Some Applications of Quarternions.

By
T'oshizô Matsumoto.
(Received November 29, 1915.)

1. Riccati's Equation and Cayley's Formula.

The general solution of Riccati's equation

$$
\frac{d z}{d t}=L z^{2}+M z+N
$$

where L, M and N are functions of t alone, has the form

$$
\begin{equation*}
z=\frac{\alpha z_{0}+\beta}{\gamma z_{0}+\delta} \tag{1}
\end{equation*}
$$

in which α, β, γ and δ are functions of t, and z_{0} is an arbitrary constant. We can always assume $\alpha \delta-\beta \gamma=\mathrm{I}$. Conversely, given α, β, γ and δ, we can build an equation which z satisfies. For that purpose, solving the equation (I) with respect to z_{0},

$$
z_{0}=\frac{\delta z-\beta}{-\gamma z+\alpha} .
$$

Differentiating both sides with respect to t and noticing that

$$
\frac{d z_{0}}{d t}=0, \text { and } \alpha \delta-\beta r=\mathrm{r},
$$

we have the equation

$$
\begin{equation*}
\frac{d z}{d t}=\left(\gamma \delta^{\prime}-\gamma^{\prime} \delta\right) z^{2}+\left\{\left(\delta \sigma^{\prime}-\delta^{\prime} \alpha\right)+\left(\beta \gamma^{\prime}-\beta^{\prime} \gamma\right)\right\} z+\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right), \tag{2}
\end{equation*}
$$

where the dashes mean the differentiation with respect to t. We now consider the form of the equation (2) for Cayley's formula,

$$
z=\frac{(d+i c) z_{0}-(b-i a)^{1}}{(b+i a) z_{0}+(d-i c)}
$$

[^0]where a, b, c, d are real constants satisfying the condition
$$
a^{2}+b^{2}+c^{2}+d^{2}=\mathrm{I}
$$

Consider these constants as real functions of the real variable t; in this case the equation (2) becomes

$$
\begin{equation*}
\frac{d z}{d t}=-i r z+\frac{q-i p}{2}+\frac{q+i p}{2} z^{2}, \tag{3}
\end{equation*}
$$

where $\gamma^{\delta^{\prime}}-\gamma^{\prime} \delta=(b+i a)\left(d^{\prime}-i c^{\prime}\right)-\left(b^{\prime}+i a^{\prime}\right)(d-i c)$

$$
\begin{aligned}
& =b d^{\prime}-b^{\prime} d+a c^{\prime}-a^{\prime} c \\
& +i\left(a d^{\prime}-a^{\prime} d^{\prime}+c b^{\prime}-c^{\prime} b\right) \\
& \equiv \frac{q+i p}{2}, \\
a \beta^{\prime}-a^{\prime} \beta & =\bar{\delta}\left(-\overline{\gamma^{\prime}}\right)-\overline{\delta^{\prime}}(-\bar{\gamma}) \\
& =\overline{\gamma \delta^{\prime}-\gamma^{\prime} \delta} \\
& =\frac{q-i p}{2},
\end{aligned}
$$

lastly $\delta \alpha^{\prime}-\delta^{\prime} a+\beta \gamma^{\prime}-\beta^{\prime} \gamma=2 i\left\{\left(d c^{\prime}-d^{\prime \prime} c\right)+\left(a b^{\prime}-a^{\prime} b\right)\right\}$

$$
\equiv-i r
$$

Or

$$
\begin{align*}
& \frac{p}{2}=a d^{\prime}-a^{\prime} d+b^{\prime} c-b c^{\prime} \\
& \frac{q}{2}=a c^{\prime}-a^{\prime} c+b d^{\prime}-b^{\prime} d \tag{4}\\
& \frac{r}{2}=a^{\prime} b-a b^{\prime}+c d^{\prime}-c^{\prime} d
\end{align*}
$$

Hence the function

$$
z=\frac{(d+i c) z_{0}-(b-i a)}{(b+i a) z_{0}+(d-i c)}
$$

is the gencral solution af such an equation as

$$
\frac{d z}{d t}=-i r z+\frac{q-i p}{2}+\frac{q+i p}{2} z^{2}
$$

where

$$
a^{2}+b^{2}+c^{2}+d^{2}=\mathrm{I} .
$$

2. Darboux-Riccati's Fquation.

Consider two systems of rectangular axes, having the same origin; the one space-fixed and the other rotating. Let α, β, γ be the directioncosines of any one of the space-fixed axes referred to the moving system ; p, q, r, three components of rotation of the moving axes referred to themselves; then the kinematical equations are

$$
\left.\begin{array}{l}
\frac{d \sigma}{d t}=\beta r-\gamma q \tag{I}\\
\frac{d \beta}{d t}=\gamma p-a r
\end{array}\right\}
$$

where t is the time.
To discuss the solutions of the equations Prof. Darboux ${ }^{1}$ proceeded as follows :-

