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1 Local theory in complex dynamics

A rational map f is a holomorphic endomorphism of the Riemann sphere C. The
Fatou set F(f) is the region of normality of (f* := f*}, and the Julia set J(f)
its complement. Both of them are f-completely invariant, and the dynamics of f
over them are tame and chaotic respectively.

Figu_re 1: Newton method for a cubic polynomial
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In general, the following problem is quite difficult:
Problem 1. Determine which F(f) or J(f) a given point of C belongs to.

We focus on a periodic point, so study a local normal form of analytic germs
around a fixed point.

Problem 2. Determine the moduli of analytic conjugacy classes of analytic germs
M(A) := {f(z) = Az + O(Z))}/(analytic conjugacy fixing 0).

A is called the multiplier of f at the origin.

2 irrationally indifferent fixed points

In some cases, the moduli is determined and its structure is easy: In the superat-
tractive case A = 0 (Béttcher),

M(0) = N = {the number of sheets of f around 0).

In the attractive case 0 < |A] < 1 and repelling one |A| > 1 (Koenigs), M(A) is
trivial, i.e., f{z) is always analytically conjugate to Az.

Figure 2: attractive basin



In another case, the moduli is determined but its structure is complicate: In the
parabolic case that A is a root of the unity (Ecalle [4] and Volonin [15]),

M(2) = C* X N x {an co-dimentional space}.

Figure 3: parabolic basin

In the other case, the moduli itself has not been determined yet: In the irra-
tionally indifferent case 1 = ¢*™* (o € R — Q), a small divisor problem occurs.
In the rest of this paper, we study only such A.

Problem 3. Solve the functional equation (Schréder equation)

¢o f(2) =1-4(2)

in the formal power series sense. Here

d2)=z+ Z #;2 (unknown formal power series),
j>1
f@) =2z + Z fi7z’  (power series expansion).
7>1

Itcanbe solved as ¢, = f,/(1-12), ¢3 = (f5+21£26,)/(A-A%),. .., inductively.
We notice that ‘

¢;

_ (apolynomial of f3, f3,..., fj 2,83, ,$;-1)
. FIY; )
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Problem 4. Determine when the formal power series solution ¢ converges.

It involves a difficulty of small divisors:
liminf|d - A/| = 0. )
J—oo
Problem 5. For every 2 = ¢%** (@ € R - Q), find a non-linear f such that ¢
converges.

It in not difficult. However, the following is not easy, and as we shall see in
the next section, it is studied in detail by Cremer around 1930.

Problem 6. For every A = €™ (@ € R — Q), does there exist a non-linear f such
that ¢ diverges? If exists, how is it?

We shall study mainly this Problem 6.
Definition 2.1. f is (analytically) linearizable if ¢ converges.

3 Diophantine conditions related to complex analy-
sis
In studying Problem 6, we encounter several Diophantine(-type) conditions.

Theorem 3.1 (Cremer [3] 1931). Assume that S € M(Q) is a rational map of
degree d > 2. If A satisfies

liminf |1 - /|14 = o,
J—oo

(compare (1)) or equivalently,

. 1 1
In;: ?p 7 log m = 0o, (Cr)

then f is not linearizable.

Theorem 3.2 (Siegel [13] 1942). If A satisfies
C
I/l"-ll>(-1; (geN) (S)

Jor some C > 0 and some order k > 1, then f € M(2) is always linearizable.



Cremer’s argument was algebraic: he estimated the absolute values of roots of
f/(z)—z from above by |1- /|4 | Such an estimate gives an upper estimate of the
radius of convergence of ¢. Consequently, Cremer obtained his non-linearizability
result under the condition (Cr).

Contrastively, Siegel’s argument was analytic: he constructed an absolutely
convergent power series dominating ¢ under the condition (S). Its radius of con-
vergence gives a Jower estimate of that of ¢. Consequently, Siegel obtained his
linearizability result.

Remark 3.1. Every algebraic irrational number of order « satisfies (S) of order «.
Now we try rewriting (Cr) and (S) in a Diophantine approximation formalism,
which is appropriate to a geometric study of our problem.

Let {pa/qxs} denote the convergent derived from the continued fraction expan-
sion of . Then the former is equivalent to

) loggs
lim sup %g—i = 00,

and the latter
lim log g1 _
n—oo0 Iog qn

Later, Brjuno ([1] 1971) improved (S) to
Z loggna _ (B)
neN qn

However (B) cannot be improved anymore.

Theorem 3.3 (Yoccoz [16] 1996). If A does not satisfy (B), some f € M(Q) is not
linearizable.

