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Let Z=f(2) be a holomorphic function of # in a ceitain region of
Gauss’ plane, then we can expand the function about any point e.g.
2, in the region into a power-series of 2z-z,:

Z—~Zy=a (3'30)4'612(2’-30)2-]— cees

where Z is the wvalte of the function at 2=z, If we wiite Z for
Z—27, and z for z—z, the seiies becomes

Z=£I1.3'+(122’°+ vae o

When @, is not zero, by the elementary theorem of the Theory of
Functions, #z can also be expanded as a power-seties of Z,

3=AIZ+AJZZ+..., Al:FO'

Such a function as Z of 2, we shall hereafter call a reversibly lolomor-
pluc function about the origin z=o.

Since for such a function, does not vanish about the origin

a circle about it is easily proved to be tiansformed by means of Z
=f(2) into a closed regular cuive about the origin Z=0 of the plane
of Z. Therofore when the absolute value |Z| of Z is not equal to a
constant, |Z| must take at least a maximum and a minimum value
on the circle. The locus of the point g at which |Z] is extreme, when
z runs concentric circles, is the object of the present study. In the
following we assume Z=f(z), (f(0)=0), to be reveisibly holomorphic
about the origin; and only this small region is taken into consideration.

1. The locus of the point & at which |Z| takes an extreme value
when 2z describes a ciicle with the variable radius, whose centre is at
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the origin, is defined as an exfreme way of the function, while the
corresponding locus of Z(z,) in the plane of Z is defined as a curve
of extreme value. For maximum values, maximum ways resp. curves
of maxumum wvalue are used and for minimum values, similar defini-
tions. In the following, the relations between the ways and curves
are discussed.

2. As usual in a reversibly holomorphic function, put

Z=az+ ad+ ..., a==o,
2 =x+ 4y, x =7rcosl, y =rsinb,
Z=X+1Y, X=Rcos ¥, Y= Rsin0.

It is known and easily proved that X as well as ¥ can be expanded
into a Taylor’s series of x and y about (0|o), and hence of # and 4.

Putting Rz, 9) = ¢(r, 0),
o(r,0+2)=0(r, 0)+¢,/(r. 0) N F oo+ 007, 6) Y
3 » g\ 1l 0 b '—*—(2”* I)!
(2n) /L")”'
+o¢* (%, 0) +....

(2n)!

When 6 changes from o to 27, with respect to the circle 4*+9*=#7, R,
therefore ¢(#, 0) returns to its original value, hence it must take at
least a maximum (resp. a minimum) value for certain 6, say 6, and

assume that
@' (70, O0)= .. =& (#,, 65) =0,

and 0D (7, 0) =0, (5, b,) == 0,

where 7 is an integer greater than or equal to 1. Suppose that these
relations hold for parametiic values of » about 7, e.g., in an interval
I, and for corresponding values of 6,: then consider the function
¢ @D (7,0). This function satisfies the relations

2™ (70, 0o) =0, @® (7, 60) =F 0,

hence we obtain a continuous function f=¢(#) in a certain interval
about 7, say I,, Let I be the smaller of the two intervals I; and I,
then we have for » in I,

0/(7n §(7)) =...= ¢ (1 G()) = o,
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o (7, (7)) = 0, bo = $()

0@ (1, 6) = F(r,0),

Now put

then ¢(») is the continuous solution for r=ry, =0, of the differential
equation

OF , 0F 40 _
or o dr '
F OF . 0F
Te~ 0 " —
where 5, g AYe power-series of » and . Moreover 50 does not

vanish in I. Hence 0=¢(#) will be obtained as a power-seiies of # in
I. The equation of the extreme way is, therefore,

£ = rcos {¢(r)}, 7= rsin {¢(»)}, about 7;;
and A&+ dyf = (1+7°¢") dr’.

So the extreme way is a regular curve, From the properties of the
reversibly holomorphic function, the corresponding curve of extreme
value is also a regnlar curve whose equation is

E = R(r, §(») cos {0 (r, ()},
H = R(r,¢(r)) sin {0 (r, $(n)}.