We notice the condition

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=\text { constant }
$$

When the constant is not equal to zero, we may always assume

$$
\begin{equation*}
\alpha^{2}+\beta^{2}+\gamma^{2}=\mathrm{I}, \tag{2}
\end{equation*}
$$

which is consistent with our assumption that α, β, γ are the directioncosines of an axis. Put

$$
\left.\begin{array}{l}
\frac{\alpha+i \beta}{\mathrm{I}-\gamma}=\frac{\mathrm{I}+\gamma}{\alpha-i \beta} \equiv x \tag{3}\\
\frac{\alpha-i \beta}{\mathrm{I}-\gamma}=\frac{\mathrm{I}+\gamma}{\alpha+i \beta} \equiv-\frac{\mathrm{I}}{y}
\end{array}\right\}
$$

which give $\quad \alpha=\frac{1-x y}{x-y}, \beta=i \frac{1+x y}{x-y}, \gamma=\frac{x+y}{x-y}$;
then the equatian (I) become

$$
\begin{aligned}
& \frac{d x}{d t}=-i r x+\frac{q-i p}{2}+\frac{q+i p}{2} x^{2} \\
& \frac{d y}{d t}=-i r y+\frac{q-i p}{2}+\frac{q+i p}{2} y^{2}
\end{aligned}
$$

[^1]Or writing σ for x or y,

$$
\begin{equation*}
\frac{d \sigma}{d t}=-i r \sigma+\frac{q-i p}{2}+\frac{q+i p}{2} \sigma^{2} \tag{4}
\end{equation*}
$$

which is the same equation as §r (3). Hence the general solution is of the form

$$
\sigma=\frac{(d+i c) \sigma_{0}-(b-i a)}{(b+i a) \sigma_{0}+(d-i c)}
$$

and the relations between p, q, r and a, b, c, d are given by the equations §r (4). Those equations may be transformed by some easy calculations into the following

$$
\left.\begin{array}{l}
\frac{d a}{d t}+\frac{p}{2} d+\frac{q}{2} c-\frac{r}{2} b=0 \\
\frac{d b}{d t}-\frac{p}{2} c+\frac{q}{2} d+\frac{r}{2} a=0 \tag{5}\\
\frac{d c}{d t}+\frac{p}{2} b-\frac{q}{2} a+\frac{r}{2} d=0 \\
\frac{d d}{d t}-\frac{p}{2} a-\frac{q}{2} b-\frac{r}{2} c=0
\end{array}\right\}
$$

noticing that $a^{2}+b^{2}+c^{2}+d^{2}=\mathrm{I}$, therefore $a \frac{d a}{d t}+b \frac{d b}{d t}+c \frac{d c}{d t}+d \frac{d d}{d t}$ $=0$.
3. Given p, q, r to find a, b, c, d, we have to solve the system of four differential equations (5) of the last section. If we put $d=0$, then the first threes equations become as follows :

$$
\begin{aligned}
& \frac{d a}{d t}=b \frac{r}{2}-c \frac{q}{2}, \\
& \frac{d b}{d t}=c \frac{p}{2}-a \frac{r}{2}, \\
& \frac{d c}{d t}=a \frac{q}{2}-b \frac{p}{2},
\end{aligned}
$$

which are of the same type as the system of equations (i) of the last section. Therefore the system (5) may be considered as a more general case and consequently we attempt, by some method, to obtain Riccati's equation which is equivalent to the system of differential equa-
tions (5). For that purpose we use Hamilton's quarternions $\mathrm{I}, i_{1}, i_{2}+i_{3}$ which satisfy the relations

$$
\begin{aligned}
& i_{1}^{2}=i_{2}^{2}=i_{3}^{2}=i_{1} i_{2} i_{3}=-\mathrm{I} \\
& i_{1} i_{2}+i_{2} i_{1}=i_{2} i_{3}+i_{3} i_{2}=i_{3} i_{1}+i_{1} i_{3}=\mathrm{o}
\end{aligned}
$$

Now multiplying $\mathrm{I}, i_{1}, i_{2}, i_{3}$ into the equations (5) and summing them up, we obtain after some easy calculations

$$
\begin{equation*}
\frac{d x}{d t}=x\left(\frac{p}{2} i_{3}+\frac{q}{2} i_{2}-\frac{r}{2} i_{1}\right) \tag{I}
\end{equation*}
$$

where

$$
x=a+b \dot{i}_{1}+c i_{2}+d i_{3} .
$$

This equation may be considered a special Riccati's equation. In a space of two dimensions, the analogous system of equations obtained fiom (1) § 2 by the assumption $\gamma=0$, viz.,

$$
\left.\begin{array}{l}
\frac{d \alpha}{d t}=\beta r \tag{2}\\
\frac{d \beta}{d t}=-\alpha r .
\end{array}\right\}
$$

