<table>
<thead>
<tr>
<th>Title</th>
<th>MOSER'S QUESTION ON A SIMULTANEOUS APPROXIMATION OF A SET OF NUMBERS AND A SIMULTANEOUS NORMAL FORMS OF MAPS (Diophantine phenomena in differential equations and dynamical systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>YOSHINO, MASAFUMI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2004, 1377: 92-101</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25640</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ

Kyoto University Research Information Repository
MOSER'S QUESTION ON A SIMULTANEOUS APPROXIMATION OF A SET OF NUMBERS AND A SIMULTANEOUS NORMAL FORMS OF MAPS

1. INTRODUCTION

In the paper [5] J. Moser studied the following problem. Let f_{ν}, $\nu = 1, \ldots, d$ be the germs of commuting holomorphic functions $(\mathbb{C}, 0)$ satisfying

\begin{align}
(1.1) & \quad f_{\nu} \circ f_{\mu} = f_{\mu} \circ f_{\nu}, \quad \nu, \mu = 1, \ldots, d, \\
(1.2) & \quad f_{\nu}(0) = 0, \quad f'_{\nu}(0) \equiv \lambda_{\nu} = e^{2\pi i \alpha_{\nu}}, \quad \nu = 1, \ldots, d.
\end{align}

We want to seek a holomorphic function $u(z)$ such that

\begin{equation}
(1.3) \quad u(0) = 0, \quad u'(0) = 1, (u^{-1} \circ f_{\nu} \circ u)(z) = \lambda_{\nu} z, \quad \nu = 1, \ldots, d.
\end{equation}

Following Haeflinger [2] and Banghe-Haeflinger [1] the commuting example appears as a holonomy group of codimension one foliation.

In the case of a single map with $\alpha_{1} = \theta$ the following theorem is well known.

Theorem 1. (Siegel) If there exist $C > 0$ and $\tau > 0$ such that

\begin{equation}
(1.4) \quad \|q\| := \inf_{p \in \mathbb{Z}} |q - p| \geq Cq^{-\tau}, \quad \forall q \geq 2, \quad q \in \mathbb{Z}
\end{equation}

there exists a unique holomorphic solution $u(z)$ such that

\begin{equation}
(1.5) \quad u(0) = 0, \quad u'(0) = 1, \quad u(e^{2\pi i \theta} z) = f(u(z)).
\end{equation}

The difficult part of the proof of this theorem lies in proving the convergence of the formal power series solution u of the so-called homology equation. The condition (1.4) is a sufficient condition in order to show the convergence of the formal power series solution. On the other hand

1Supported by Grant-in-Aid for Scientific Research (No. 11640183), Ministry of Education, Science and Culture, Japan and GNAMPA-INDAM, Italy. E-mail: yoshino@math.sci.hiroshima-u.ac.jp
it is a difficult and interesting problem to find a necessary condition for the convergence. We recall a classical result due to Cremer: if

\begin{equation}
\limsup_{k \to \infty} \frac{1}{d^k} \log \frac{1}{|\lambda^k - 1|} = \infty, \quad d \geq 2, \text{integer}
\end{equation}

there exists a divergent formal solution u. We note that the left-hand side is expressed by using a Nevalina function. Therefore it is an interesting problem to understand the convergence without a Siegel condition.

We recall two approaches to this problem. The former one is to weaken the Diophantine condition. The typical one is a so-called Bruno condition: there exist $c > 0$ and $\tau > 0$ such that

\begin{equation}
||\theta q|| \geq \exp \left(-\frac{cq}{(\log(q + 1))^{1+\tau}} \right), \quad q \in \mathbb{Z}_{+}.
\end{equation}

The latter one is to understand from the viewpoint of the symmetry, $\exists h, f \circ h = h \circ f$. Namely, if there exist sufficiently many symmetry then we can linearize our map without a Siegel condition or without any Diophantine condition. This approach is closely related with the work of Moser in [5].

We note that a similar Diophantine phenomena happen in the study of the Goursat problem. This was first noted by J. Leray in [3]. More precisely, let us consider the following Goursat problem.

\begin{equation}
\frac{\partial^2}{\partial s \partial t} u = 0, \quad u|_{s+t=0} = u_1(s), \quad u|_{\lambda s+t=0} = u_2(s),
\end{equation}

where $\lambda \neq 0$ be a complex number and $u_j(s)$ are analytic functions near the origin $s = 0, t = 0$. Here s and t are real or complex variables. The Goursat problem is related with a moving boundary problem for a hyperbolic equation.