Thus, if our conditions are satisfied. we see that in this case the
following relations must be established:

oy (7, 0) = {0—g()}" K7, 0),

990(2"_1) (7" 0) = {0_ 9” (7')} K, 2n—1 (7’ ) 0) ’

where the functions X do not vanish in the neighborhood of (r, 0,).
But if for only the point (7, 6,),

@' (70, 00) =...= @ (7, 0y) =0,
while o (7o, 0,) = 0.

Then from the differential equation

ar 0py/(7,0)
ny o \nY) ,
i 40 o °

we obtain the solution :



164 Toshizs Matsumoto.

r—7y = Ap (0= 0" + A5, (0—0)"+ ...,
provided gy (7. 8) == 0;
or ’

whence it follows that
1 2
0—0y= B, (r—n)"+ By (r—7,) 714 ... .

This solution represents 2xz—1 determinations. If all the coefficients
of a certain determination P(r—#,) for »>7, be real, then by the
analytical continuation about 7, we can find another determination
O(7,—7) for #,>7, whose coefficients are all real. Hence before and
after 7, we shall obtain a real extreme way. Therefore when the
number of the extreme ways changes, we must have at least

do,/ (7. 8) —0
or

From such an equation we will obtain in general solutions of the type,
0—0,=10 (Z),1
r—ry = r (%).

Among these will be given several extreme ways. As illustration
consider the following function :

Z =z —2"
The analytic continuation of the function to the point z=% gives :

Z= 2t =Dl o)

27 3 3
Writing the series as usual :

2
= Z g—gt—45"

3

reversibly holomorphic about z=0, Z=o.

Now Ri= % P — %r%os 0— % #* cos 20 + 27° cos O + 7+ #5,

1 See e.g., E. Picard: Traite D'analyse III, pp. 36....
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putting #= 3 R

2

2¢°
o . o
—g = Sin 0 (2487 cos 0—3#") = o.
The roots are 0=o, =«
and cosf = 37 —2
87

i) when 7 is sufficiently small, the 10ots are 0 and =:

and (%(%)€=o= 2+ 8r—37 > o... min,,
0%

0—02—>e=7: =—2+8r+ 3% < 0...max.,

i.e, we have only a maximum way g== and a minimum way f=o.
ii) when # is not so small, adding to the above extreme ways, we have

cos § = 37—z .
8
From the condition
[cos 0| =],
we have 3PPFBF—2TZ0 ciiiiiiceeiiieieinane, (1),
— 3787 2 =0 (2);
from (1), r= V2274 = i, (3),
3
cos O =—1, Oy = m,
and from (2), r= V2244 =y e, (4)

3
cos iy =+ 1, 0, = 0.

By easy calculations,

(5 e = (5 s = (5=
002 /o= 062 Jg=0 00® Jo—o, %

=1y Y=7y

0%
<_()04—)7‘=7’1: r=r :i: °
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These results show, (Fig. 1), that the z-axis is a minimum way from
0 to Q,(0Q=7); a maximum way from O to P(OP=r); the circle
APBQ whose equation is 37— 87 cos § —2=0 represents two maximum
ways ; PR, a minimum way. At P and Q the number of the extreme

ways changes, so we have,

( 0%u ) 5
0100 r=1, =17, -

e=7r, =0

moreover we notice that 2 is a maximum point.

s-plane.

Y

I )

Fig. 1.

3 Let I be the cuive in Z-plane coriesponding to a circle y in
z-plane, w being the angle between the i1adius vector and the tangent

to I, we have
R 0

a,R

tan w =

When R is extieme, 4R vanishes; but 4,0 does not vanish ; for if it

vanish, from

6 = arctan (—I:) ,
X

we must have
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— YV I =0 ceriiiiiiiininaeee 1),
ol a0 ()
from ZR=o0,
0X Y
X = e o PPN 2
o Yo =° @)
By (1) and (2
OO ey (e
a0 ad )
Hence G_X=—rsinﬁ—d£—+rcosﬁ aX:o
of ox )y
% =—rsm0—%§ + 7cos § e o,

which leads to the equation:
0X \? oY )2_ az (*_ o
( ox > + ( ox ! dg l ’

PR . T . . .
which is impossible. We have o= - Les the radius vector R is

perpendicular to the curve I at the point of an extreme value.

g-plane. z-plane.