Multiplying r, i and summing them up, we have

$$
\begin{equation*}
\frac{d x_{1}}{d t}=-i r x, \quad x=\alpha+i \beta \tag{3}
\end{equation*}
$$

which is quite similar to (I).
4. As a more general case than $\S 2$ (5), we consider the system of five equations

$$
\left.\begin{array}{l}
\frac{d \alpha}{d t}=\beta r-\gamma q-\delta p+\varepsilon q, \\
\frac{d \beta}{d t}=\gamma p-\delta q+\varepsilon r-\alpha r, \\
\frac{d \gamma}{d t}=-\delta \gamma+\varepsilon r+\alpha q-\beta p, \tag{I}\\
\frac{d \delta}{d t}=\varepsilon q+\alpha p+\beta q+\gamma r, \\
\frac{d \varepsilon}{d t}=-\alpha q-\beta r-\gamma r-\delta q .
\end{array}\right\}
$$

From these equations we have

$$
\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}+\varepsilon^{2}=\text { const. }
$$

and this constant may be regarded as unity except in the case of zero; i.e.

$$
\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}+\varepsilon^{2}=\mathrm{I} .
$$

We put, after Prof. Darboux, § 2 (3),

$$
\left.\begin{array}{l}
\frac{\alpha+\beta i_{1}+\gamma i_{2}+\delta i_{3}}{\mathrm{I}-\varepsilon}=\frac{\mathrm{I}+\varepsilon}{\alpha-\beta{h_{1}-\gamma i_{2}-\delta i_{3}} \equiv x} \begin{array}{l}
\alpha-\beta i_{1}-\gamma i_{2}-\delta i_{3} \\
\mathrm{I}-\varepsilon
\end{array}=\frac{\mathrm{I}+\varepsilon}{\alpha+\beta i_{1}+\gamma i_{2}+\delta i_{3}} \equiv-y^{-1} \tag{2}
\end{array}\right\}
$$

whence we have

$$
\begin{aligned}
\alpha+\beta i_{1}+\gamma i_{2}+\delta i_{3} & =(\mathrm{I}-\varepsilon) x \\
\alpha-\beta i_{1}-\gamma i_{2}-\delta i_{3} & =(\mathrm{I}+\varepsilon) x^{-1}
\end{aligned}
$$

Therefore

$$
\frac{d \alpha}{d t}+\frac{d \beta}{d t} i_{1}+\frac{d \gamma}{d t} i_{2}+\frac{d \hat{\partial}}{d t} i_{3}=(\mathrm{I}-\varepsilon) \frac{d x}{d t}-\frac{d \varepsilon}{d t} x
$$

which, by the equations (r), is equal to the following sum

$$
\begin{aligned}
& \beta r-\gamma q-\delta p+\varepsilon q+(r p-\delta q+\varepsilon r-\alpha r) i_{1} \\
+ & (-\delta r+\varepsilon r+\alpha q-\beta p) i_{2}+(\varepsilon q+\alpha p+\beta q+\gamma r) i_{3} \\
= & \varepsilon\left(q+r i_{1}+r i_{2}+q i_{3}\right)+(\mathrm{I}-\varepsilon) x\left(-r i_{1}+q i_{2}+p i_{3}\right) .
\end{aligned}
$$

In the same way,

$$
\begin{gathered}
\frac{d \alpha}{d t}-\frac{d \beta}{d t} i_{1}-\frac{d \gamma}{d t} i_{2}-\frac{d \delta}{d t} i_{3}=-(1+\varepsilon) x^{-1} \frac{d x}{d t} x^{-1}+\frac{d \varepsilon}{d t} x^{-1} \\
=\varepsilon\left(q-r i_{1}-r i_{2}-q i_{3}\right)+(1+\varepsilon)\left(r i_{1}-q i_{2}-p i_{3}\right) x^{-1} .
\end{gathered}
$$

Hence we have

$$
\begin{aligned}
& \frac{d \alpha}{d t}+\frac{d \beta}{d t} i_{1}+\frac{d \gamma}{d t} i_{2}+\frac{d \delta}{d t} i_{3}+x\left(\frac{d \alpha}{d t}-\frac{d \beta}{d t} i_{1}-\frac{d r}{d t} i_{2}-\frac{d \delta}{d t} i_{3}\right) x \\
& =-2 \varepsilon \frac{d x^{*}}{d t} \\
& =2 \varepsilon x\left(r i_{1}-q i_{2}-p i_{3}\right)+\varepsilon\left(q+r i_{1}+r i_{2}+q i_{3}\right)+\varepsilon x\left(q-r r_{1}-r i_{2}-q i_{3}\right) x
\end{aligned}
$$

