Some Applications of Quarternions.

By

Toshizé Matsumoto.
(Received November 29, 1915.)

1. Riccati’s Equation and Cayley’s Formula.
The general solution of Riccati’s equation

az

where L, Mand IV are functions of ¢ alone, has the form

_ a30+‘8
—’m’ lllllllll (I)

in which o,f,7y and 0 are functions of 2, and 2, is an arbitrary con-
stant, We can always assume ad—fy=1. Conversely, given ,f, 7
and 6, we can build an equation which # satisfies. For that purpose,
solving the equation (1) with respect to z,

0z—f

= ke

Differentiating both sides with respect to # and noticing that

igﬂ =0, and ad—fr =1,
we have the equation

B = G~y O)+ {00~ )+ (B —F}s + (@~ ). (2)
where the dashes mean the differentiation with respect to 2 We now
consider the form of the equation (2) for Cayley’s formula,

_ ([@tic)z—(b—in)?
(&+1a) 23+ (@d—ic)
1 Klein: TIkosaeder p. 34. (e.8.)
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where 2, 8, ¢, d are real constants satisfying the condition
4G+l 4+d = 1.

Considet these constants as real functions of the real variable #; in
this case the equation (2) becomes

dz _ g—ip , gt+ip
= e+ - + Pl (3)

where y¢' —y/0 = (6+ia)(d'—i’)— (&' +ia'}(d—~ic)
= 0d'—8d+ac —a'c
+ i (ad! —dd+cl —J'b)

g+
2 b

afl ~dtf =3 (=1)=F(=7)
=70—70

_ 9=
2

b4

lastly 6o/ —d'a+ By — By = 2i{(dd—d'c)+ (el —a'b)}

= —w.
Or % = ad! —dd+¥c—bc
% = ad —dlc+bd —&d @
-::— = db—ab +cd'—c'd

Hence #he function

» - (a+ 7c)2y— (6 —ia)
T (&+ia) 2yt (d—1c)

is the gencral solution of suck an equation as

_{ZZ’_ = —rz+ 7—% + Q+Zp 32:
at 2 2

where BB+ d =1,
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2. Darboux-Riccati’s Fquation.

Consider two systems of rectangular axes, having the same origin;
the one space-fixed and the other rotating. Let ¢, 8,y be the direction-
cosines of any one of the space-fixed axes referred to the moving
system ; p, ¢, 7, three components of rotation of the moving axes refer-
red to themselves ; then the kinematical equations are

do

—6‘#——.37’—7’9 o
I

a _ .

T

dr _

(Z’f_ag l@p’

where ¢ is the time.
To discuss the solutions of the equations Prof. Darboux! proceeded
as follows :—

We notice the condition

0?4+ [+ ¢* = constant.
When the constant is not equal to zero, we may always assume
d+ftrt=1, (2)

which is consistent with our assumption that «, 8,7 are the direction-
cosines of an axis, Put

et _ 14y _

I—7 n—if

a—ifl 14y _ 1 )
i—r e+ -y

I—xy’ﬁ___il+xy’r x+y .

which give 0=
x—y x—y x—y

then the equatian (1) become

G pyy 4P 4 9TD 2,

dt 2 2

dy _ ..o g gtip o
at “y+ 2 + z 7

1 Lecons sur la Théorie Générale des Surfaces, I (first edition) pp. 21-22.
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Or writing ¢ for x or y,
i iro+ 4 _;ﬁ + 9“? o, )

dt

which is the same equation as §1 (3). Hence the general solution is

of the form
_ (d+ic) oy—(b—ia)
= (Gt ot ([d—r) ’

c

and the relations between g, ¢, 7 and &, §,¢, & are given by the equa-
tions §1 (4). Those equations may be transformed by some easy cal-
culations into the following

%+7_j a-+ Z c——0b =0,
%ﬁ——%c+%d+%a =0,
’ (5)
%+—*§—6-——g—a+ Y d = o,
[;;—;Z———i—a Z&— €=O’j
noticing that @+ &*+c+d* =1, therefore a-‘é—z+&%— +c% +d_{%

= 0.