Y
Y B

fas)

L

o3
=

=B

Fig. 2.

Fig. 2 shows that for z=p,, Z=2F,, R is minimum ; for z=p,,
Z=2P,, R is maximum. Since R is perpendicular to I” at 2, the part
of the circle with centre O, which is drawn to touch the curve I at
P, lies on one side of [, so also is its corresponking curve in z-plane.
When 7 is the point of minimum value, then the part of the circle
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lies within [ touching it; therefore the corresponding curve in s-plane
lies within 7 and touches it at g ; i.e., 0f; is maximum in the neigh-
borhood of p,; the same is true for every point of the locus of A.
For B, op, is minimum ; hence

a). The curve of minimum (maximum) value of the function Z=_2(g)
is the maximuie (minimum) way of the function z=z(Z).

&) The minimumn (maximum) way of the function Z=Z(z) is the
curve of maximum (minimum) value of the function 2=z (Z).

4. Example. Z=z (2—2).
This function is reversibly holomorphic in the circle with radius
=1 about the origin.

R* = 7* (4— 47 cos 0+ /),

E:zpﬁsinﬂ:o, § =o0 or =

For 0 =0, Ry,=r(2—7)...min.

0 =m R;=r(2+7)... max.

In Fig. 3 (right), the dotted line is the minimum way; the thick line
the other. In Fig 3 (left),, the curve of minimum value is given by
“the dotted line, the other by the thick line.

Z-plane z-plane.

Y Y

N
-

Fig. 4.
The reciprocal function is

g=1 —1/1_—_2'.
When R is sufficiently small (Fig. 4).
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For 0=0, 7=1—y/I—FK ... max.,

O =mx, 7, =1/1+R —1 ... min,

opy is the curve of maximum value; OF,, the maximum way.

Z-plane. g-plane.
Y
i
KO B X &O L) x
Fig 4.

5. Next we shall find the number of the extreme ways and of
the curves of extieme value of the function about the oiigin :

Z=azta,s+ ..., a0

Put A =P e, e @y =0, €, e

Then X = Z pn 7" cos (70 +0,),
=]

v= Z pu 7 sin (20 +u)

=

Hence XXy + YV = { Z ps #* cos (G + oh)} {—Z & py, 7% sin (B0 + Uk)}
k=1

Nl

- { N pursin @0+ ) 1 pu o cos 80+ o)}

kel =L

oy

= Z (A—F)on p 7% cos (A0 +ay) sin (£0+ )

b A=1

Changing % into %, % into %, and adding we obtain
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-

2 (XX, + YY) =Z (h— &) py, pr, ¥ sin {(/é——/z) 0+a, —ah}

I, k=l
We may divide the double sum into three parts of

i) sum of terms for ~A=4#, (equal to zero),
ii) sum of terms for 4 < £,

iii) sum of terms for %2 > 4.

If we interchange % and £, the thiild sum is equal to the second.

Therefore we obtain

XX+ Yy =Z (e—£&) pn oy ¥+ sin { (B—1) 0+ak—a,,} s

hy k=1

where % and £ take all positive integeis-£ > 4.
Let a, be the first coefficient (except ;) which does not vanish,
then
XX+ VY = (1—n) py o ¥ sin {(n—1) O4-0,—0} +... ;
for the extreme value, this must vanish even for very small », there-
fore in the limit,

sin {(z—1)0+a,—a} = o.

The roots of the equation are given by

M +ay— 0,
n—1

, m=0,1,2,...212—3.

All the roots give extreme values for small #, since for these values

—a%—(XX '+ VYY) = 0.0

Hence, the . number of the extreme ways and that of the curves of
extreme value are eack equal to 2(n— 1), where the nth coefficient s the
Jirst one not zevo. Moveover by the conformuty of the function, the angle
between two consecutive ways is equal io that of the corvesponding curves

of extrewme value.
In Fig. 5, the dotted lines represent the minimum ways resp. the

curves of minimum value of the function,
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Z=z(1—2);
the thick lines, those of maximum.
Rmin. = »(1~7),

R max! = r(1-++Y).