[^2]whence we have
$\frac{d x}{d t}=-x\left(r i_{1}-q i_{2}-p i_{3}\right)-\frac{q+r i_{1}+r i_{2}+q i_{3}}{2}-x \frac{q-r i_{1}-r i_{2}-q i_{3}}{2} x$. (3)
Starting from the equations
\[

$$
\begin{aligned}
& \alpha+\beta i_{1}+\gamma i_{2}+\delta i_{3}=-(\mathrm{I}+\varepsilon) y^{\prime} \\
& \alpha-\beta i_{1}-\gamma i_{2}-\delta i_{3}=-(\mathrm{I}-\varepsilon) y^{-1}
\end{aligned}
$$
\]

we arrive at the same equation for y; hence x and y are the solutions of the following equation
$\frac{d \sigma}{d t}=-\sigma\left(r i_{1}-q i_{2}-p i_{3}\right)-\frac{q+r i_{1}+r i_{2}+q i_{3}}{2}-\sigma \frac{q-r i_{1}-r i_{2}-q i_{3}}{2} \sigma$.
This equation is quite analogical with § 2 (4)

$$
\frac{d \sigma}{d t}=-i r \sigma+\frac{q-i p}{2}+\frac{q+i p}{2} \sigma^{2} .
$$

5. Serret-Frenet's Formula.

Serret-Frenet's formulas of a space curve are discussed as a special case of the kinematical equations §2 (I). Formulas for hyperspace ${ }^{1}$ e.g., of five dimensions are

$$
\left.\begin{array}{l}
\frac{d \alpha}{d s}=\frac{\beta}{R_{1}} \\
\frac{d \beta}{d s}=\frac{\gamma}{R_{2}}-\frac{\alpha}{R_{1}}, \\
\frac{d \gamma}{d s}=\frac{\partial}{R_{3}}-\frac{\beta}{R_{2}}, \tag{I}\\
\frac{d \delta}{d s}=\frac{\varepsilon}{R_{4}}-\frac{\gamma}{R_{3}}, \\
\frac{d \varepsilon}{d s}=-\frac{\delta}{R_{4}},
\end{array}\right\}
$$

where s is the arc length, and $\frac{I}{R} ' s$ are curvatures. This system of equations does not admit of the application of quarternions. For that

[^3]purpose, we must lead these equations to those §4(I). But the equations (I) are a special case of a kinematical equations for hyperspace; and we rather consider the reduction of the latter equations.

The kinematical equations for n dimensions are given by the following system of n equations

$$
\begin{equation*}
\frac{d \alpha_{2}}{d t}=\sum_{n=1}^{n} p_{\imath h} \alpha_{h}{ }^{b} \quad \imath=1,2, \ldots \ldots n \tag{2}
\end{equation*}
$$

where

$$
p_{\imath \imath}=0, \quad p_{i n}=-p_{l i v}
$$

so that the coefficients p make a skew symmetric determinant. Now we transform these equations by the following orthogonal transformations.
or

$$
\left.\begin{array}{ll}
\beta_{j}=\sum_{k=1}^{n} a_{j k} \alpha_{l,}, & \left|a_{j k}\right|=+\mathrm{I} \tag{3}\\
\sigma_{k}=\sum_{j=1}^{n} a_{j k} \beta_{3}, & \bar{j}=\mathrm{I}, 2, \ldots n \\
k=\mathrm{I}, 2, \ldots n
\end{array}\right\}
$$

Differentiating with respect to t,

$$
\frac{d \beta_{3}}{d t}=\sum_{k=1}^{n}\left(a_{3 k} \frac{d \alpha_{k}}{d t}+\alpha_{k} \frac{d a_{p_{k}}}{d t}\right)
$$

by (2) $\quad=\sum_{k=1}^{n}\left(a_{j k} \sum_{h=1}^{n} p_{k h} \alpha_{k}+\alpha_{k k} \frac{d a_{j k}}{d t}\right)$
by (3) $\quad=\sum_{k=1}^{n}\left(a_{j k} \sum_{n=1}^{n} p_{l l} \sum_{r=1}^{n} a_{r l} \beta_{r}+\sum_{r=1}^{n} a_{r k} \beta_{r} \frac{d a_{n k}}{d t}\right)$

$$
=\sum_{r=1}^{n}\left(\sum_{k, k=1}^{n} p_{k k} a_{j k} a_{r k}+\sum_{n=1}^{n} a_{r k} \frac{d a_{j k}}{d t}\right) \beta_{r}
$$