A Goursat problem is also related with the Schröder equation as follows. It follows from the equation $\partial_t \partial_s u = 0$ that $u = \exists \phi(t) + \exists \psi(s)$. By the boundary conditions we obtain

\begin{equation}
\phi(-s) + \psi(s) = u_1(s), \quad \phi(-\lambda s) + \psi(s) = u_2(s).
\end{equation}

It follows that

\begin{equation}
\phi(-\lambda s) - \phi(-s) = u_2(s) - u_1(s) \equiv v(-s).
\end{equation}

By setting $s \mapsto -s$ we obtain the Schröder equation

\begin{equation}
\phi(\lambda s) - \phi(s) = v(s).
\end{equation}
It is almost clear that we meet a Diophantine condition if we want to solve (1.11) in a class of analytic functions. Indeed, let

\[\phi(s) = \sum_{n=1}^{\infty} \phi_n s^n, \quad v(s) = \sum_{n=1}^{\infty} v_n s^n \]

be the expansions of \(\phi \) and \(v \), respectively. By inserting the expansions into the equation we obtain

\[\sum_{n=1}^{\infty} \phi_n (\lambda^n - \lambda) s^n = \sum_{n=1}^{\infty} v_n s^n. \]

Hence, if \(\lambda^n - \lambda \neq 0 \) \((n = 1, 2, \ldots)\) we can construct a formal solution. As to the convergence of a formal power series solution we need a Diophantine condition.

By a similar argument as in the above we can prove

Theorem 2. (Leray) If

\[\rho(\lambda) := \lim_{k \to \infty} \sup \frac{1}{k} \log \frac{1}{|\lambda^k - 1|} < \infty \]

(1.8) has a unique analytic solution for any \(u_j(s) \).

We call \(\rho(\lambda) \) a Leray-Pisot function. (cf. [4]). The necessary part is given by

Theorem 3. (cf. [8]) If \(\rho(\lambda) = \infty \) then there exist \(u_1 \) and \(u_2 \) such that (1.8) has a formal power series solution \(u \) which does not converge in any neighborhood of the origin.

Hence it may happen that one can weaken the Cremer's condition for the divergence of a formal power series solution. Leray's result implies us this may be case since Goursat problem is closely related with Schröder's equation, a linearized homology equation.

If we consider the Goursat problem for third order equation we find that the Leray-Pisot function of two variables

\[\rho(\lambda, \mu) := \lim_{k \to \infty} \sup \frac{1}{k} \log \frac{1}{|\lambda^k - 1| + |\mu^k - 1|} \]

plays the same role as \(\rho(\lambda) \) in the case of second order equation. In fact, the condition \(\rho(\lambda, \mu) > 0 \) is necessary and sufficient for the unique local solvability in some neighborhood of the origin for any right-hand side and any boundary conditions, while if \(\rho(\lambda, \mu) = 0 \) we have a divergence of a formal power series solution.
2. STATEMENT OF THE RESULTS

Simultaneous Diophantine condition. We say that the set of numbers \(\alpha_j (j = 1, \ldots, d) \) satisfies a simultaneous Diophantine condition if there exist \(\exists C > 0 \) and \(\exists \tau > 0 \) such that

\[
\max_{\nu=1,\ldots,d} \|q\alpha_\nu\| \geq Cq^{-\tau}, q = 1, 2, 3, \ldots,
\]

where

\[
\|q\alpha_\nu\| = \min_{p \in \mathbb{Z}} |q\alpha_\nu - p|.
\]

This condition is weaker than the so-called simultaneous Siegel condition:

\[
\exists C > \exists \tau > 0 ; \|q\alpha_\nu\| \geq Cq^{-\tau}, \nu = 1, \ldots, d, q = 1, 2, \ldots
\]

We say that \(\beta \) is a Liouville number if, for every \(\lambda > 0 \) there exist infinitely many integers \(q \in \mathbb{Z} \) such that

\[
0 < \|q\beta\| < q^{-\lambda}.
\]