3. Given p,¢,7 to find a, &, ¢, d, we have to solve the system of
four differential equations (5) of the last section. If we put =0, then
the first threes equations become as follows :

de _, 7 __ g
Z =l
ab _ p 7
& Ty
de 9 _ 22
a2 bz’

which are of the same type as the system of equations (1) of the last
section. Therefore the system (5) may be considered as a more gen-
eral case and consequently we attempt, by some method, to obtain
Riccati’s equation which is equivalent to the system of differential equa-~
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tions (5). For that purpose we use Hamilton's quarternions I, 7, %, %
which satisfy the relations
=d=d=tti=—1,
Gihinh =yl b ity =41 +47% = 0.
Now multiplying 1,7,7%,% into the equations (5) and summing them
up, we obtain after some easy calculations

dx __ i q '—l')
Tt—x(zzs—l-ZZg 221 ’ (I)
where x = a+ bt ciy+ di.

This equation may be considered a special Riccati’s equation. In a
space of two dimensions, the analogous system of equations obtained
fiom (1) § 2 by the assumption y=o, viz.,

du
at

B _ _
=

(

[}
~

Multiplying 1, 7 and summing them up, we have

ds,

e =—hE, x = a+1f. (3)

which is quite similar to ().

4. As a more general case than § 2 (5), we ccnsider the system

of five equations

da
B prrg—dp+eq,

B

- = rp—0g+er—ar,

dr__, _ L

B = —drtertag—fp, 1)
3
at

de )
— =T Br—yr—ogq.

eg+ap+Pg+rr,

fi
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From these equations we have
@+ 2424 6%+ & = const.,
and this constant may be regarded as unity except in the case of
zero; i.e.
E+ PP+ = 1.

We put, after Prof. Darboux, § 2 (3),

at+fhtrn+0h _ I+e —
= — = X,
I—e¢ 0— By — yiy— 07
C s (2)
a— i —yis—0i5 _ 1+e _ .
I—¢ a+‘8i1+rlg+32.'; - J/ ’
whence we have
a+ i+ i+ 04 = (1—e) 2,
o— P — yiy— 045 = (1 +€) 27
Therefore
a’ﬁ L a . dx de
+ Zl a]t Z2+——~Z3 = (I ) le—x,
which, by the equations (1), is equal to the following sum
Br—rq—0p+eq+(p—0g+er—ar) %
+(=0r+ertag—pp) it (eg+ ap+Pg+7y7) %
= e(q+7i+vig+qts) +(1—¢) % (—24+ gir+ pis).
In the same way,
da_ll’ﬂ -__dr -_da e ~1 a’x _.1 de 4t
T A A 2 R G i i

= e (g—ri—7i—qis) + (1 +¢)(ri— qie—/ﬂ's) E

Hence we have

B a8 ,(zza g3 . _dr . b
+7"+ R R e S Tﬂ)”
dz*
= — 2& dt

= 2ex (riy— gia—pis) + € (g +7i + i+ gi) + ex (g— voy— vi— gia) %,

* The product of e scalar and a gnarternion is permutable.
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whence we have

L (i gy piy— LI TG 97TV ()

Starting from the equations
ot Bt i+ 0 =— (1+€)7,
a—Piy~yiy— 0= —(1—e) 5,

we arrive at the same equation for y; hence x and y are the solu-
tions of the following equation

d . . ]
—{-l,}o.— = —0 (771‘ oy

+ 74+ vy + g, — ¥l —Viy— g,
)_9 72 2”72 9%_ .7 1 — 7% 4. (4)

This equation is quite analogical with § 2 (4)

do = —7rc+ q— -+ g+ a2,

dat 2 2

5. Serret-Frenet's Formula.

Serret-Frenet's formulas of a space curve are discussed as a special
case of the kinematical equations § 2 (1). Formulas for hyperspace!
e.g., of five dimensions are

da _ B ‘

ds .Rl ’

/P S

ds .Z\;.‘g 'Rl !

ar _ 0 _ B

ds Ry Ry’ (1)
@D _ e T

ds R, R’

a9

ds R,

where s is the arc length, and 7%-'.9 are curvatures. This system of

equations does not admit of the application of quarternions. For that

1 G. E. A. Brunnel, Math. Ann., 19 (1882). F. Meyer, Jahresbericht d. Deut. Math.
Ver., 19 (1910); &e.
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purpose, we must lead these equations to those § 4 (I). But the
equations (I) are a special case of a kinematical equations for hyper-
space ; and we rather consider the reduction of the latter equations.