Put $\quad P_{\partial r}{ }^{\prime} \equiv \sum_{k, k=1}^{n} p_{k l l} \alpha_{j k} a_{r k}$,

[^4]$$
P_{s r}^{\prime \prime} \equiv \sum_{k=1}^{n} a_{r k} \frac{d a_{j k}}{d t}
$$
and
$$
P_{3 r} \equiv P_{y r}{ }^{\prime}+P_{\partial r}{ }^{\prime \prime} .
$$

Then we have

$$
\begin{aligned}
& P_{\jmath r}^{\prime}=-\sum_{k, h=1}^{n} p_{h k} a_{r k} a_{j k}=-P_{r j}^{\prime} \\
& P_{r r}^{\prime \prime}=-\sum_{k=1}^{n} a_{J k} \frac{d a_{r k}}{d t}=-P_{r j}^{\prime \prime}
\end{aligned}
$$

hence

$$
P_{\jmath r}=-P_{r j}, \text { and } P_{33}=0 .
$$

Therefore the transformed equations are
where

$$
\left.\begin{array}{l}
\frac{d \beta_{i}}{d t}=\sum_{r=1}^{n} P_{y r} \beta_{r}, \tag{4}\\
P_{3 r}=-P_{r y}, \quad j=1,2, \ldots n, \\
P_{3 \jmath}=0, \\
r=1,2, \ldots n .
\end{array}\right\}
$$

When the transformed equations are required to be

$$
\left.\begin{array}{l}
\frac{d \beta_{j}}{d t}=\sum_{r=1}^{n} q_{v r} \beta_{r}, \tag{5}\\
q_{r j}=-q_{r j}, \quad j=\mathrm{I}, 2, \ldots n, \\
q_{j 3}=0,
\end{array} \quad r=\mathrm{I}, 2, \ldots n . ~\right\}
$$

Then considering $a^{\prime} s$ as unknown, we have to solve the system of n^{2} differential equations

$$
\begin{aligned}
P_{y r}=q_{j r}, & j=1,2, \ldots n, \\
& r=1,2, \ldots n ;
\end{aligned}
$$

or more completely

$$
\sum_{k=1}^{n} a_{r l} \frac{d \bar{a}_{j k}}{d t}+\sum_{n_{k}=1}^{n} p_{l k} a_{j k} a_{r i k}=q_{j r}, \quad j, r=\mathrm{I}, 2, \ldots n
$$

Or multiplying $a_{r s}$ into both sides and summing with respect to r
or

$$
\begin{gather*}
\sum_{r=1}^{n} \sum_{k=1}^{n} a_{2 s} a_{r k} \frac{d a_{j k}}{d t}+\sum_{r=1}^{n} \sum_{h h_{1}-1}^{n} p_{k h} a_{r s} a_{f k} a_{r k}=\sum_{r=1}^{n} a_{r s} q_{j r} \\
\frac{d a_{j s}}{d t}+\sum_{k=1}^{n} p_{h s} a_{j k}=\sum_{2=1}^{n} a_{2 s} q_{j r} \\
\frac{d a_{j s}}{d t}=\sum_{k=1}^{n}\left(p_{s k} \dot{a}_{j l k}+q_{j k} a_{k s}\right), \quad j, s=1,2, \ldots n \tag{6}
\end{gather*}
$$

or

On conditions that

$$
\left.\begin{array}{ll}
\sum_{r=1}^{n} a_{j 2}^{2}=1, & i=\mathrm{I}, 2, \ldots n, \tag{7}\\
\sum_{r=1}^{n} a_{i,} a_{j n}=\mathrm{o}, & j=\mathrm{I}, 2, \ldots n ; i \neq j .
\end{array}\right\}
$$

By these conditions the number of the differential equations is reduced to $\frac{n(n-1)}{2}$ After Cayley these n^{2} quantities $a^{\prime} s$ can be represented by $\frac{n(n-1)}{2}$ essential parameters; considering these parameters as new unknowns, the equations (6) will be transformed into a system of $\frac{n(n-1)}{2}$ differential equations with $\frac{n(n-1)}{2}$ unknowns. Any particular solution will suffice to obtain $a^{\prime} s$ and consequently the orthogonal transformations (3).