Moser's question. Given the germs of commuting holomorphic functions \((\mathbb{C},0), f_\nu(z), \nu = 1, \ldots, d\) satisfying (1.1) and (1.3). We consider

\[
f(z) := f_1(z)^{g_1} \circ \cdots \circ f_d(z)^{g_d}, \quad g_1, \ldots, g_d \in \mathbb{Z}.
\]

Suppose that \(\alpha_j (j = 1, \ldots, d) \) satisfy the simultaneous Diophantine condition. Then Moser asked whether there exist \(g_1, \ldots, g_d \in \mathbb{Z} \) such that \(f(z) \) satisfies a Diophantine condition. If this is the case, the linearization problem in a commuting case is reduced to the case of a single map, hence to Siegel's theorem. The answer to this question is negative. In fact, Moser proved:

Theorem 4. (Moser) For \(d \geq 2 \) and a given \(\tau > 2/(d-1) \) there exists a set of cardinality of \((\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d \) such that the simultaneous Diophantine condition holds, but such that, for all \(g = (g_1, \ldots, g_d) \in \mathbb{Z}^d \setminus \{0\} \)

\[
r := g_1\alpha_1 + \cdots + g_d\alpha_d
\]

are Liouville numbers (i.e., non Diophantine).

In [5], Moser raised the question whether this theorem can be extended to case where \(\alpha_j (j = 1, \ldots, d) \) are \(n \)-dimensional vectors, \(\alpha_j = (\alpha_{j,1}, \ldots, \alpha_{j,n}) \). More precisely we consider a commuting system of maps

\[
f_\nu : (\mathbb{C}^n,0) \longrightarrow (\mathbb{C}^n,0), f_\nu(z) = A_\nu z + O(z^2), \nu = 1, \ldots, d.
\]
Let λ_j^ν, $(j = 1, \ldots, n)$ be the eigenvalues of A_ν with multiplicity, $(\nu = 1, \ldots, d)$. We write

\begin{equation}
\lambda_j^\nu = \exp(2\pi i \theta_j^\nu), \quad 0 \leq \theta_j^\nu \leq 1,
\end{equation}

and set $\theta^\nu = (\theta_1^\nu, \ldots, \theta_n^\nu)$. We define

\begin{equation}
\langle \alpha, \theta^\nu \rangle := \sum_{j=1}^{n} \alpha_j \theta_j^\nu, \quad \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n.
\end{equation}

We say that $\{\theta^\nu\}_{\nu=1}^{d}$ satisfies a simultaneous Diophantine condition if there exist $C > 0$ and $\tau > 0$ such that

\begin{equation}
\min_{k=1,\ldots,n} \sum_{\nu=1}^{d} \|\langle \alpha, \theta^\nu \rangle - \theta_k^\nu \| \geq C|\alpha|^{-\tau}, \quad \forall |\alpha| \geq 2, \alpha \in \mathbb{Z}_+^n,
\end{equation}

where $\|t\| = \inf_{p \in \mathbb{Z}} |t - p|$.

Let $p_\nu \in \mathbb{Z}$, $(\nu = 1, \ldots, d)$ and set

\begin{equation}
\delta_j = \sum_{\nu=1}^{d} \theta_j^\nu p_\nu, \quad \delta = (\delta_1, \ldots, \delta_n).
\end{equation}

We say that δ is a Liouville vector, if for every $\lambda > 0$ the inequality

\begin{equation}
0 < \min_{k=1,\ldots,n} \|\langle \alpha, \delta \rangle - \delta_k \| < |\alpha|^{-\lambda}
\end{equation}

holds for infinitely many $\alpha \in \mathbb{Z}_+^n$. Note that δ gives the eigenvalues of a map $f = f_1^{p_1} \circ \cdots \circ f_d^{p_d}$. Then we have

Theorem 5. Suppose that $d > n \geq 2$. Then there exists a set of linearly independent vectors $\theta_j = (\theta_j^1, \ldots, \theta_j^d)$ $(j = 1, \ldots, n)$ with the density of continuum satisfying a simultaneous Diophantine condition for which, for any $p = (p_1, \ldots, p_d) \in \mathbb{Z}^d \setminus 0$ the $\delta = (\delta_1, \ldots, \delta_n)$, $\delta_j = \sum_{\nu=1}^{d} \theta_j^\nu p_\nu$ is a Liouville vector.

