obooooooooo 13780 20040 70-74

10

Construction of elements of a Lie group Go
via spinor group Spin(8)
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1 Introduction

Let € be the division Cayley algebra over R. It is known that the automorphism
group G2 = AutC is a compact simply connected simple Lie group of type G,
and g2 = Der€ is a compact simple Lie algebra of type G2. In this paper, we
give a concrete description of elements of the group G5 by using elements of the
Cayley algebra.

2 Spinor group

Let T*(R") be the even tensor algebra of R® and U (R") the two-sided ideal
of T*(R") generated by

z®z+ (z,z)1 (zr e R")
where (, ) is the canonical inner product of R". Define the even Clifford algebra
C*(R") by
C*(R") = T*(R")/U(R").
We denote the multiplication of a, 3 € C*(R") by « - 3. For z,y € R" we have
T-y+y-z=-2z,y). (1)

It is known that a spinor group Spin(n) is defined by

Spin(n) = {a =ay-ay---ay € CY(R") | a; € R", Hf;l(a,-,a,-) =1 }




The unit element of Spin(n)is1=—a-a (a € R", (a,a) = 1) and an inverse
element of
a=a;- ay---ay-1 -asy € Spin(n)
18
a ! =ag -ay_1---as - a; € Spin(n).
The vector representation p; : Spin(n) — SO(n) is given by
p(e)z=a-z-a"! (z € R").

It is known that Spin(n) is a universal covering group of SO(n) (double cover-
ing), and Spin(n) (n > 3) is simply connected.
3 Cayley algebra and spinor groups

In the division Cayley algebra €, we denote the multiplication and the canonical
conjugation by zy and Z (z,y € €) respectivly. The inner product of € is defined
by

(z,y) = 1(ﬂry+ yT).

We describe here some formulas of the Cayley algebra (use in later). For z,y,2 €
¢, we have

z(Jz) + y(Tz) = 2(z,y)z = (22)7 + (2Y)7, (2)
(zy)z = z(yz) = zyz, (3)
(zy)(2z) = z(y2)z, (4)

- (zy,z2) = (z,2)(y, 2) = (yz, 22). (5)

We identify € with R® and Im€ = {z € € | T+ z = 0} with R”. Then we

see

Spin(8)={a=a1-a2---a2¢ l a; €C, H, (ai,a;) =1 }

Spin(7) = {a =a;-az---ay ' a; € Im¢C, H,..l a;,a;)=1 }
Lemma 3.1 For a =a; -az---ay € Spin(8) aﬁd z € €, we have

pi(a) = ai(@2(as(- - - a21—1(@2zq2)az-1 - - - Jas)@z)a;.

Proof. It is sufficient to prove the claim for @« = a - b € Spin(8). From (1) we
seeb-z-b=(b,b)z — 2(x,b)b and

p(a)z=a-b-z-b-a
= (a,a)(b, b)z — 2(z,a)(d,b)a — 2(z,b)(a,a)b + 4(z, b)(a,b)a.
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On the other hand, from (2) we see bzb = 2(z, b)b — (b,b)% and

a(bzb)a = (a,a)(b,b)z — 2(z,a)(b,b)a — 2(z,b)(a, a)b + 4(z, b)(a, b)a.

A linear transformation
CRC—End(¢€), a®b— —LyL;
(where L,z = az) can be extended to a representation
p2 : TT(€) = End(€), p2(a® b) = —L,L;.
From (2) we see
p2(a®a+ (a,a)l) = —L,Lz+ (a,a)1 =0,

then we have po(U(€)) = {0} and p, is a representation of C* (€) := T+ (&) /U (€).
Then we have a representation p; of Spin(8) on €

pa(ar - 62+ an) = (~1)'La, Loy Lay - Ly -
In a similar way we define a representation ps of Spin(8) on € by

ps(a1-az---azqg) = (~1)?Rq, Rg, Ry, - -+ Rz,
where Ryz = za. Then we have following lemma from (4) and lemma 3.1.
Lemma 3.2 For o € Spin(8) and z,y € €, we have

pi1(@)(zy) = (p2(a)z)(pa(a)y).
From (5), we see
p2(e),pa(a) € SO(8) = {A € GL(®) | (Az, Ay) = (z,y), <,y €€}

If p2(a)l =1, since

pi(a)z = pi(@)(1z) = (p2(a)1)(ps(a)z) = ps(@)z,

we see p;(a) = pa(a). Similarly, if ps(a)l = 1 we see p;(a) = p2(a). Hence we

have

Proposition 3.3 For a € Spin(8), the following two conditions are equivalent.
(i) p2(a)1 = ps(a)1 =1,
(i) p1(e) = p2(a) = ps(e) € Ga.
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4 Main theorem

It is known that the group G, is a subgroup of SO(7) = p1(Spin(T7)).

Lemma 4.1 For a = a; - ay---ay € Spin(7), 2 conditions pa(a)l = 1 and
pa(a)l =1 are equivalent.

Proof. Since @ = —a for a € Im¢€, we see
pz(a) = La],Lag "'Lazu p3(a) = R01R82 "'Ram-
If p2(a)l =1, we see
1

I = pa(a)l = ai(az(- - - az-2(a2-1a2)))
= (((@21B21-1)B21-2 - - - }@2)31 = (((6282-1)a2-2 - - - )az)a;
3 a)l

If pa(a)l = 1, similarly we have p2(a)l = 1.
O
From proposition 3.3 and lemma 4.1, we have the following.

Proposition 4.2 For a;,as, - ,ay € ImC, let us put g := Lo, La, -+ Lay . If
gl =l1’ g € G2'

Let us put
K:={9g=Ls La, - La, | ax € Im€, g1 = 1}.

Then K is a subgroup of G. Since aL,a™! = Loy, (o € G2) the subgroup
K is normal. In next section we show K # {e}. Then we have

Theorem 4.3
G2 = {g = LalLag - "Lam I (1573 € Im@,gl = 1}

5 Example of elements

Let {eo = 1,€1,¢€2,--- ,e7} be a basis of € with following conditions.

eoek =exeg =¢€x (0<k<7T), (eo=1, the unit element),
e2 =—eo (k#0), exe;=—erex (1<k#I1LT),

€] = €263 = €4€5 = €g€7, €2 = €3€] = €g€4 = €5€7,

€3 = €1€2 = €4€7 = €565, €4 = €5€] = €266 = €7€3,

€5 = €1€4 = €7€9 = €g€3, €g = €7€] = €4€2 = €3€5,

€7 = €1€g = €2€5 = €3€4.
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Define an element Gi; (0 < i # j < 7) of s0(8) = {X € gl(€) | (X=z,y) +
(z,Xy) =0, z,y€C}by

G,-jek = ije,- - 6”;'6_,'.

In [F], Freudenthal proved if e;e; = exe; (for example ejes = eses,eze; =
eseq, - etc.), Gji — Gix € g2. Let us put
6 +sin0e a €,a €k, dq4 = COS —€ +sinae
a; = Ccos —¢; —€;,07 = €;,d3 = €k,dq = - ~e,
1 9 i ) 3, 62 i, 43 k, 44 D) k 9 1

h = hg]kl(g) = LalLazLasLa‘.

By a straightforward calculation, we have

cos fe; + sin fe; (p=1),
— sin fe; + cos fe; (p=1),
hl1 =1 and he, = { cosfex —sinfe (p=k),
sin fej + cos fe; (p=1),
€p (others).
This show d
—hijx (0 = Gji — Gik.
g Niant (0) o= G Gk
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