Specially for $n=5$, we have

$$
\begin{aligned}
& q_{12}=q_{25}=q_{35}=q_{43}=r, \\
& q_{15}=q_{31}=q_{42}=q_{15}=q, \\
& q_{23}=q_{41}=p,
\end{aligned}
$$

then the system of differential equations

$$
\frac{d \alpha_{i}}{d t}=\sum_{n=1}^{5} p_{i l} \alpha_{h}, \quad i=1,2, \ldots 5
$$

may be transformed into the system § 4 (I) and hence into § 4 (4). (For the case $n=4$, we may treat similarly.) Serret-Frenets' formulas (I) are a special type of kinematical equations for which

$$
\begin{array}{ll}
p_{12}=\frac{I}{R_{1}}, & p_{13}=p_{14}=p_{15}=0, \\
p_{23}=\frac{I}{R_{2}}, & p_{24}=p_{25}=0, \\
p_{34}=\frac{I}{R_{3}}, & p_{35}=0, \\
p_{45}=\frac{I}{R_{4}} . &
\end{array}
$$

Hence, by the above theory, this system of equations may be transformed into § 4 (4). Thus Prof. Darbaux's method ${ }^{1}$ admits theoretically of a similar extension ${ }^{2}$

6. Line Element on Hypersphere.

If $d s_{n}$ denote the line element on the hypersphere of n dimensions, then for the hypersphere

$$
\begin{gather*}
\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}+\varepsilon^{2}=\mathrm{r} \tag{I}\\
d s_{5}^{2}=d u^{2}+d \beta^{2}+d \gamma^{2}+d \delta^{2}+d \varepsilon^{2} . \tag{2}
\end{gather*}
$$

On the other hand, from the equations $\S 4$ (2)

$$
\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=-(1-\varepsilon)^{2} x y^{-1}=\mathrm{I}-\varepsilon^{2}
$$

or dividing by ($\mathrm{I}-\varepsilon$), and rearranging we have
and

$$
\left.\begin{array}{c}
\varepsilon=(x+y)(x-y)^{-1} \tag{2}\\
\mathrm{I}-\varepsilon=-2 y(x-y)^{-1}=-2(x-y)^{-1} y .^{.}
\end{array}\right\}
$$

Now $\quad d \alpha+d \beta i_{1}+d r i_{2}+d \delta \dot{i}_{3}=(\mathrm{I}-\varepsilon) d x-x d \varepsilon$

$$
=-2 d x(x-y)^{-1} y-x d \varepsilon
$$

also

$$
d \alpha-d \beta i_{1}-d z i_{2}-d \partial i_{3}=(I-\varepsilon) y^{-1} d y y^{-1}+y^{-1} d \varepsilon ;
$$

[^5]hence $\quad d \alpha^{2}+d \beta^{2}+d \gamma^{2}+d \delta^{2}=4 d x(x-y)^{-1} d y(x-y)^{-1}-x y^{-1} d \varepsilon^{2}$
$$
+2\left(x y y^{-1} d y-d x\right)(x-y)^{-1} d \varepsilon
$$

But $\quad d \varepsilon(x-y)=(\varepsilon-1)\left(\frac{I+\varepsilon}{\varepsilon-\mathrm{I}} d y-d x\right)=(\varepsilon-\mathrm{I})\left(x y^{-1} d y-d x\right)$,
hence

$$
x y^{-1} d y-d x=(x-y) \frac{d \varepsilon}{\varepsilon-1}
$$

Therefore $\quad d \alpha^{2}+d \beta^{2}+d \gamma^{2}+d \partial^{2}=4 d x(x-y)^{-1} d y(x-y)^{-1}$

$$
-\frac{I+\varepsilon}{\varepsilon-I} d \varepsilon^{2}+2 \frac{d \varepsilon^{2}}{\varepsilon-I},
$$

or

$$
\begin{equation*}
d s_{5}^{2}=d x^{2}+d j^{2}+d \gamma^{2}+d \delta^{2}+d \varepsilon^{2}=4 d x(x-y)^{-1} d y(x-y)^{-1}, \tag{4}
\end{equation*}
$$

which is quite analogical with

$$
d s_{3}^{2}=d \alpha^{2}+d \beta^{2}+d r^{2}=\frac{4 d x d y^{1}}{(x-y)^{2}}
$$

7. Parametric Representation.

By aid of x and y, the five variables $\alpha, \beta, \gamma, \delta, \varepsilon$ can be represented as in the case of three variables. Now add the equations

$$
\left.\begin{array}{l}
\alpha+\beta i_{1}+\gamma i_{2}+\delta i_{3}=(\mathrm{I}-\varepsilon) x, \tag{I}\\
\alpha-\beta i_{1}-\gamma i_{2}-\delta i_{3}=-(\mathrm{I}-\varepsilon) \gamma^{-1} .
\end{array}\right\}
$$

Then we have

$$
\begin{align*}
2 \alpha & =\left(x-y^{-1}\right)(\mathrm{I}-\varepsilon), \\
& =-2\left(x-y^{-1}\right) y(x y-)^{-1} . \\
\alpha & =(1-x y)(x-y)^{-1} . \tag{2}
\end{align*}
$$