The kinematical equations for # dimensions are given by the fol-
lowing system of # equations

kid
a’a 3
= = ) P 2=1,2, veeiea 7 (2)
=1
where Pu =0, Lin = D

so that the coefficients p make a skew symmetric determinant. Now
we transform these equations by the following orthogonal transforma-

tions.
k2

B, =Z @i 4, law| = +1,

b .

n J=1,2 .1 (3)
or a,v=zaj,cﬂj, k=1,2,...n

=1

Differentiating with respect to ¢,

| a d
IHJ __Z( —= ak'l'a], ‘?;L)

7 n d
by (2) —Z ( Xﬁm e a’z,‘ )
k=1 h=L
dzz,L
by (3) = G ?Lh 4y Bt arL Bx
foma], fe=l 7=l
e
ﬁlch gt Crp, +2 [£75” [ZM) r
re=l R, k=1
PUt ‘PJTI EZ ﬁkh a_'/k Qppy
Ry el

* T, Craig, Displacements depending orz One, Two and Three Paramelers in a space
of Lour Dimensions, Amer. J. Math., 20 (1898); for » dimensions, N. J. Hatzidakis, Jbid.,
22 (1900).
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da
"o — &
‘Pgr Z Dy, J

A=l
and P,= PB/+B,".
Then we have
n
[).77! = = 2 Dt @y U = —Pm’,

Ty le=sl

ki

da,
PJ,.”= _Z ay a’zm — “‘Prj” ;

hom=]

hence P,=—F, and P, =
Therefore the transformed equations are
—dl‘ —Z ‘Hn

— @
P.=~PF, j=1,2,..n

where P, =0, =

|
:'(
»
B

When the transformed equations are required to be

B z‘
Ll’t - | g_yr ‘Br;

Dy = —Grp» J=1,2,...%,
ng o, r=1,2,..%.

(5)

Il

Then considering a’s as unknown, we have to solve the system of #?
differential equations
Br‘:q,ir: J=12,..%,

= 1,2,...%;
or more completely

n n

da,, .
thrk dt P Qe By, = Gy Jr=1,2, .7

=1 b =1

Or multiplying a,, into both sides and summing with respect to #
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d n n ki
{72
d;L +2 Z D s gy, A, =2 Qrs Iors

n N

Z Z @y Oy

g1 k=l r=1 hA=~=1 =l
4 n 7
. a
() 7;i + Z Prs @ =Z @5 Tirs
=1 2=l
g n
a. . .
o1 '7” '—:Z(ﬁsl»aﬂv'i_gakalx ) ],S = Iy 2, ... 0. (6)
=1

On conditions that

i

a4, =1, Z

- )

n

2% @ = O, J=1,2,..1; i 7.

7=l

l

1,2, ...7,

By these conditions the number of the differential equations is reduced

to r—1) After Cayley these #»* quantities a’s can be represented

by n(n—1)
unknowns, the equations (6) will be transformed into a system of

na—1) differential equations with —”(”2;1) unknowns. Any parti-

essential parameters; considering these parameters as new

cular solution will suffice to obtain s and consequently the orthogonal
transformations (3).
Specially for z = 5, we have
Gio = gz = G5 = G = 7,
5 = =qde =495 = 9,
Jes = g = 9,

then the system of differential equations.

5
o .
7‘=2_P¢haln Z=I:2; oo 57

fe=1

may be transformed into the system § 4 (1) and hence into § 4 (4).
(For the case #=4, we may treat similarly.) Serret-Frenets’ formulas
(1) are a special type of kinematical equations for which
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?12=L‘, P =Pu=p5=0,
1
I
Pn=—— Pu=p5=0,
?34=‘£— P =0,
‘RS 3 oy
ﬁm:%;

Hence, by the above theory, this system of equations may be trans-
formed into § 4 (4). Thus Prof. Darbaux’s method' admits theoietic-
ally of a similar extension®

6. Line Element on Hypersphere.
If ds, denote the line element on the hypersphere of 2z dimensions,

then for the hypersphere
a4 Py =, (1)
ds® = du®+df +dy* + do*+ det. (2)
On the other hand, from the equations § 4 (2)
BB = —(1— Pyt = 1=,
or dividing by (1—e¢), and rearranging we have

e = (x+y)x—s)" } @)
and 1—e= —2y(z—p) = —2(@@—p) "y
Now do+dfiy + dyly+ dity, = (1—e) de—zde

= —2dx(x—y; " y—xde,

also da— dfi,— dyi»—d0=(1—¢€) y " dy y ™ +y " de;

1 Loc. cit.

2 Mr. Eiesland treated the same problem of integration of kinematical equations, from
another point of view, in Amer. J. Math., 20 (1898); 28 (1906).

N When the product of two quariernions is equal o a scalar, thern the factors are per-
mutable,
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bence d@?+dF+d+d0* = 4dx (x—y) T dy (x—~y) T — 2y D
+2 (27" dy—dx)(x—p) " dk.