We note that $f_\nu(z)$, $\nu = 1, \ldots, d$ satisfies a simultaneous Diophantine condition while, for any $p = (p_1, \ldots, p_d) \in \mathbb{Z}^d$ $f := f_1^{p_1} \circ \cdots \circ f_d^{p_d}$ does not satisfy a Diophantine condition.

3. SKETCH OF THE PROOF

We will give the sketch of the proof of Theorem 5. We need lemmas in [5]. (For the detail, see [5]). Let $E^n \subset \mathbb{R}^d$ be a real subspace in \mathbb{R}^d. With the standard Euclidean norm $| \cdot |$ in \mathbb{R}^n we define

\[\text{dist}(x, E^n) = \min_{y \in E^n} |x - y|, \quad x \in \mathbb{R}^n. \]
Definition. We define $\mu := \mu(E^n)$ as the supremum of the numbers λ for which

$$\text{dist}(j, E^n) < |j|^{-\lambda}, \quad j \in \mathbb{Z}^d$$

possesses infinitely many solutions. Here $\mu = \infty$ is admitted.

Clearly, the definition is independent of the norm. Note that, if $\mathbb{Z}^d \cap E^n = \{0\}$ and $\tau > \mu$ then there exists a positive constant c such that

$$\text{dist}(j, E^n) \geq c|j|^{-\tau}, \quad \text{for all } j \in \mathbb{Z}^d \setminus \{0\}.$$

(3.2)

A subspace E^n satisfying $\mathbb{Z}^d \cap E^n = \{0\}$ and (3.2) is called a Diophantine subspace with respect to \mathbb{Z}^d. The following theorem is given in Moser [Theorem 2.1, 5]. (See also [6]).

Theorem. For almost all E^n in the Grassmann manifold $G_n(\mathbb{R}^d)$ one has $\mu(E^n) = \frac{n}{d-n}$.

Proof of Theorem 5. Let us assume that there exists a subspace E^n in \mathbb{R}^d generated by the linearly independent vectors $\theta_j = (\theta_j^1, \ldots, \theta_j^d)$, $(j = 1, \ldots, n)$ such that $\mu(E^n) = \frac{n}{d-n}$. Let τ be such that $\tau > \frac{n}{d-n}$. Then we have (3.2). We consider the left-hand side of (2.8)

$$\text{dist}(j, E^n) \geq \min_{1 \leq k \leq n} \sum_{\nu=1}^{d} \inf_{p_{\nu} \in \mathbb{Z}} |\langle \alpha, \theta^\nu \rangle - \theta_k^\nu - p_{\nu}|.$$

(3.3)

We set

$$y = y_k = (\alpha, \theta^\nu) = \theta_k^\nu, \quad (\nu, k) \in \mathbb{Z}^d \setminus \{0\}.$$

Let $j = (p_{\nu})_{\nu=1}^{d} \in \mathbb{Z}^d$ be a multiinteger for which the infimum in the right-hand side of (3.3) is taken. Then the right-hand side of (3.3) is bounded from the below by $c_1 \min_{1 \leq k \leq n} |j - y_k|$ for some positive constant c_1 independent of j and k. By the inequality $|j - y_k| \geq \text{dist}(j, E^n)$ for $k = 1, \ldots, n$ and (3.2) we can estimate the right-hand side of (3.3) from the below in the following way

$$\geq c_1 \min_{1 \leq k \leq n} |j - y_k| \geq c_1 \text{dist}(j, E^n) \geq c_2 |j|^{-\tau},$$

(3.4)

for some positive constant c_2 independent of j. Because the infimum in (3.2) is taken for j such that $|j - y_k| \leq M|y_k|$ for some constant M independent of k, we obtain, by the condition $|\alpha| \geq 2$

$$|j| \leq (1 + M)|y_k| \leq c'(1 + |\alpha|) \leq c''|\alpha|$$

for some positive constants c' and c''. It follows that the right-hand side of (3.3) is bounded from the below by $c|\alpha|^{-\tau}$ for some positive constant c independent of α. This proves (2.8).
We want to show that there exists E^n satisfying $\mu(E^n) = \frac{n}{d-n}$ and the Liouville property (2.10) for any $p = (p_1, \ldots, p_d) \in \mathbb{Z}^d \setminus 0$. For the detail we refer to [10].