Hence
Next from (I)

$$
\begin{aligned}
& \alpha i_{1}-\beta-\gamma i_{3}+\delta i_{2}=(\mathrm{I}-\varepsilon) x i_{1} \\
& \alpha i_{1}+\beta-\gamma i_{3}+\delta i_{2}=-(\mathrm{I}-\varepsilon) i_{1} y^{-1} .
\end{aligned}
$$

Adting we have

$$
\begin{align*}
2 \beta & =-(\mathrm{I}-\varepsilon)\left(x i_{1}+i_{1} y^{-1}\right) \\
& =2\left(x i_{1}+i_{1} y^{-1}\right) y(x-y)^{-1} . \\
\beta & =i_{1}\left(\mathrm{x}-i_{1} x i_{1} y\right)(x-y)^{-1} . \tag{3}
\end{align*}
$$

γ and δ may be obtained in the same way; hence, adding the first formula § 6 (3), we have

[^6]\[

$$
\begin{aligned}
& \alpha=(\mathrm{I}-x y)(x-y)^{-1}, \\
& \beta=i_{1}\left(\mathrm{I}-i_{1} x i_{1} y\right)(x-y)^{-1}, \\
& \gamma=i_{2}\left(\mathrm{I}-i_{2} x i_{2} y\right)(x-y)^{-1}, \\
& \delta=i_{3}\left(\mathrm{I}-i_{3} x i_{3} y\right)(x-y)^{-1}, \\
& \varepsilon=(x+y)(x-y)^{-1} .
\end{aligned}
$$
\]

(4)

For the hypersphere of four dimensions, we have to put $\varepsilon=0$, and hence $x=-y$,

$$
\left.\begin{array}{l}
\alpha=\frac{\mathrm{I}}{2}\left(x^{-1}+x\right), \tag{5}\\
\beta=\frac{\mathrm{I}}{2}\left(i_{1} x^{-1}-x i_{1}\right), \\
\gamma=\frac{\mathrm{I}}{2}\left(i_{2} x^{-1}-x i_{2}\right), \\
\delta=\frac{1}{2}\left(i_{3} x^{-1}-x i_{3}\right) ;
\end{array}\right\}
$$

for the sphere we have to put $i_{2}=i_{3}=0, i_{1} \equiv i$,

$$
\left.\begin{array}{l}
\alpha=(1-x y)(x-y)^{-1}, \tag{6}\\
\beta=i(1+x y)(x-y)^{-1}, \\
\varepsilon=(x+y)(x-y)^{-1} ;
\end{array}\right\}
$$

for the circle, $i_{2}=i_{3}=\varepsilon=0, \quad i_{1} \equiv i$ and $x=-y$,

$$
\left.\begin{array}{l}
\alpha=\frac{1}{2}\left(x^{-1}+x\right), \tag{7}\\
\beta=\frac{i}{2}\left(x^{-1}-x\right) .
\end{array}\right\}
$$

8. Transformation of Line-element.

The square of the line element $d s^{2}$ does not change by the substitution

$$
\begin{equation*}
x=A x_{1} B+C, \quad y=A y_{1} B+C \tag{1}
\end{equation*}
$$

where A, B, C are constant quarternions. For

$$
\begin{aligned}
d \dot{s^{2}} & =4 d x(x-y)^{-1} d y(x-y)^{-1} . \\
& =x A d x_{1} B\left\{A\left(x_{1}-y_{1}\right) B\right\}^{-1} A d y_{1} B\left\{A\left(x_{1}-y_{1}\right) B\right\}^{-1}
\end{aligned}
$$

$$
=4 A d x_{1}\left(x_{1}-y_{1}\right)^{-1} d y_{1}\left(x_{1}-y_{1}\right)^{-1} A_{1} .
$$

Since $d s^{2}$ is a scalar

$$
d s^{2}=4 d x_{1}\left(x_{1}-y_{1}\right)^{-1} d y_{1}\left(x_{1}-y_{1}\right)^{-1} .
$$

Next $d s^{2}$ does not change by the substitutions

$$
\begin{equation*}
x=x_{1}^{-1}, \quad y=y_{1}^{-1} . \tag{2}
\end{equation*}
$$

For since $(x-y)^{-1}=x_{1}\left(y_{1}-x_{1}\right)^{-1} y_{1}=y_{1}\left(y_{1}-x_{1}\right)^{-1} x_{1}$,

$$
d s^{2}=d x_{1}\left(x_{1}-y_{1}\right)^{-1} d y_{1}\left(x_{1}-y_{1}\right)^{-1} .
$$

