a Két vector bundle of rank
1 a Két line bundle. We denote by Vect(Xket) the full subcategory of
Mod(Xket) consisting of Két vector bundles.

Example. In Example C, we have a fully faithful functor:
{un-equivariant O, , -vector bundle} — Vect(Xke:).

For instance, for an integer ¢ we can define a Kummer étale line
bundle &x (%) corresponding to the fin-k[t]-submodule t~=k[t=] of
k(t=).

More generally,

(1) In Example A.1, let {D;]i € I} be the set of irreducible com-
ponents of D and assume that X is a variety over a separably
closed field k of characteristic p. Then we can define a Két line
bundle Ox (3", s D;) for a; € Zpy (i € I).

(2) Let X' — X be a Galois Két cover of fs log schemes with a
Galois group G. Then we have a fully faithful functor:

{G-equivariant O; -vector bundle} — Vect(Xket).

It is easily checked that Vect(Xke:) becomes an exact category in the
sense of D. Quillen (cf. [Qui73]). So we can define its K-group K, (Xket)
according to his recipe. We call it a Kummer étale K-group, or briefly
a Két K-group. On the other hand, K ,(X) stands for the K-group of
a scheme X in the usual sense.

Question. Calculate Ky (Xxket)-
A partial solution to this question is the main result of this note.

Remark. We have an exact functor €* : Vect(Xza) — Vect(Xket),
which induces group homomorphisms €* : K,(X) — K (Xxket) for each
g > 0. Moreover, for a log scheme with the trivial log structure, the
functor induces an equivalence of categories and so leads to isomor-
phisms of K-groups, because of the étale descent.

4. MAIN THEOREM
Now we state Main Theorem

Theorem. Let X be a scheme smooth, separated and of finite type
over a separably closed field k of characteristic p, D a simple normal
crossing divisor and {D;|i € I} its irreducible components. We endow
X with the associated log structure. Then we have an isomorphism of
Abelian groups:

Nx : @Kq(DJ) ®z Ny = Ky Xker)s

Jcr



for any non-negative integer g. Here for J = {i1,--- ,i,} we put
D;=D;N---ND; (D = X)
and Kf, is defined to be the free abelian group generated by the set

{€:J = (Q/Z) |£(5) #0, for any j },
where (Q/Z) = Z,)/Z.

This theorem gives the complete description of the Két K-group in
terms of the classical K-group, at least with respect to its (Abelian)
group structure. ‘

Example. Let C be a smooth curve over a separably closed field k of
characteristic p and P,,... , P, distinct closed points. Then we have:

ne - Ko(C) & D Z1(Q/2)' \ {0}] =5 Ko(Cker)-

Here 7¢ is the map characterized by
ne([#]) = [ F] for [#] € Ko(C)
and
ne([a] at the i-th component) = [O¢] — [Oc((a — 1) P;)]

for a € (Q/Z)' \ {0}, where & denotes the rational number lifting o
satisfying 0 < a < 1.

5. THE SKETCH OF THE PROOF

In this section we sketch out the proof of Main Theorem. For a
detailed explanation see [Hag03]. First we introduce the notion of Két
coherent sheaves of &x-modules.

Definition. Let X be an fs log scheme and % an 0x,_,-module. We say
Z is a Két coherent sheaf of &'x-modules if there exists a Kummer étale
covering {X; — X }ier of X such that each F|x; is of the form €. #';
for some coherent &x,-module #'; on X; z,,. We denote by Coh(Xket)
the full subcategory of Mod(Xke) consisting of Két coherent sheaves
of Ox-modules.

The category Coh(Xxet) often, although not always, behaves well.

For example, consider an fs log scheme X such that T/fx,,-; is isomor-
phic to the direct sum of N for all z € X. Then Coh(Xke) becomes
an abelian category and the canonical functor €* : Coh(Xza) —
Coh(Xket) exact. In particular we can define K'-theory of log schemes
K'(Xxet) by the Quillen’s method and obtain group homomorphisms
K (X) = K (Xkes) from the usual K'-groups.