4. COMMUTING SYSTEM OF VECTOR FIELDS

In the case of a commuting vector fields the situation is completely different from the case of maps. For the sake of simplicity, let us consider a system of holomorphic commuting system of vector fields \mathcal{X}_ν ($\nu = 1, \ldots, d$), $[\mathcal{X}_\nu, \mathcal{X}_\mu] = 0$ ($\nu, \mu = 1, \ldots, n$) which are singular at the origin. With a standard coordinate in \mathbb{C}^n we write $\mathcal{X}_\mu = \sum_{j=1}^{n} X_j^\mu(x) \partial_{x_j}$ ($\mu = 1, \ldots, d$). Define $X^\mu := (X_1^\mu, \ldots, X_n^\mu)$ and $\Lambda^\mu = \nabla_x X^\mu(0)$. Note that $x \Lambda^\mu$ is the linear part of X^μ. We assume that \mathcal{X} is singular at the origin. Hence we can write

\begin{equation}
X^\mu(x) := X^\mu = (X_1^\mu(x), \ldots, X_n^\mu(x)) = x \Lambda^\mu + R^\mu(x), \quad 1 \leq \mu \leq d,
\end{equation}

where $R^\mu(x)$ is analytic in x in some neighborhood of the origin such that

\begin{equation}
R^\mu(0) = \partial_x R^\mu(0) = 0, \quad 1 \leq \mu \leq d.
\end{equation}

Let λ_j^ν ($j = 1, \ldots, n, \mu = 1, \ldots, d$) be the eigenvalues with multiplicities of Λ^μ. We set $\lambda^\mu = (\lambda_1^\mu, \ldots, \lambda_n^\mu)$ ($\mu = 1, \ldots, d$). For a multiinteger $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n$ we set $\langle \lambda^\nu, \alpha \rangle = \sum_{j=1}^{n} \lambda_j^\nu \alpha_j$ and define

\begin{equation}
\omega(\alpha) = \min_{1 \leq j \leq n} \sum_{\nu=1}^{d} |\langle \alpha, \lambda^\nu \rangle - \lambda_j^\nu|.
\end{equation}

Definition. We say that $\mathcal{X} := \{\mathcal{X}_\nu; \nu = 1, \ldots, d\}$ is non simultaneously resonant if $\omega(\alpha) \neq 0$ for all $\alpha \in \mathbb{Z}_+^n$, $|\alpha| \geq 2$. The set of $\alpha \in \mathbb{Z}_+^n$, $|\alpha| \geq 2$ such that $\omega(\alpha) = 0$ is called a simultaneous resonance of \mathcal{X}.

Definition. Let ω_k ($k = 2, 3, \ldots$) be given by

\begin{equation}
\omega_k = \inf \{\omega(\alpha); \omega(\alpha) \neq 0, \alpha \in \mathbb{Z}_+^n, 2 \leq |\alpha| < 2^k\}.
\end{equation}

We say that the system \mathcal{X} satisfies a simultaneous Siegel condition, a simultaneous Bruno type condition and a simultaneous Bruno condition respectively if,

\begin{equation}
\omega_k \geq C(1 + 2^k)^{-\tau},
\end{equation}

\begin{equation}
\omega_k \geq \exp(-C2^k/(k+1)^{1+\tau}),
\end{equation}

where C is a constant.
for some constants $C > 0$ and $\tau > 0$ independent of k, and

$$-\sum_{k=2}^{\infty} \ln \omega_k/2^k < \infty.$$

In the case $d = 1$ we say that the vector field $X = X_1$ satisfies a Siegel condition, a Bruno type condition and a Bruno condition, respectively if the corresponding simultaneous condition is verified. Then we have

Theorem 6. The system X_{ν} ($\nu = 1, \ldots, d$) satisfies one of a simultaneous Siegel condition, a simultaneous Bruno condition and a simultaneous Bruno type condition if and only if there exist numbers $c_{\nu}(\nu = 1, \ldots, d)$ such that the following conditions are satisfied:

(i) the vector field $X_0 := \sum_{\nu=1}^{d} c_{\nu} X_{\nu}$ satisfies a Siegel condition, a Bruno condition and a Bruno type condition, respectively.

(ii) the resonance of X_0 coincides with the simultaneous resonance of the system X_{ν} ($\nu = 1, \ldots, d$).