Lastly $d s_{5}{ }^{2}$ does not change by the substitutions

$$
\left.\begin{array}{l}
x=\left(A x_{1}+B\right)\left(C x_{1}+D\right)^{-1} \tag{3}\\
y=\left(A y_{1}+B\right)\left(C y_{1}+D\right)^{-1}
\end{array}\right\}
$$

where A, B, C, D are constant quarternions.
Since

$$
\begin{aligned}
x & =\left\{A C^{-1}\left(C x_{1}+D\right)+B-A C^{-1} D\right\}\left(C x_{1}+D\right)^{-1} \\
& =A C^{-1}+\left(B-A C^{-1} D\right)\left(C x_{1}+D\right)^{-1} .
\end{aligned}
$$

Putting $\quad x_{2} \equiv C x_{1}+D, \quad x_{3} \equiv x_{2}^{-1}$,
then

$$
x \equiv A c^{-1}+\left(B-A c^{-1} D\right) x_{3}
$$

in the same way

$$
y_{2} \equiv C y_{1}+D, \quad y_{3} \equiv y_{2}^{-1}
$$

then

$$
y=A C^{-1}+\left(B-A C^{-1} D\right) y_{3}
$$

Therefore by (r) and (2), we may prove the invariance of $d S_{5}{ }^{2}$. We remark that since

$$
\begin{aligned}
d s_{5}^{2} & =4 d x(x-y)^{-1} d y(x-y)^{-1}, \\
& =4 d y(x-y)^{-1} d x(x-y)^{-1},
\end{aligned}
$$

$d s_{5}{ }^{2}$ is also invariant by the transformations

$$
\left.\begin{array}{l}
x=\left(A y_{1}+B\right)\left(C y_{1}+D\right)^{-1}, \tag{4}\\
y=\left(A x_{1}+B\right)\left(C x_{1}+D\right)^{-1} .
\end{array}\right\}
$$

9. Meaning of the Parameter x.

When (ω, ξ, η, ζ) denote the coordinates of the projection of a point on the hypersphere

$$
a^{2}+\beta^{2}+\gamma^{2}+\delta^{2}+\varepsilon^{2}=\mathrm{I}
$$

from its pole on the equatorial hyperspace of four dimensions, then by analogy, the equations of projection are

$$
\frac{\alpha}{\omega}=\frac{\beta}{\xi}=\frac{\gamma}{\eta}=\frac{\delta}{\zeta}=\mathrm{I}-\varepsilon,
$$

whence by easy calculations

$$
\begin{aligned}
& \alpha=\frac{2 \omega}{\omega^{2}+\xi^{2}+\eta^{2}+\zeta^{2}+\mathrm{I}}, \\
& \beta=\frac{2 \xi}{\omega^{2}+\zeta^{2}+\eta^{2}+\zeta^{2}+1}, \\
& \gamma=\frac{2 \eta}{\omega^{2}+\xi^{2}+\eta^{2}+\zeta^{2}+1}, \\
& \delta=\frac{2 \zeta}{\omega^{2}+\xi^{2}+\eta^{2}+\zeta^{2}+1}, \\
& \varepsilon=\frac{\omega^{2}+\xi^{2}+\eta^{2}+\zeta^{2}-1}{\omega^{1}+\xi^{2}+\eta^{2}+\zeta^{2}+1} .
\end{aligned}
$$

Now
hence

$$
\begin{aligned}
\alpha+\beta i_{1}+\gamma i_{2}+\delta i_{3} & =\frac{2\left(\omega+\xi i_{1}+\gamma i_{2}+\zeta i_{3}\right)}{\omega^{2}+\xi^{2}+\eta^{2}+\zeta^{2}+1} \\
& =(\mathrm{I}-\varepsilon) x \\
& =\frac{2}{\omega^{2}+\xi^{2}+\eta^{2}+\zeta^{2}+1} x .
\end{aligned}
$$

Therefore

$$
x=\omega+\xi i_{1}+\eta i_{2}+\zeta l_{3} .
$$

For a sphere, x is the complex variable on the Gauss' plane.

[^0]: 1 Klein: Ikosaeder p. 34. (e.g.)

[^1]: 1 Lecons sur la Théorie Générale des Surfaces, I (first edition) pp. 21-22.

[^2]: + The product of a scalar and a quarternion is permutable.

[^3]: 1 G. E. A. Brunnel, Math. Ann., 19 (1882). F. Meyer, Jahresbericht d. Deut. Math. Ver., 19 (19 (0) ; \&c.

[^4]: * T. Craig, Displacements depending on One, Two and Three Parameters inz a space of Four Dimensions, Amer. J. Math., 20 (1898); for n dimensions, N. J. Hatzidakis, Kbid., 22 (1900).

[^5]: 1 Loc. cit.
 2 Mr. Eiesland treated the same problem of integration of kinematical equations, from another point of view, in Amer. J. Math., 20 (1898); 28 (1906).
 \checkmark When the product of two quarternions is equal to a scalar, then the factors are permutable.

[^6]: 1 Darboux: Loc. cit. p. 30.