On the other hand, by Yoccoz and Ilyashenko, it is known that when the
~ quadratic polynomial P,(z) = Az + 22 is linearizable, then any element of M(2) is
linearizable. Hence,

Theorem 3.4 (Yoccoz [16] 1996, Cheritat 2001). If A does not satisfy (B), then
P, is not linearizable.

4 anew argument — the Nevanlinna theory

Problem 7. Fill the gap between (Cr) and (B).
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We introduce the Nevanlinna theory to our problem. Assume that f € M(1) is
a rational map of degree d > 2. A
The spherical area measure and the chordal distance on C are

|duw| |z — wl
=————— and [z,w]=
7w) (1 + [w]?)? 2 v] VI + 122 1+ uf?

respectively. We note that they are normalized as o(C) = 1and [0,00] = 1.
The Valiron exceptionality of 1d¢ for {f*} is defined by

_ Jlog i —do(w)
VE(dg; () := lim sup = Efjk“ :

Then we can characterize the left hand side of (Cr) in terms of the Nevanlinna
theory. '

Main Theorem 1 (natural equality). If f is linearizable, then

1 1
li —log — = &5 .
im sup 7 log = = VE(dg; (/) 2

On the other hand, the linearizability of f means the existence of the Siegel
disk, where f acts as an irrational rotation, hence the tame dynamics of f actually
exists.

Figure 4: Siegel disk



Main Theorem 2 (Vanishing theorem). When F(f) # 0,

VE(ldg; {f*) = 0. A3)
Combining them, we succeed in improving (Cr) greatly.

Main Theorem 3 ([12] 2002). If

hmsup ;k lc'g| ! =T >0 ©)

then f is not linearizable.

S dynamical and Nevanlinna exceptional sets

In this section, we shall survey our article [11], of which the results have been
already implicitly applied to the proof of Main Theorem 3.

Notation. Rat denotes the set of all rational endomorphism of €. € is identified
as the set of all constant functions of C.

From definition, the dynamical system around J(f) has an almost covering
feature: There exists E(f) c C such that for every neighborhood U of a point of
"J(f), the union of the forward-images of U under iterations covers C — E(f).

Definition 5.1 (dynamical exceptional set). E(f) is called the dynamical excep-
tional set of f.

From this almost covering feature, naturally arises the Nevanlinna theoretical
study, which treats preimages under iterations.

Definition 5.2 (value distribution). For f, g € Rat, the value distribution u(f, g)
of f for g is defined by the mass distribution on the (deg f + deg g)-roots of the
equation f = g.

Definition 5.3 (dynamical Nevanlinna theory [14]). For f,g € Rat, the point-
wise proximity function is defined by

w(g, N)) = log ————: € - [0, 0],

[()f()]

and the mean proximity by

m(g, f) := f; w(g, f)do € [0, ).

mn
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Let F be a rational sequence {fi}7,, C Rat with increasing degrees {d; :=
deg fi}. For g € Rat, the dynamical Nevanlinna and Valiron exceptionalities are
defined by

NE(g; F) := liléminf,—n-(%’-f£2 € [0, 0],
—00 /2

VE(g; F) := limsup T—%f-kl € [0, o0]

k—o0
respectively.

From now on, we consider the iteration sequence (_f"},";1 of a rational map f
of degree d > 2.

Definition 5.4 (dynamical Nevanlinna and Valiron exceptional sets). The dy-
namical Nevanlinna and Valiron exceptional sets of f in C are defined by

Ex(f) := {p € C;NE(p; {f*}) > 0},
Ev(f) = {p € &, VE(p; {/*}) > 0)
respectively.

It is known that {(f*)*o"/d*} converges weakly. The limit is also known as the
unique maximal entropy measure (see [9] and [10]).

Definition 5.5 (the maximal entropy measure).

. ‘o
w = Jim O

Definition 5.6 (accumulation and convergence loci). Tlle accumulation and
convergence loci of the averaged value distributions of fin C are defined by

AfH):={peC;a subsequence of {u(f*, p)/d*} converges to u ),

Conv(f) = {p € &; lim "—({:,;—p) = )

respectively.
Now we state Main Theorem.

Main Theorem 4 (characterizations of exceptional sets). For f € Rat of degree
2 2}
C—Ey(f) = COHV(f)‘CA(f) =C - Ex(f) CC—EU).



Independently, known is the following remarkable theorem which was first
proved for polynomials by Brolin [2] and later for rational maps by Lyubich [9]
and independently by Freire-Lopes-Mafié [7]. See also [5], [8], [6] for the other
proofs.