We note that the case of vector fields shows a sharp contrast to that of maps. Because we can choose a Diophantine vector field from the Lie algebra generated by a system of vector fields if the given system satisfies a simultaneous Diophantine condition.

5. **Sketch of the Proof**

We will give a sketch of the proof of Theorem 6. We will show the necessity of (i) and (ii). We note that the commutativity of X_{ν} implies that the linear parts of X_{ν} are pairwise commuting. Without loss of generality we may assume that the linear part A_1 of X_1 is put in a Jordan normal form.

Let c_1, \ldots, c_d be complex numbers. By the commutativity, the eigenvalues of the linear part of $X_0 := \sum_{\nu=1}^{d} c_{\nu} X_{\nu}$ are given by $\sum_{\nu=1}^{d} c_{\nu} \lambda_j^\nu$ ($j = 1, \ldots, n$). For $c = (c_1, \ldots, c_d) \in \mathbb{C}_+^d$ and $\alpha \in \mathbb{Z}_+^n$ we define

$$\Omega(\alpha, c) = \min_{1 \leq j \leq n} \left| \sum_{\nu=1}^{d} c_{\nu}(\alpha, \lambda_j^\nu - \lambda_j^\nu) \right|.$$

Let $\omega(\alpha)$ and ω_k be given by (4.3) and the definition in the above, respectively. Then we define

$$A_k = \{ c = (c_1, \ldots, c_d) \in \mathbb{C}_+^d; \exists \alpha \in \mathbb{Z}_+^n, 2 \leq |\alpha| < 2^k\text{ such that } \omega(\alpha) \neq 0, \Omega(\alpha, c) < 2^{-nk-k} \omega_k \}.$$
We can easily show that the Lebesgue measure of the set $A := \lim_{k \to \infty} A_k$ is equal to zero. Therefore, if $c \not\in A$ there exists $k_0 \geq 1$ such that

$$\Omega(\alpha, c) > \omega_k 2^{-nk-k}, \quad \forall k \geq k_0.$$

This proves that \mathcal{X}_0 satisfies a Siegel, a Bruno type and a Bruno condition, respectively.

In order to show (ii) we note that if α is not in a simultaneous resonance set of $\mathcal{X}_\nu \ (\nu = 1, \ldots, d)$, the set of $c \in \mathbb{C}^n$ such that

$$\sum_{\nu=1}^{d} c_\nu (\langle \alpha, \lambda^\nu \rangle - \lambda_j^\nu) = 0$$

is a hyperplane for each j. The Lebesgue measure of the sum of these hyperplanes is zero. By adding A to the sum of these hyperplanes we can choose $c \not\in A$ such that the resonance of \mathcal{X}_0 is equal to the simultaneous resonance of $\mathcal{X}_\nu \ (\nu = 1, \ldots, d)$.

We will prove the sufficiency. We define $\tilde{\omega}(\alpha)$ by

$$\tilde{\omega}(\alpha) = \min_j \left| \langle \alpha, \sum_\nu c_\nu \lambda^\nu \rangle - \sum_\nu c_\nu \lambda_j^\nu \right|.$$

We also define $\tilde{\omega}_k$ by (4.4) with $\omega(\alpha)$ replaced by $\tilde{\omega}(\alpha)$. We can easily show that $\tilde{\omega}(\alpha) \leq M \omega(\alpha)$ for some $M > 0$ independent of α. It follows from the assumption (ii) that $\tilde{\omega}_k \leq M \omega_k$. This implies that if \mathcal{X}_0 satisfies a Siegel condition (or Bruno type condition) the system \mathcal{X} also satisfies a simultaneous Siegel and Bruno type condition, respectively. Now, let us assume that \mathcal{X}_0 satisfies a Bruno condition. Because $\ln \tilde{\omega}_k < \ln M + \ln \omega_k$, it follows that $-\sum_k \ln \tilde{\omega}_k/2^k > -\sum_k (\ln M + \ln \omega_k)/2^k$. Hence \mathcal{X} satisfies a simultaneous Bruno condition. This ends the proof.

REFERENCES

Present address: Graduate School of Sciences, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan. e-mail: yoshino@math.sci.hiroshima-u.ac.jp

This work is supported by Grant-in-Aid for Scientific Research (No. 14340042), Ministry of Education, Science and Culture, Japan.