Furthermore, for an fs log scheme X satisfying the assumptions in

Main Theorem, we obtain a canonical group isomorphism K, (Xket) =
K"I (XKet)-
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K'-theory has some advantages over K-theory. Among them is the
existence of the localisation sequence, i. €.

Proposition. Let X be a Noetherian equi-characteristic fs log scheme,
Y a strictly closed subscheme and U its complement, which we endow
with the induced log structure. We suppose that —ij 18 1somorphic to
a direct sum of N for all z € X.

Then we have a long ezact sequence

=2 K (Vi) <25 Ko(Xa) 2o Ky(Uker) = Ky (Yica) = -+
v 2y K (Yiar) = Kb(Xer) 2 Kb (Ukes) — 0.

Another advantage of K'-theory over K-theory is its calculability in
the case of dimension 0. '

Example. Let P be a log point as in Example B and assume that the
underlying field & is of characteristic p and contains all roots of unity.
Then we can easily obtain an equivalence of categories

U {pn-equivariant &p_ , -vector bundle} ~ Vect(Pket),
(pm)=1

where P, is the Kummer étale cover of P constructed at the end of
Example C. This induces an isomorphism

Ky(Pxet) = lim K, (Speck[t]/(t"), un),
(pn)=1

where the right hand side is the inductive limit of equivariant K’-groups
in Zariski topology. By the dévissage theorem in K-theory (cf. [Qui73]),
we can neglect “the nilpotent part” in K’ to rewrite the above group
as

limg K (Spect, i),
(pin)=1

and we can obtain an isomorphism
Ko (Pxet) = K, (k) ®2 Z((Q/Z)'] = K, (k) ®2 Z[(Q/Z)']
as Abelian groups.

Remark. Similarly we get an isomorphism
Ko(Pet) = lim K, (Speck[t]/(t"), ),
(pm)=1 -

but we can no longer ignore the effect of “the nilpotent part” in the
right hand side. In fact, its explicit calculation seems excessively more
difficult in general.



Let us begin the proof of Main Theorem. For any subset J of I and
any fs log scheme X’ over X whose structure morphism is strict, we
define X; by the Cartesian diagram below:

' a ’
X, —y x

A

D_] ——-z—-—> X,
and we set
K,(X") = P K(X}) ®z A}
JcI

Of course, K’ in the right hand side means the classical K'-group.
The point is that we will prove K}(X') = K|(Xk,;) for all fs log
schemes X' strict over X simultaneously.
For each £ : J — (Q/Z)', we define £ : J — {z € Z)|0 < z < 1} to
be the unique lifting of £ and set

Op,{€} = Image (Op, = i*Ox(>_£(5)D;)).
jed
This is an object in Coh(D k).
Key Lemma A. The functor
Coh(Xjza) —> Coh(Xke,)
ZF = z'i(e};f ®0X,J f*0p,{€})

is exact (Note that in the right hand side appears ®, not “®L7”).

By Key Lemma A, we can construct group morphisms K;(X}) —
K (Xxe) for each g. Summing them up for all & we obtain nx/ :

K(X") = Ky Xier)-

Key Lemma B. The localisation sequences for K'(=) and K "(—Ket)
are compatible with 7).

Note that we have a localisation sequence also for X’ (=), constructed
by the direct sum of classical ones.

By Key Lemma B and standard arguments using inductive limits, in
order to prove that nx is an isomorphism for all X’ over X, it suffices to
deal with the case where X" is of the form Spec K for some field K. As
is mentioned above, in this case we can calculate K'(X}.,) explicitly,
and therefore prove directly that nx: is an isomorphism.

As the final remark, notice that we are often interested only in the
case where ¢ = 0 and a log scheme X is the one as in Example A,
to be sure, but in order to let the above argument work smoothly, it
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is inevitable to introduce more general log schemes, for example log
points, and to deal with their higher K-groups simultaneously.
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