But  d(e—y) = (= 1o d—dr) = (= 1) dy—da),

e—1
de
—I :

hence 2y dy—dx = (x—3) .

Therefore Ao+ AP +dy* + dd*=4 dz (x—y) ™ dy (x—y)

b

1-+e dae*
+ de’+ 2 ,

e—1I e—1

or  dsi=de’+dF+drt+dO+ dP=4 dx (x —y) 7 dy (x—3)7, (4)

which is quite analogical with
4dzdyt
(=)

dsg = da®+df*+dy* =

7. Parametric Representation.
By aid of x and y, the five variables «, 8,7, 8, can be represent-
ed as in the case of three variables. Now add the equations

a+Piy+ i+ 04 = (1—¢) x, } 0
o— B —7i—0iy = —(1—¢) .
Then we have 20 = (x—y ) (1—¢),
by § 6 (3) =-z2(@—y )y @@-)"
Hence a = (1—z)(x—y) ™ (2)
Next from (1)
iy — B—1is+ 04y =(1 —e) x7,
tiy+ B—vis+ 04, = —(1—¢) 2, 7%
Adding we have 2= —(1—e)(wd+7 ™),
=2 (w+iy™)y (—2)7
Hence B = 1 (1 —4, x4 9)(x—p) (3)

v and 0 may be obtained in the same way; hence, adding the first
formula § 6 (3), we have

1 Darboux: .Loe, cit. p. 30.
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o= (1—»)x—3)" )

B =i (1—d 2 9)(x—7)7,

7 =ha(1—g 2 y)(x—y)7, (4)
= 4 (1~ x5 y)(x—9)7,

e = (z+)(x~3)" J

For the hypersphere of four dimensions, we have to put e=o, and
hence x=—y,

=L x—l'l-x) h
2

2
7= (G a— i) ®
5 & 5)s
0= —(Gr'—xiy); |
for the sphere we have to put 4=#4=0, 4 =i,
o= (1= m)E—s)™,
B=1i(+m)x—3)" (6)
e = (x+y)x~2)7";
for the circle, ¢, =4, = e = 0, H=17and ¥ =—y,
= —;— (# +2),
(7)

=L (=),

8. Transformation of Line-element.

The square of the line element &s* does not change by the sub-
stitution
x = Axn B+ C, g = Ay B+ C, (1)

where A4, B, C are constant quarternions. For
ds® = 4 dx (x=»)'dy (x—y)™

= xAdxl B{A (xl—_j/]_) _B}_l Ady]_ B{A (xl—j/l) B}—l,
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= 4 Adx, (% —9) " dyy (21—30) " 4y
Since ds* is a scalar
ds* = 4 dwy (m—p) ™ dyy (=)™
Next 4s* does not change by the substitutions
x=2"" y=p (2)
For since (x—2)" = m (p1—2) g = 3 (—20) 7" 3y,
ds® = dz, (m— )" dyy (B —2) ™
Lastly d&s;* does not change by the substitutions

x = (Ax;+BYCx + D), }

= (dpu+B) Gt D) )

where A, B, C, D are constant quarternions,

Since x = {AC*(Cxn+ D)+ B— AC D}(Cx+ D)™
— AC+ (B—AC- DY Cri+ D),

Putting X = Cok D, Xy = A
then =4 H(B—A D) 2,

in the same way
Y= Gt D, =y

then 9y = AC*+(B—AC™ D) ys.
Therefore by (1) and (2), we may prove the invariance of ds We
remark that since
ds® = 4 dx (x—y)" &y (x—3) 7,
= 44y (=) dzx (x—2)7,

dss is also invariant by the transformations

7 = (dypy+ BY Gy + D),
x = (An+ BY G+ D) } @

7 = (4x+ B)(Cn+ DY,



Some Applications of Quarternions.

9. Meaning of the Parameter «.

301

When (0,§,%,¢) denote the coordinates of the projection of a

point on the hypersphere

Et AP+ 8 =0,

from its pole on the equatorial hyperspace of four dimensions, then

by analogy, the equations of projection are

whence by easy calculations

a = 20
&P +E+ P+
g = 25
PO
r= =/
FPHE+P+HC+T ]
5 = 2
P+ EF P
e — P+ E+ P41 .
o' +E+ 7+ 0+ 1
Y- ("F X e |
Now “+:Bll+7'12+513 = w2+52+'02+cz+1 ’
= (1—¢) %,
hence =— 22 - Z.
P +E+ P+ 1
Therefore x = 0+ &+ i+,

For a sphere, x is the complex variable on the Gauss’ plane.