Theorem 5.1 (convergence of averaged value distributions). For f € Ratof
degree > 2, A
C - E(f) = Conv(f).

Combining them, we have the following.

Corollary (All exceptional sets are same.). For f € Rat of degree > 2,

En(f) = Ev(f) = E(f) = € - Conv(f) = € — 4()).
Remark 5.1. In [12], Main Corollary has been already implicitly applied to the
Siegel-Cremer linearizability problem of rational maps.
The important consequence of Main Corollary is a convergence theorem of
the potentials of the averaged value distributions.

Definition 5.7 (spherical potential). For a regular measure u on C, the potential
is defined by

Vii= [ ~loglulu) : € [0, o],

Remark 5.2. In the potential theory, the potential is usually defined as —¥,, but
the definition will be more convenient in our study.

The (axiomatic) potential theory implies that when regular measures u; con-
verges to u, then
hgx’ glf Vie =V,

quasieverywhere on C. For the averaged value distributions, we obtain the stronger
conclusion.

Main Theorepl S (convergence theorem of potentials). Let f € Rat be of degree
d 2 2. If p € C - E(f) is not a fixed point, then

Wminf Vi pyjax = ¥ @

on €. Otherwise (4) holds on € - Ui £ *(p).

We also characterize such points that the potentials actually converge there,
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Main Theorem 6 (convergenceﬂof potentials and pointwise behavior). Let f €
Rat be of degree d > 2. For p € C - E(f) and q € C,

Hm Ve pyya(q) = Vu{(Q) ®)
ifand only if : 1

lim — log ———— = 0. 6

ko 38 [p, fHq)] ©
References

[1] BryuNo, A. D. Analytical form of differential equations, Trans. Moscow
Math. Soc., 25 (1971), 199-239.

[2] BroLiv, H. Invariant sets under iteration of rational functions, Ark. Mat., 6
(1965), 103-144 (1965).

[3] Cremer, H. Uber die Schrddersche Funktionalgleichung und das
Schwarzsche Eckenabbildungsproblem, Math.-phys. Klasse, 84 (1932),
291-324,

[4] EcaLte, J. Les Jonctions résurgentes. Tome II, Vol. 6 of Publications
Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81], Uni-
versité de Paris-Sud Département de Mathématique, Orsay (1981), Les fonc-
tions résurgentes appliquées  I’itération. [Resurgent functions applied to it-
eration].

[5] EréMENko, A. E. and Sop, M. L. Iterations of rational functions and the
distribution of the values of Poincaré functions, Teor. Funktsii Funktsional.
Anal. i Prilozhen., 53 (1990), 18-25.

[6] Fornagss, J. E. and Sisony, N. Complex dynamics in higher dimension. II,
Modern methods in complex analysis (Princeton, NJ, 1992), Vol. 137 of Ann.
~ of Math. Stud., Princeton Univ. Press, Princeton, NJ (1995), 135-182.

[7] Freme, A., LopEs, A. and MaRE, R. An invariant measure for rational maps,
Bol. Soc. Brasil. Mat., 14, 1 (1983), 45-62.

[8] Hussarp, J. H. and PapaporoL, P. Superattractive fixed points in C*, Indiana
Univ. Math. J., 43, 1 (1994), 321-365.

[9] Liusicn, M. J. Entropy properties of rational endomorphisms of the Riemann
sphere, Ergodic Theory Dynam. Systems, 3, 3 (1983), 351-385.



[10] MaRé, R. On the uniqueness of the maximizing measure for rational maps,
Bol. Soc. Brasil. Mat., 14, 1 (1983), 27-43.

[11] Oxuyama, Y. Complex dynamics, value distributions, and the potential the-
ory (preprint).

[12] Okuvama, Y. Nevanlinna, Siegel, and Cremer, Indiana Univ. Math. J. (to
appear).

[13] Siecew, C. L. Iterations of analytic functions, Ann. of Math., 43 (1942), 807-
812.

[14] Sopmv, M. Value distribution of sequences of rational functions, Entire and
subharmonic functions, Vol. 11 of Adv. Soviet Math., Amer. Math. Soc.,
Providence, RI (1992), 7-20.

[15] VoLonn, S. M. Analytic classification of germs of conformal mappings
(C,0) — (C,0) with identity linear part, Functional Analysis, 15 (1981),
1-17.

[16] Yoccoz, J.-C. Théoréme de Siegel, nombres de Bruno et polyndmes quadra-
tiques, Astérisque, 231 (1995), 3—88, Petits diviseurs en dimension 1.

15