Z-plane. g-plane.

Fig. 5.

Fig. 6 is for the inverse funCtion of the above, approximately.
The number of the ways is 8.

Z-plane. a-plane.
BlY Bly
E /B
4\\ i
Ny
7 7N B
// \\
/ \NE
&
g

Fig, 6.

6. Let us call a power-series with real coefficients, which is 1e-
versible, a real power-scries; then a real power-series has the x-axis
for an extveme way and the X-axis, for the covresponding curve of ex-
treme walne and vice versa. For sueh a function is symmetrical with
respect to the x- resp, X-axis,

When o veversibly holomorphic function Z=a, z+a,2*+... has the
x-axis for extreme way, then the quotients :
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22 Qg

) e

as a

are all veal and vice wversa.
For suppose a, the first coefficient (except a;) not zero, in the
formula of §5 put f==0 (or 7),

XX+ VY = (1—n) 7 pypy sin (0, — o) — 2™ 01 0,11 5in (04— )+
= 0.
Diminishing » we must have,
Op—0y == WMy 1 T,
wheie 2, , is an integer ; hence

Opgi—01 = My 1T, £=0,1,2,.c. 8—1, .ceree (I)

" moreover the coefficient of 7%+,

(1—272+5— 1) psPamrs—t Si0 (Coppss— o) + (12— 10 5)0nPrnps SIN(Uy— Tpis) + e
is equal to zero; then by (1), we have

Upgy— 0 = Mpyy 1 7T,

Opgg=—0y == lpy, 1 T
Therefore a,,;— 0,4 is a multiple of 7, hence

Coppot— 0 = Moo g, 1Ty 8§ =1,2,...0—1.
Proceeding in this way, we can prove in general
Os—0y = W1 T,

where s, is an integer; so that our proposition is proved.

Conversely since

.é. = g —l— ﬂ zg—l- eee

@ ‘11
is real, an extreme way is the z-axis, hence, of the function Z. Thus
when an extreme way is a straight line, by the rotation of the axes,

the line may become the wx-axis; next rotating the X-axis, the series
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becomes real; hence, w/ien the extreme way is a straight line, the cor-
responding curve of exlveme value 15 also a straight lne.

». Application to the modular function J (7).

T-plane.

Cb

Fig. y shows the fundamental region of the modular function
J (%), in which we know that

at 4, f=](—%+z'142—3:)=0.

at B, J=7() =1,
at «o, j::](w) =
and that the function takes real values on the lines AA', AB, BB’ and

on their homologous lines. Now take any point P (7. /) on the line
BB, then we have an expansion :

J=Jo=a (t—7)+a (t—7g)*+..., a =Fo.
Putting J-f=2Z
T—Tu = 12,

it becomes Z=bz+b+..., b Fo.
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When z takes real values, v takes values on the line BA’, therefoie
the corresponding values of / resp. of Z are real and the series is ®
real series; hence the w-axis 1esp. the line BA’ is an extreme way of
the function J(z). So also is the line 44’; but the line 45 is not
an extreme way ; for the repiesentation of the fundamental tiiangle in
the plane of /is the real axis (Fig. 8). Now if the aic 4B is an

J plane.

(A) (B)

N

Ing. 8.

extreme way, then the part ot of the real axis will be an extreme
way of the inveise function 7(/), (§ 3). Since the extireme way is a
straight line, the coriesponding cmive of extieme value must be also
a straight line, (§ 6). But the line 4B is an arc, i.e., the arc 48
cannot be an extreme way of the modular function. The homologous
lines of A4’ tesp. of BB are extreme ways or not, according as they
are stiaight or not, since the linear substitutions transform ciicle to
circle but not in general centie to centre,

To Piof. J. Kawai, the author wishes to expiess thanks for his

several 1emaiks.




